I try to restart thread but synchronized block in thread keep locked after restarted. I shouldn't change socket properties because some processes take too long but when network connection lost it hangs forever. I try to use InterruptedException but it doesn't work. Is there any way to release this lock?
public static void main(String[] args) {
try {
synchronizedBlock t1 = new synchronizedBlock();
t1.start();
Thread.sleep(500);
t1.cancel();
t1 = new synchronizedBlock();
t1.start();
} catch (Exception e) {
e.printStackTrace();
}
while (true) {
}
}
public class synchronizedBlock extends Thread {
boolean isRunning = true;
boolean isRunning2 = true;
public static Object[] locks = new Object[5];
public synchronizedBlock() {
for (Integer i = 0; i < 5; i++) {
synchronizedBlock.locks[i] = i;
}
}
public void cancel() {
isRunning = false;
interrupt();
}
public void socketProces() {
while (isRunning2) {
}
}
public void proces(int index) {
try {
synchronized (locks[index]) {
System.out.println("Synchronized Block Begin");
socketProces();
}
} catch (Exception e) {
e.printStackTrace();
}
}
#Override
public void run() {
try {
System.out.println("Run begin");
while (isRunning) {
proces(1);
}
Thread.sleep(1);
} catch (InterruptedException e) {
//Do Something
} catch (Exception e) {
e.printStackTrace();
}
}
}
Result:
Run begin
Synchronized Block Begin
Run begin
When you start the synchronizedBlock thread you'll get a stack trace like this I think:
run -> proces -> socketProcess.
Then because isRunning2 = true, the thread will enter an infinite loop in socketProcess and never terminate.
Keep in mind that in Java there is no such thing as 'restarting' a thread. Once started, a thread can never be restarted. Indeed, you are creating two sycnchronizedBlock objects, not restarting a single object.
As a side note, it is generally problematic to overwrite static state in a class constructor, as you're doing with the locks variable, without synchronization.
The issue here is the Integer cache which is used in the for loop to initialize the synchronizedBlock.locks array:
for (Integer i = 0; i < 5; i++) {
synchronizedBlock.locks[i] = i;
}
When this code is run again, due to the constructor of the second synchronizedBlock, the synchronizedBlock.locks array contains the same Integer instances which where created when this for loop was executed for the first time. This means that the synchronized (locks[index]) lock will be on the same Integer object. As you have already one thread holding the lock for the Integer(1) object, the second thread waits outside the lock waiting for it to be released.
This is also problematic in combination with the fact that the first thread is not terminating. Your method
public void socketProces() {
while (isRunning2) {
}
}
is an endless loop as you don't change the value of isRunning2, ever. Also, the interrupt() method itself does not stop any thread. Instead, it sets just an internal flag in the Thread class, which can be checked with isInterrupted() and interrupted(). You have to check this flag and react on it like "Oh, someone wants me to stop, so I stop now".
To solve your problem you should at least quit your thread when the "isInterrupted" flag of the Thread instance is set. You can do it like this:
public void socketProces() {
while (isRunning2) {
if (Thread.interrupted()) {
return;
}
}
}
Instead of returning from socketProces() normally you could throw an InterruptedException like other methods do.
Also, depending on how you want to initialize/use the instances you want to lock on with synchronized(...), you might want to consider on how you create/fill the synchronizedBlock.locks array and which objects you want to use (the Integer cache might be problematic here). It depends on you if the creation of a new synchronizedBlock instance will/should/shouldn't create new objects to lock on in the synchronizedBlock.locks array.
I need to set a timeout for a block of code which will call an method in jar file.
I am using the following code
final Runnable stuffToDo = new Runnable() {
#Override
public void run() {
/* Do stuff here. */
jarclass.run();
}
};
final ExecutorService executor = Executors.newFixedThreadPool(1);
final Future future = executor.submit(stuffToDo);
//executor.shutdown(); // This does not cancel the already-scheduled task.
try {
future.get(1, TimeUnit.SECONDS);
}
catch (InterruptedException ie) {
/* Handle the interruption. Or ignore it. */
}
catch (ExecutionException ee) {
/* Handle the error. Or ignore it. */
}
catch (TimeoutException te) {
/* Handle the timeout. Or ignore it. */
}
if (!executor.isTerminated()){
executor.shutdownNow();
}
However the jarclass.run() somehow start another thread which keep running and show all the printout with pool-2-thread-1.
How can I completely shutdown the jarclass.run()??
Update:
I changed new Thread() to new Runnable. It still doesn't work.
What I am confusing is I don't know where jarclass start another thread and cannot handle it. When the code goes to executor.shutdownNow(), it does jump out and run the following code. But the jarclass.run() are still running.
I am not very good at English. Hope I made this clear.
Update:
Problem solved by this code:
Future<String> future = new FutureTask<String>(new Callable<String>() {
public String call() throws Exception {
jarclass.run();
return null;
}
});
try {
future.get(1, TimeUnit.SECONDS);
} catch (Exception e) {
e.printStackTrace();
}
Don't know why the former code fail......If anyone knows, we can still discuss.
Thanks for all the kindly replies. Really appreciate it.
You should not instantiate a Thread when using ExecutorService. Use Runnable instead:
final Runnable stuffToDo = new Runnable() { /* as it is now */ };
When you create a thread directly, it's not managed by the executor service you create later and that's why all the logs.
It's not safe kill thread directly, see Thread.stop() deprecated
Recomended way it to use a flag that can notify to thread that is time to stop.
If you can access to jar and modify code you can create a method named stop() in your jarclass using flag so when you need to kill process you can call jarclass.stop().
For example:
public class jarclass{
private boolean keepAlive = true;
public void run(){
keepAlive = true;
while(keepAlive){
//do work
}
}
public void stop(){
keepAlive = false;
}
}
I have a nice and compact code, which does not work as I expected.
public class Test {
public static void main(String[] args) {
Runnable r = new Runnable() {
#Override
public void run() {
try {
for (;;) {
}
} finally {
System.out.println("FINALLY");
}
}
};
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<?> future = executor.submit(r);
try {
future.get(3, TimeUnit.SECONDS);
} catch (TimeoutException e) {
boolean c = future.cancel(true);
System.out.println("Timeout " + c);
} catch (InterruptedException | ExecutionException e) {
System.out.println("interrupted");
}
System.out.println("END");
}
}
The output is :
Timeout true
END
Question:
Why does not terminate the future.cancel(true) method the called Runnable?
After the program wrote the "END" to the output, the "r" Runnable is still running.
The problem is that your Runnable is not interruptible: task interruption is a collaborative process in Java and the cancelled code needs to check regularly if it's been cancelled, otherwise it won't respond to the interruption.
You can amend you code as follows and it should work as expected:
Runnable r = new Runnable() {
#Override public void run() {
try {
while (!Thread.currentThread().isInterrupted()) {}
} finally {
System.out.println("FINALLY");
}
}
};
This is always a little bit misleading: The ExceutorService or even the underlying thread scheduler do not know anything about what the Runnable is doing. In your case they don't know that there is a unconditional loop.
All these methods (cancel, done, ...) are related to manage Threads in the Executor structure. cancel cancels the thread from the point of view of the Executor service.
The programmer must test if the Runnable was canceled and must terminate the run() method.
So in your case (if I remember well) something like this:
public class Test {
public static void main(String[] args) {
FutureTask r = new FutureTask () {
#Override
public void run() {
try {
for (;!isCancelled();) {
}
} finally {
System.out.println("FINALLY");
}
}
};
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<?> future = executor.submit(r);
try {
future.get(3, TimeUnit.SECONDS);
} catch (TimeoutException e) {
boolean c = future.cancel(true);
System.out.println("Timeout " + c);
} catch (InterruptedException | ExecutionException e) {
System.out.println("interrupted");
}
System.out.println("END");
}
}
When you cancel a Future whose Runnable has already begun, the interrupt method is called on the Thread that is running the Runnable. But that won't necessarily stop the thread. Indeed, if it's stuck in a tight loop, like the one you've got here, the Thread won't stop. In this case, the interrupt method just sets a flag called the "interrupt status", which tells the thread to stop when it can.
See the Javadoc for the interrupt method of Thread
Future.cancel() will cancel any queued task or will call Thread.interrupt() on your thread if already running.
You need to interrupt your code
It's your code's responsibility is to be ready for any interruptions. I'd go so far to say that whenever you have a long running task, that you insert some interrupt ready code like this:
while (... something long...) {
... do something long
if (Thread.interrupted()) {
... stop doing what I'm doing...
}
}
How to stop what I'm doing?
You have several options:
If your you are in Runnable.run() just return or break out of the loop and finish the method.
You may be in some other method deep in the code. It may make sense at that point for that method to throw InterruptedException so you would just do that (leaving the flag cleared).
But maybe deep in your code it doesn't make sense to throw InterruptedException. In that case you should throw some other exception, but before that mark your thread interrupted again so the code that catches knows that an interrupt was in progress. Here's an example:
private void someMethodDeepDown() {
while (.. long running task .. ) {
... do lots of work ...
if (Thread.interrupted()) {
// oh no! an interrupt!
Thread.currentThread().interrupt();
throw new SomeOtherException();
}
}
}
Now the exception can propagate an either terminate the thread or be caught, but the receiving code hopefully notices that an interrupt is in progress.
I have a java class like below. Its job is monitor a file, if that file's size does not change at certain interval, it will raise alert.
I'd like to write two UTs for it.
1.Simulates the file size keeps unchanges.
2.Simulate file size keeps changes for a while. After that file size will change.
The UT will verify alerter.alert() or alerter.harmless() is really invoked when condition is or isn't met. I mocked Alerter and passed it to Task's constructor. But how to control the timing for run()? I know timing for multi-thread cannot be controlled accurately. I just would like to know what is the best practice to write ut for this kind of class. If possible, please write a test sample.
You can regard that "some condition" as checking if a specified file's size changes at a certain interval. If not changed, some condition will be true.
class Task implements Runnable{
Alerter alerter;
boolean stop=false;
public Task(Alerter alerter){
this.alerter=alerter;
}
public void run() {
while (!stop){
if (some condition){
alerter.alert();
} else{
alerter.harmless();
}
Thread.sleep(5000);
}
}
public synchronized void stop(){
stop=true;
}
}
I'm thinking of writing uts like below. But I don't think it is good enough.
#Test
public void testRunWithFeed() {
Alerter mockAlerter=mock(Alerter.class);
Task task=new Task(mockAlerter);
Thread thread =new Thread(task);
thread.start();
try {
Thread.sleep(1000); // give Task.run() a change to run
} catch (InterruptedException e) {
e.printStackTrace();
}
task.stop();
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
verify(mockAlerter,atLeastOnce()).alert();
verify(mockAlerter,never()).harmless();
}
#Test
public void testRunNoFeed() {
Alerter mockAlerter=mock(Alerter.class);
Task task=new Task(mockAlerter);
Thread thread =new Thread(task);
thread.start();
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
changeFileSize();
try {
Thread.sleep(6000); //because every 5000ms file size will be checked once in run()
} catch (InterruptedException e) {
e.printStackTrace();
}
task.stop();
try {
thread.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
verify(mockAlerter,atLeastOnce()).alert();
verify(mockAlerter,atLeastOnce()).harmless();
}
Thanks in advance.
I think that you should not call sleep() and obviously should not call stop in your test.
If you task runs and is expected to terminate calling join() is enough: your main thread will wait until the worker thread is done. Then you will verify the result.
And yet another tip. You should prevent your test from being stuck. Both JUnit and TestNG have annotations that define the test timeout. If timeout is expired the test will be killed by framework and will fail automatically.
For example for JUnit it is the attribute timout: #Test(timeout=3000) means 3 seconds.
Is it possible to force Java to throw an Exception after some block of code runs longer than acceptable?
Here's the simplest way that I know of to do this:
final Runnable stuffToDo = new Thread() {
#Override
public void run() {
/* Do stuff here. */
}
};
final ExecutorService executor = Executors.newSingleThreadExecutor();
final Future future = executor.submit(stuffToDo);
executor.shutdown(); // This does not cancel the already-scheduled task.
try {
future.get(5, TimeUnit.MINUTES);
}
catch (InterruptedException ie) {
/* Handle the interruption. Or ignore it. */
}
catch (ExecutionException ee) {
/* Handle the error. Or ignore it. */
}
catch (TimeoutException te) {
/* Handle the timeout. Or ignore it. */
}
if (!executor.isTerminated())
executor.shutdownNow(); // If you want to stop the code that hasn't finished.
Alternatively, you can create a TimeLimitedCodeBlock class to wrap this functionality, and then you can use it wherever you need it as follows:
new TimeLimitedCodeBlock(5, TimeUnit.MINUTES) { #Override public void codeBlock() {
// Do stuff here.
}}.run();
I compiled some of the other answers into a single utility method:
public class TimeLimitedCodeBlock {
public static void runWithTimeout(final Runnable runnable, long timeout, TimeUnit timeUnit) throws Exception {
runWithTimeout(new Callable<Object>() {
#Override
public Object call() throws Exception {
runnable.run();
return null;
}
}, timeout, timeUnit);
}
public static <T> T runWithTimeout(Callable<T> callable, long timeout, TimeUnit timeUnit) throws Exception {
final ExecutorService executor = Executors.newSingleThreadExecutor();
final Future<T> future = executor.submit(callable);
executor.shutdown(); // This does not cancel the already-scheduled task.
try {
return future.get(timeout, timeUnit);
}
catch (TimeoutException e) {
//remove this if you do not want to cancel the job in progress
//or set the argument to 'false' if you do not want to interrupt the thread
future.cancel(true);
throw e;
}
catch (ExecutionException e) {
//unwrap the root cause
Throwable t = e.getCause();
if (t instanceof Error) {
throw (Error) t;
} else if (t instanceof Exception) {
throw (Exception) t;
} else {
throw new IllegalStateException(t);
}
}
}
}
Sample code making use of this utility method:
public static void main(String[] args) throws Exception {
final long startTime = System.currentTimeMillis();
log(startTime, "calling runWithTimeout!");
try {
TimeLimitedCodeBlock.runWithTimeout(new Runnable() {
#Override
public void run() {
try {
log(startTime, "starting sleep!");
Thread.sleep(10000);
log(startTime, "woke up!");
}
catch (InterruptedException e) {
log(startTime, "was interrupted!");
}
}
}, 5, TimeUnit.SECONDS);
}
catch (TimeoutException e) {
log(startTime, "got timeout!");
}
log(startTime, "end of main method!");
}
private static void log(long startTime, String msg) {
long elapsedSeconds = (System.currentTimeMillis() - startTime);
System.out.format("%1$5sms [%2$16s] %3$s\n", elapsedSeconds, Thread.currentThread().getName(), msg);
}
Output from running the sample code on my machine:
0ms [ main] calling runWithTimeout!
13ms [ pool-1-thread-1] starting sleep!
5015ms [ main] got timeout!
5016ms [ main] end of main method!
5015ms [ pool-1-thread-1] was interrupted!
Yes, but its generally a very bad idea to force another thread to interrupt on a random line of code. You would only do this if you intend to shutdown the process.
What you can do is to use Thread.interrupt() for a task after a certain amount of time. However, unless the code checks for this it won't work. An ExecutorService can make this easier with Future.cancel(true)
Its much better for the code to time itself and stop when it needs to.
If it is test code you want to time, then you can use the time attribute:
#Test(timeout = 1000)
public void shouldTakeASecondOrLess()
{
}
If it is production code, there is no simple mechanism, and which solution you use depends upon whether you can alter the code to be timed or not.
If you can change the code being timed, then a simple approach is is to have your timed code remember it's start time, and periodically the current time against this. E.g.
long startTime = System.currentTimeMillis();
// .. do stuff ..
long elapsed = System.currentTimeMillis()-startTime;
if (elapsed>timeout)
throw new RuntimeException("tiomeout");
If the code itself cannot check for timeout, you can execute the code on another thread, and wait for completion, or timeout.
Callable<ResultType> run = new Callable<ResultType>()
{
#Override
public ResultType call() throws Exception
{
// your code to be timed
}
};
RunnableFuture<ResultType> future = new FutureTask<>(run);
ExecutorService service = Executors.newSingleThreadExecutor();
service.execute(future);
ResultType result = null;
try
{
result = future.get(1, TimeUnit.SECONDS); // wait 1 second
}
catch (TimeoutException ex)
{
// timed out. Try to stop the code if possible.
future.cancel(true);
}
service.shutdown();
}
I can suggest two options.
Within the method, assuming it is looping and not waiting for an external event, add a local field and test the time each time around the loop.
void method() {
long endTimeMillis = System.currentTimeMillis() + 10000;
while (true) {
// method logic
if (System.currentTimeMillis() > endTimeMillis) {
// do some clean-up
return;
}
}
}
Run the method in a thread, and have the caller count to 10 seconds.
Thread thread = new Thread(new Runnable() {
#Override
public void run() {
method();
}
});
thread.start();
long endTimeMillis = System.currentTimeMillis() + 10000;
while (thread.isAlive()) {
if (System.currentTimeMillis() > endTimeMillis) {
// set an error flag
break;
}
try {
Thread.sleep(500);
}
catch (InterruptedException t) {}
}
The drawback to this approach is that method() cannot return a value directly, it must update an instance field to return its value.
EDIT: Peter Lawrey is completely right: it's not as simple as interrupting a thread (my original suggestion), and Executors & Callables are very useful ...
Rather than interrupting threads, you could set a variable on the Callable once the timeout is reached. The callable should check this variable at appropriate points in task execution, to know when to stop.
Callables return Futures, with which you can specify a timeout when you try to 'get' the future's result. Something like this:
try {
future.get(timeoutSeconds, TimeUnit.SECONDS)
} catch(InterruptedException e) {
myCallable.setStopMeAtAppropriatePlace(true);
}
See Future.get, Executors, and Callable ...
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html#get-long-java.util.concurrent.TimeUnit-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool%28int%29
I created a very simple solution without using any frameworks or APIs. This looks more elegant and understandable. The class is called TimeoutBlock.
public class TimeoutBlock {
private final long timeoutMilliSeconds;
private long timeoutInteval=100;
public TimeoutBlock(long timeoutMilliSeconds){
this.timeoutMilliSeconds=timeoutMilliSeconds;
}
public void addBlock(Runnable runnable) throws Throwable{
long collectIntervals=0;
Thread timeoutWorker=new Thread(runnable);
timeoutWorker.start();
do{
if(collectIntervals>=this.timeoutMilliSeconds){
timeoutWorker.stop();
throw new Exception("<<<<<<<<<<****>>>>>>>>>>> Timeout Block Execution Time Exceeded In "+timeoutMilliSeconds+" Milli Seconds. Thread Block Terminated.");
}
collectIntervals+=timeoutInteval;
Thread.sleep(timeoutInteval);
}while(timeoutWorker.isAlive());
System.out.println("<<<<<<<<<<####>>>>>>>>>>> Timeout Block Executed Within "+collectIntervals+" Milli Seconds.");
}
/**
* #return the timeoutInteval
*/
public long getTimeoutInteval() {
return timeoutInteval;
}
/**
* #param timeoutInteval the timeoutInteval to set
*/
public void setTimeoutInteval(long timeoutInteval) {
this.timeoutInteval = timeoutInteval;
}
}
example :
try {
TimeoutBlock timeoutBlock = new TimeoutBlock(10 * 60 * 1000);//set timeout in milliseconds
Runnable block=new Runnable() {
#Override
public void run() {
//TO DO write block of code to execute
}
};
timeoutBlock.addBlock(block);// execute the runnable block
} catch (Throwable e) {
//catch the exception here . Which is block didn't execute within the time limit
}
This was so much useful for me when i had to connect to a FTP account. Then download and upload stuff. sometimes FTP connection hangs or totally breaks. This caused whole system to go down. and i needed a way to detect it and prevent it from happening . So i created this and used it. Works pretty well.
I faced a similar kind of issue where my task was to push a message to SQS within a particular timeout. I used the trivial logic of executing it via another thread and waiting on its future object by specifying the timeout. This would give me a TIMEOUT exception in case of timeouts.
final Future<ISendMessageResult> future =
timeoutHelperThreadPool.getExecutor().submit(() -> {
return getQueueStore().sendMessage(request).get();
});
try {
sendMessageResult = future.get(200, TimeUnit.MILLISECONDS);
logger.info("SQS_PUSH_SUCCESSFUL");
return true;
} catch (final TimeoutException e) {
logger.error("SQS_PUSH_TIMEOUT_EXCEPTION");
}
But there are cases where you can't stop the code being executed by another thread and you get true negatives in that case.
For example - In my case, my request reached SQS and while the message was being pushed, my code logic encountered the specified timeout. Now in reality my message was pushed into the Queue but my main thread assumed it to be failed because of the TIMEOUT exception.
This is a type of problem which can be avoided rather than being solved. Like in my case I avoided it by providing a timeout which would suffice in nearly all of the cases.
If the code you want to interrupt is within you application and is not something like an API call then you can simply use
future.cancel(true)
However do remember that java docs says that it does guarantee that the execution will be blocked.
"Attempts to cancel execution of this task. This attempt will fail if the task has already completed, has already been cancelled,or could not be cancelled for some other reason. If successful,and this task has not started when cancel is called,this task should never run. If the task has already started,then the mayInterruptIfRunning parameter determines whether the thread executing this task should be interrupted inan attempt to stop the task."
If you want a CompletableFuture way you could have a method like
public MyResponseObject retrieveDataFromEndpoint() {
CompletableFuture<MyResponseObject> endpointCall
= CompletableFuture.supplyAsync(() ->
yourRestService.callEnpoint(withArg1, withArg2));
try {
return endpointCall.get(10, TimeUnit.MINUTES);
} catch (TimeoutException
| InterruptedException
| ExecutionException e) {
throw new RuntimeException("Unable to fetch data", e);
}
}
If you're using spring, you could annotate the method with a #Retryable so that it retries the method three times if an exception is thrown.
Instead of having the task in the new thread and the timer in the main thread, have the timer in the new thread and the task in the main thread:
public static class TimeOut implements Runnable{
public void run() {
Thread.sleep(10000);
if(taskComplete ==false) {
System.out.println("Timed Out");
return;
}
else {
return;
}
}
}
public static boolean taskComplete = false;
public static void main(String[] args) {
TimeOut timeOut = new TimeOut();
Thread timeOutThread = new Thread(timeOut);
timeOutThread.start();
//task starts here
//task completed
taskComplete =true;
while(true) {//do all other stuff }
}
There is a hacky way to do it.
Set some boolean field to indicate whether the work was completed. Then before the block of code, set a timer to run a piece of code after your timeout. The timer will check if the block of code had finished executing, and if not, throw an exception. Otherwise it will do nothing.
The end of the block of code should, of course, set the field to true to indicate the work was done.
There's a very simple option that nobody's mentioned yet:
Duration timeout = Duration.ofMinutes(5);
Thread thread = new Thread(() -> {
// your code here
});
thread.start();
thread.join(timeout.toMillis());
if (thread.isAlive()) {
thread.interrupt();
throw new MyTimeoutException();
}
If the thread running your code block fails to complete within the timeout, it is interrupted and whatever exception you want can be thrown.
It is possible to write code that will simply ignore the interruption and carry on. If you're dealing with this can cannot fix it then there is thread.stop(), but that can break any synchronisation mechanisms that you are relying on. See its deprecation notice.
You can also capture exceptions from the thread:
AtomicReference<Throwable> uncaughtException = new AtomicReference<>();
thread.setUncaughtExceptionHandler((t, ex) -> uncaughtException.setRelease(ex));
// ...
Throwable ex = uncaughtException.getAcquire();
if (ex != null) {
throw ex;
}
I had this problem too, my logs print out with ‘’Unexpected end of stream‘’.and ‘’Could not get a resource from the pool‘’,
I set the timeout of brpop to 30s, redis to 31s, and mysql database connection pool to 300s. For now, this error is not printed on the log, but I don't know if this error will be reported in the future.I don't know if it has a bad effect on my writing to the database