SwingWorker synchronized method queue blocking or what? - java

Theoretical question. If I have two SwingWorkers and an outputObject with method
public void synchronized outputToPane(String output)
If each SwingWorker has a loop in it as shown:
//SwingWorker1
while(true) {
outputObject.outputToPane("garbage");
}
//SwingWorker2
Integer i=0;
while(true) {
outputObject.outputToPane(i.toString());
i++;
}
How would those interact? does the outputToPane method receive an argument from one thread and block the other one until it finishes with the first, or does it build a queue of tasks that will execute in the order received, or some other option?
The reason I ask:
I have two threads that will be doing some heavy number crunching, one with a non-pausable data stream and the other from a file. I would like them both to output to a central messaging area when they hit certain milestones; however, I CANNOT risk the data stream getting blocked while it waits for the other thread to finish with the output. I will risk losing data then.

synchronized only guarantees mutual exclusion. Is not fair, which in practice means that your workers might alternate quite nicely, or the first one might get precedence and block the second one completely until finished, or anything between.
See Reentrantlock docs for more about fairness. Maybe you could consider using it instead of synchronized. Probably even better alternative would be using a Queue.

I would advise you to have two output object in your messaging area. Because if one thread starts to modify the output answer then the other one will have to wait for it to finish. Even if you can optimize it to make it fast enough, the actual display of info would make your threads slow each others down over time.
Although you might try to synchronize them, the result might not always be 100% safe

Related

How does thread synchronization work in Kotlin?

I have been experimenting with Kotlin synchronization and I do not understand from the docs on how the locking mechanism works on thread synchronization over common resources and thus attempted to write this piece of code which further complicates my understanding.
fun main() {
val myList = mutableListOf(1)
thread {
myList.forEach {
while (true) {
println("T1 : $it")
}
}
}
thread {
synchronized(myList) {
while (true) {
myList[0] = 9999
println("**********\n**********\n**********\n")
}
}
}
}
myList is the common resource in question.
The first thread is a simple read operation that I intend to keep the resource utilized in read mode. The second is another thread which requests a lock in order to modify the common resource.
Though the first thread does not contain any synchronization, I would expect it to internally handle this so that a while a function like map or forEach is in progress over a resource, another thread should not be able to lock it otherwise the elements being iterated over may change while the map/forEach is in progress (even though that operation may be paused for a bit while another thread has a lock over it).
The output I see instead shows that both the threads are executing in parallel. Both of them are printing the first element in the list and the stars respectively. But in the second thread, even though the stars are being printed, myList[0] is never set to 9999 because the first thread continues to print 1.
Threading and synchronisation are JVM features, not specific to Kotlin. If you can follow Java, there are many resources out there which can explain them fully. But the short answer is: they're quite low-level, and tricky to get right, so please exercise due caution. And if a higher-level construction (work queues/executors, map/reduce, actors...) or immutable objects can do what you need, life will be easier if you use that instead!
But here're the basics. First, in the JVM, every object has a lock, which can be used to control access to something. (That something is usually the object the lock belongs to, but need not be...) The lock can be taken by the code in a particular thread; while it's holding that lock, any other thread which tries to take the lock will block until the first thread releases it.
And that's pretty much all there is! The synchronised keyword (actually a function) is used to claim a lock; either that belonging to a given object or (if none's given) 'this' object.
Note that holding a lock prevents other threads holding the lock; it doesn't prevent anything else. So I'm afraid your expectation is wrong. That's why you're seeing the threads happily running simultaneously.
Ideally, every class would be written with some consideration for how it interacts with multithreading; it could document itself as 'immutable' (no mutable state to worry about), 'thread-safe' (safe to call from multiple threads simultaneously), 'conditionally thread-safe' (safe to call from multiple threads if certain patterns are adhered to), 'thread-compatible' (taking no special precautions but callers can do their own synchronisation to make it safe), or 'thread-hostile' (impossible to use from multiple threads). But in practice, most don't.
In fact, most turn out to be thread-compatible; and that applies to much of the Java and Kotlin collection classes. So you can do your own synchronisation (as per your synchronized block); but you have to take care to synchronise every possible access to the list -- otherwise, a race condition could leave your list in an inconsistent state.
(And that can mean more than just a dodgy value somewhere. I had a server app with a thread that got stuck in a busy-loop -- chewing up 100% of a CPU but never continuing with the rest of the code -- because I had one thread update a HashMap while another thread was reading it, and I'd missed the synchronisation on one of those. Most embarrassing.)
So, as I said, if you can use a higher-level construction instead, your life will be easier!
Second thread is not changing the value of the first list element, as == means compare, not assign. You need to use = tio change the value e.g. myList[0] = 9999. However in your code it's not guaranteed that the change from the second thread will become visible in the first thread as thread one is not synchronising on myList.
If you are targeting JVM you should read about JVM memory model e.g. what is #Volatile. You current approach does not guarantee that first thread will ever see changes from the second one. You can simplify your code to below broken example:
var counter = 1
fun main() {
thread {
while (counter++ < 1000) {
println("T1: $counter")
}
}
thread {
while (counter++ < 1000) {
println("T2: $counter")
}
}
}
Which can print strange results like:
T2: 999
T1: 983
T2: 1000
This can be fixed in few ways e.g. by using synchronisations.

if ReentrantLock is locked wait but dont lock the lock

I have a ReentrantLock in my code and want to use it to clear an array once per second; I dont want other threads to change the array while it is being cleared, but if I am not currently clearing the array other threads shall not have to wait, like this:
public void addToArray(Object a) {
lock.waitforunlock(); //not a real method just to clarify my intentions
array.add(a);
}
To better clarify my intentions I will explain the process: the netty eventloop will call my network handler, that network handler will then call the addToArray method from before, once per second my main thread that will never be a Netty thread will clear the array, in this time every netty thread shall have to wait until this is finished! Note: the addToArray method is threadproof and I dont want to sync it because then the hole point of a event loop is useless.
There is no API method that does exactly what you are asking.
The most efficient way to do it is like this:
try {
lock.lock();
} finally {
lock.unlock();
}
In other words, grab the lock momentarily then release it.
But here's the problem.
In general, the instant you release the lock, some other thread might immediately grab it. So your array.add() call may happen simultaneously with some other thread doing things to array. Even if your use-case means that another thread grabbing the lock is highly unlikely, it can still happen; e.g. if your server is under severe load and the current thread gets preempted immediately after releasing the lock.
Presumably you are performing memory writes in array.add(). Unless they are performed with appropriate synchronization, those updates may not be visible to other threads. (You say "addToArray method is threadproof", but without a clear, detailed explanation of what you mean by that, I would be uncomfortable with saying this code is thread safe.)
If what you are trying to do here is to array.add() after something else has happened, then testing the lock / waiting for it to be released doesn't tell you if the event actually happened. All it tells you is that it wasn't happening at the instant that the test succeeded.
In short, I doubt that waiting for a lock to be released before doing an update is actually a correct solution ... no matter how you implement the waiting.
Another way to look at this.
If array.add() is completely threadsafe, and will work correctly irrespective of some other thread holding the lock, why do you need to test the lock? Just call the method.
If you are actually trying to have the array.add() call happen after some event that coincides with the lock being released, use a cyclic barrier or similar.
Note: I read and tried to understand your explanation, but I got lost with what you are saying. Due to "language issues" I think.
As I understand it, you have two or more separate threads mutating a list: the main thread occasionally clearing the list, and the netty thread adding to the list. You want to make sure they don't both attempt to modify the list at the same time.
The simplest solution to this is to use a thread safe list, and make sure the main thread uses the List.clear() method to clear the list. That way, the clear() call will be atomic - once started it will finish before any other accesses to the list - so you won't have to worry about adding to the list "in the middle of" the clear() call.
In a comment to another answer, you mention that you are using a CopyOnWriteArrayList, which is thread safe. Thus, you can just call add() the code that adds to the list without worrying about synchronization; the add() call will automatically wait if the list is being cleared, and proceed otherwise. You can also remove the use of the ReentrantLock from your main thread unless there are other reasons, besides protecting this list, to use the lock.

Java, why need to use synchronization? instead of using a single thread?

While reading about Java synchronized, I just wondered, if the processing should be in synchronization, why not just creating a single thread (not main thread) and process one by one instead of creating multiple threads.
Because, by 'synchronized', all other threads will be just waiting except single running thread. It seems like the only single thread is working in the time.
Please advise me what I'm missing it.
I would very appreciate it if you could give some use cases.
I read an example, that example about accessing bank account from 2 ATM devices. but it makes me more confused, the blocking(Lock) should be done by the Database side, I think. and I think the 'synchronized' would not work in between multiple EC2 instances.
If my thinking is wrong, please fix me.
If all the code you run with several threads is within a synchronized block, then indeed it makes no difference vs. using a single thread.
However in general your code contains parts which can be run on several threads in parallel and parts which can't. The latter need synchronization but not the former. By using several threads you can speed up the "parallelisable" bits.
Let's consider the following use-case :
Your application is a internet browser game. Every player has a score and can click a button. Every time a player clicks the button, their score is increased and their opponent's is decreased. The first player to reach 10 wins.
As per the nature of the game, and to single a unique winner, you have to consider the two counters increase (and the check for the winner) atomically.
You'll have each player send clickEvents on their own thread and every event will be translated into the increase of the owner's counter, the check on whether the counter reached 10 and the decrease of the opponent's counter.
This is very easily done by synchronizing the method which handles modifying the counters : every concurrent thread will try to obtain the lock, and when they do, they'll execute the code (and finally release the lock).
The locking mechanism is pretty lightweight and only requires a single keyword of code.
If we follow your suggestion to implement another thread that will handle the execution, we'd have to implement the whole thread management logic (more code), to initialize that Thread (more resource) and even so, to guarantee fairness in the handling of events, you still need a way for your client threads to pass the event to your executor thread. The only way I see to do so, is to implement a BlockingQueue, which is also synchronized to prevent the race condition that naturally occurs when trying to add elements from two other thread.
I honnestly don't see a way to resolve this very simple use-case without synchronization (or implementing your own locking algorithm that basically does the same).
You can have a single thread and process one-by-one (and this is done), but there are considerable overheads in doing so and it does not remove the need for synchronization.
You are in a situation where you are starting with multiple threads (for example, you have lots of simultaneous web sessions). You want to do a part of the processing in a single thread - let's say updating some common structure with some new data. You need to pass the new data to the single thread - how do you get it there? You would have to use some kind of message queue (or an equivalent thing) and have the single thread pick requests off the message queue and that would have have to be synchronized anyway, plus there is the overhead of managing the queue, plus the issue that you need to get a reply back from the single thread asynchronously. So you are back to square one.
This technique is used where the processing you need to do is considerable and you don't want to block your main threads for a long time.
In summary: having a single thread does not remove the need for synchronization.

Remove blocking from a method

This is homework.
I do not want the solution, just a small number of links or ideas.
Simply speaking what I want to do is,
Simple example :
public class Example
{
public void method()
{
int x = doThat();
//Call other methods which do not depend on x
return;
}
}
doThat() is a method that is known to be time consuming, which results in my program blocking until results are back. And I want to use different methods of this Object, but program is frozen until doThat() is finished. Those different methods do not necesserely have to be invoked from the method() used in this example, but maybe from outside the object.
I thought about using threads but if I have a huge number of objects (1000+) this probably wont be very efficient (correct me if I am wrong please). I guess if I use threads I have to use one thread per object ?
Is there any other way besides threads that can make the invoking object not block when calling doThat(); ? If threading is the only way, could you provide a link ?
Knowing questions like that get downvoted I will accept any downvotes. But please just a link would be more than great.
Thanks in advance. I hope question is inline with the rules.
I'd also use threads for this, but I simply wanted to add that it would probably be interesting to look at java.util.concurrent.Executors (to create thread pools as you have a number of objects) and the java.util.concurrent.Future and java.util.concurrent.Callable classes which will allow you to launch threads that can return a value.
Take a look at the concurrency tutorial for more info.
I recommend you to create a class that implements Runnable, whose run method does what doThat() does in your sample. Then you can invoke it in a separate Thread in a simple way. Java's Thread class does have a constructor that takes a runnable. Use the run and join methods.
Cheers
Matthias
Of course threads are the only solution to handle some jobs in backgrounds, but
you are not forced to use a thread just for a single operation to be performed.
You can use only one thread that maintains a queue of operations to be performed, in a way that every call to the method doThat adds a new entry into the queue.
Maybe some design patterns like "Strategy" can help you to generalize the concept of operation to be performed, in order to store "operation objects" into the thread's queue.
You want to perform several things concurrently, so using threads is indeed the way to go. The Java tutorial concurrency lesson will probably help you.
1000 concurrent threads will impose a heavy memory load, because a certain amount of stack memory is allocated for each thread (2 MB?). If, however, you can somehow make sure there will be only one Thread running at a time, you still can take the thread per object approach. This would require you to manage that doThat() is only called, if the thread produced by a former invocation on another object has already finished.
If you cannot ensure that easily, the other approach would be to construct one worker thread which reads from a double ended queue which object to work on. The doThat() method would then just add this to the end of the queue, from which the worker thread will later extract it. You have to properly synchronize when accessing any data structure from concurrent threads. And the main thread should somehow notify the worker thread of the condition, that it will not add any more objects to the queue, so the worker thread can cleanly terminate.

design of a Producer/Consumer app

I have a producer app that generates an index (stores it in some in-memory tree data structure). And a consumer app will use the index to search for partial matches.
I don't want the consumer UI to have to block (e.g. via some progress bar) while the producer is indexing the data. Basically if the user wishes to use the partial index, it will just do so. In this case, the producer will potentially have to stop indexing for a while until the user goes away to another screen.
Roughly, I know I will need the wait/notify protocol to achieve this. My question: is it possible to interrupt the producer thread using wait/notify while it is doing its business ? What java.util.concurrent primitives do I need to achieve this ?
The way you've described this, there's no reason that you need wait/notify. Simply synchronize access to your data structure, to ensure that it is in a consistent state when accessed.
Edit: by "synchronize access", I do not mean synchronize the entire data structure (which would end up blocking either producer or consumer). Instead, synchronize only those bits that are being updated, and only at the time that you update them. You'll find that most of the producer's work can take place in an unsynchronized manner: for example, if you're building a tree, you can identify the node where the insert needs to happen, synchronize on that node, do the insert, then continue on.
In your producer thread, you are likely to have some kind of main loop. This is probably the best place to interrupt your producer. Instead of using wait() and notify() I suggest you use the java synchronization objects introduced in java 5.
You could potentially do something like that
class Indexer {
Lock lock = new ReentrantLock();
public void index(){
while(somecondition){
this.lock.lock();
try{
// perform one indexing step
}finally{
lock.unlock();
}
}
}
public Item lookup(){
this.lock.lock();
try{
// perform your lookup
}finally{
lock.unlock();
}
}
}
You need to make sure that each time the indexer releases the lock, your index is in a consistent, legal state. In this scenario, when the indexer releases the lock, it leaves a chance for a new or waiting lookup() operation to take the lock, complete and release the lock, at which point your indexer can proceed to its next step. If no lookup() is currently waiting, then your indexer just reaquires the lock itself and goes on with its next operation.
If you think you might have more that one thread trying to do the lookup at the same time, you might want to have a look at the ReadWriteLock interface and ReentrantReadWriteLock implementation.
Of course this solution is the simple way to do it. It will block either one of the threads that doesn't have the lock. You may want to check if you can just synchronize on your data structure directly, but that might prove tricky since building indexes tends to use some sort of balanced tree or B-Tree or whatnot where node insertion is far from being trivial.
I suggest you first try that simple approach, then see if the way it behaves suits you. If it doesn't, you may either try breaking up the the indexing steps into smaller steps, or try synchronizing on only parts of your data structure.
Don't worry too much about the performance of locking, in java uncontended locking (when only one thread is trying to take the lock) is cheap. As long as most of your locking is uncontented, locking performance is nothing to be concerned about.
The producer application can have two indices: published and in-work. The producer will work only with in-work, the consumer will work only with published. Once the producer done with indexing it can replace in-work one with published (usually swapping one pointer). The producer may also publish copy of the partial index if will bring value. This way you will avoid long term locks -- it will be useful when index accessed by lost of consumers.
No, that's not possible.
The only way of notifying a thread without any explicit code in the thread itself is to use Thread.interrupt(), which will cause an exception in the thread. interrrupt() is usually not very reliable though, because throwing a exception at some random point in the code is a nightmare to get right in all code paths. Beside that, a single try{}catch(Throwable){} somewhere in the thread (including any libraries that you use) could be enough to swallow the signal.
In most cases, the only correct solution is use a shared flag or a queue that the consumer can use to pass messages to the producer. If you worry about the producer being unresponsive or freezing, run it in a separate thread and require it to send heartbeat messages every n seconds. If it does not send a heartbeat, kill it. (Note that determining whether a producer is actually freezing, and not just waiting for an external event, is often very hard to get right as well).

Categories

Resources