Java library method or algorithm to estimate aggregate string similarity? - java

I have responses from users to multiple choice questions, e.g. (roughly):
Married/Single
Male/Female
American/Latin American/European/Asian/African
What I want is to estimate similarity by aggregating all responses into a single field which can be compared across users in the database - rather than running queries against each column.
So, for example, some responses might look like:
Married-Female-American
Single-Female-European
But I don't want to store a massive text object to represent all of the possible concatenated responses since there are maybe 50 of them.
So, is there some way to represent a set of responses more concisely using a Java library method of some kind.
In other words, this method would take Married-Female-American and generate a code, say of abc while Single-Female-European would generate a code of, say, def?
This way if I want to find out if two users are Married-Female-Americans I can simply query a single column for the code abc.

Well, if it was a multiple choice question, you have choices enumerated. That is, numbered. Why not use 1-1-2 and 23-1-75 then? Even if you have 50 answers, it's still manageable.
Now if you happen to need the similarity, aggregating is the last thing you want. What you want is a simple array of ids of the answers given and a function defining a distance between two answer arrays. Do not use Strings, do not aggregate. Leave clean nice vectors, and all the ML libraries will be at your service.
To quote a Java ML library, try http://www.cs.waikato.ac.nz/~ml/weka/
Update: One more thing you may want to try is locality sensitive hashing. I don't think it's a good idea in your case, but your question looks like a request for it. Give it a try.

Do you have a finite number of options (multiple-choice seems to imply this)?
It is a common technique for performance to go from strings to a numerical data set, by essentially indexing the available strings. As long as you only need identity, this is perfect. Comparing an integer is much faster than comparing a string, and they usually take less memory, too.
A character is essentially an integer in 0-255, so you can of course use this.
So just define an alphabet:
a Married
b Single
c Male
d Female
e American
f Latin American
g European
h Asian
i African
You can in fact use this even when you have more than 256 words, if they are positional (and no single question has more than 256 choices). You would then use
a Q1: Married
b Q1: Single
a Q2: Male
b Q2: Female
a Q3: American
b Q3: Latin American
c Q3: European
d Q3: Asian
e Q3: African
Your examples would then be encoded as either (variant 1) ade and bdg or (variant 2) aba and bbc. The string should then have a fixed length of 50 (if you have 50 questions) and can be stored very effectively.
For comparing answers, just access the nth character of the string. Maybe your database allows for indexed substring queries, too. As you can see in above example, both strings agree only on the second character, just like the answers agreed.

Related

What is the best algorithm for matching two string containing less than 10 words in latin script

I'm comparing song titles, using Latin script (although not always), my aim is an algorithm that gives a high score if the two song titles seem to be the same same title and a very low score if they have nothing in common.
Now I already had to code (Java) to write this using Lucene and a RAMDirectory - however using Lucene simply to compare two strings is too heavyweight and consequently too slow. I've now moved to using https://github.com/nickmancol/simmetrics which has many nice algorithms for comparing two strings:
https://github.com/nickmancol/simmetrics/tree/master/src/main/java/uk/ac/shef/wit/simmetrics/similaritymetrics
BlockDistance
ChapmanLengthDeviation
ChapmanMatchingSoundex
ChapmanMeanLength
ChapmanOrderedNameCompoundSimilarity
CosineSimilarity
DiceSimilarity
EuclideanDistance
InterfaceStringMetric
JaccardSimilarity
Jaro
JaroWinkler
Levenshtein
MatchingCoefficient
MongeElkan
NeedlemanWunch
OverlapCoefficient
QGramsDistance
SmithWaterman
SmithWatermanGotoh
SmithWatermanGotohWindowedAffine
Soundex
but I'm not well versed in these algorithms and what would be a good choice ?
I think Lucene uses CosineSimilarity in some form, so that is my starting point but I think there might be something better.
Specifically, the algorithm should work on short strings and should understand the concept of words, i.e spaces should be treated specially. Good matching of Latin script is most important, but good matching of other scripts such as Korean and Chinese is relevant as well but I expect would need different algorithm because of the way they treat spaces.
They're all good. They work on different properties of strings and have different matching properties. What works best for you depends on what you need.
I'm using the JaccardSimilarity to match names. I chose the JaccardSimilarity because it was reasonably fast and for short strings excelled in matching names with common typo's while quickly degrading the score for anything else. Gives extra weight to spaces. It is also insensitive to word order. I needed this behavior because the impact of a false positive was much much higher then that off a false negative, spaces could be typos but not often and word order was not that important.
Note that this was done in combination with a simplifier that removes non-diacritics and a mapper that maps the remaining characters to the a-z range. This is passed through a normalizes that standardizes all word separator symbols to a single space. Finally the names are parsed to pick out initials, pre- inner- and suffixes. This because names have a structure and format to them that is rather resistant to just string comparison.
To make your choice you need to make a list of what criteria you want and then look for an algorithm that satisfied those criteria. You can also make a reasonably large test set and run all algorithms on that test set too see what the trade offs are with respect to time, number of positives, false positives, false negatives and negatives, the classes of errors your system should handle, ect, ect.
If you are still unsure of your choice, you can also setup your system to switch the exact comparison algorithms at run time. This allows you to do an A-B test and see which algorithm works best in practice.
TLDR; which algorithm you want depends on what you need, if you don't know what you need make sure you can change it later on and run tests on the fly.
You are likely need to solve a string-to-string correction problem. Levenshtein distance algorithm is implemented in many languages. Before running it I'd remove all spaces from string, because they don't contain any sensitive information, but may influence two strings difference. For string search prefix trees are also useful, you can have a look in this direction as well. For example here or here. Was already discussed on SO. If spaces are so much significant in your case, just assign a greater weight to them.
Each algorithm is going to focus on a similar, but slightly different aspect of the two strings. Honestly, it depends entirely on what you are trying to accomplish. You say that the algorithm needs to understand words, but should it also understand interactions between those words? If not, you can just break up each string according to spaces, and compare each word in the first string to each word in the second. If they share a word, the commonality factor of the two strings would need to increase.
In this way, you could create your own algorithm that focused only on what you were concerned with. If you want to test another algorithm that someone else made, you can find examples online and run your data through to see how accurate the estimated commonality is with each.
I think http://jtmt.sourceforge.net/ would be a good place to start.
Interesting. Have you thought about a radix sort?
http://en.wikipedia.org/wiki/Radix_sort
The concept behind the radix sort is that it is a non-comparative integer sorting algorithm that sorts data with integer keys by grouping keys by the individual digits. If you convert your string into an array of characters, which will be a number no greater than 3 digits, then your k=3(maximum number of digits) and you n = number of string to compare. This will sort the first digits of all your strings. Then you will have another factor s=the length of the longest string. your worst case scenario for sorting would be 3*n*s and the best case would be (3 + n) * s. Check out some radix sort examples for strings here:
http://algs4.cs.princeton.edu/51radix/LSD.java.html
http://users.cis.fiu.edu/~weiss/dsaajava3/code/RadixSort.java
Did you take a look at the levenshtein distance ?
int org.apache.commons.lang.StringUtils.getLevenshteinDistance(String s, String t)
Find the Levenshtein distance between two Strings.
This is the number of changes needed to change one String into
another, where each change is a single character modification
(deletion, insertion or substitution).
The previous implementation of the Levenshtein distance algorithm was
from http://www.merriampark.com/ld.htm
Chas Emerick has written an implementation in Java, which avoids an
OutOfMemoryError which can occur when my Java implementation is used
with very large strings. This implementation of the Levenshtein
distance algorithm is from http://www.merriampark.com/ldjava.htm
Anyway, I'm curious to know what do you choose in this case !

Fuzzy Matching Duplicates in Java

I have a List<String[]> of customer records in Java (from a database). I know from manually eyeballing the data that 25%+ are duplicates.
The duplicates are far from exact though. Sometimes they have different zips, but the same name and address. Other times the address is missing completely, etc...
After a day of research; I'm still really stumped as to how to even begin to attack this problem?
What are the "terms" that I should be googling for that describe this area (from a solve this in Java perspective)? And I don't suppose there is fuzzymatch.jar out there that makes it all just to easy?
I've done similar systems before for matching place information and people information. These are complex objects with many features and figuring out whether two different objects describe the same place or person is tricky. The way to do it is to break it down to the essentials.
Here's a few things that you can do:
0) If this is a oneoff, load the data into openrefine and fix things interactively. Maximum this solves your problem, minimum it will show you where your possible matches are.
1) there are several ways you can compare strings. Basically they differ in how reliable they are in producing negative and false matches. A negative match is when it matches when it shouldn't have. A positive match is when it should match and does. String equals will not produce negative matches but will miss a lot of potential matches due to slight variations. Levenstein with a small factor is a slightly better. Ngrams produce a lot of matches, but many of them will be false. There are a few more algorithms, take a look at e.g. the openrefine code to find various ways of comparing and clustering strings. Lucene implements a lot of this stuff in its analyzer framework but is a bit of a beast to work with if you are not very familiar with its design.
2) Separate the process of comparing stuff from the process of deciding whether you have a match. What I did in the past was qualify my comparisons, using a simple numeric score e.g. this field matched exactly (100) but that field was a partial match (75) and that field did not match at all. The resulting vector of qualified comparisons, e.g. (100, 75,0,25) can be compared to a reference vector that defines your perfect or partial match criteria. For example if first name, last name, and street match, the two records are the same regardless of the rest of the fields. Or if phonenumbers and last names match, that's a valid match too. You can encode such perfect matches as a vector and then simply compare it with your comparison vectors to determine whether it was a match, not a match, or a partial match. This is sort of a manual version of what machine learning does which is to extract vectors of features and then build up a probability model of which vectors mean what from reference data. Doing it manually, can work for simple problems.
3) Build up a reference data set with test cases that you know to match or not match and evaluate your algorithm against that reference set. That way you will know when you are improving things or making things worse when you tweak e.g. the factor that goes into Levinstein or whatever.
Jilles' answer is great and comes from experience. I've also had to work on cleaning up large messy tables and sadly didn't know much about my options at that time (I ended up using Excel and a lot of autofilters). Wish I'd known about OpenRefine.
But if you get to the point where you have to write custom code to do this, I want to make a suggestion as to how: The columns are always the same, right? For instance, the first String is always the key, the second is the First name, the sixth is the ZIP code, tenth is the fax number, etc.?
Assuming there's not an unreasonable number of fields, I would start with a custom Record type which has each DB field as member rather than a position in an array. Something like
class CustomerRow {
public final String id;
public final String firstName;
// ...
public CustomerRow(String[] data) {
id = data[0];
// ...
}
You could also include some validation code in the constructor, if you knew there to be garbage values you always want to filter out.
(Note that you're basically doing what an ORM would do automatically, but getting started with one would probably be more work than just writing the Record type.)
Then you'd implement some Comparator<CustomerRow>s which only look at particular fields, or define equality in fuzzy terms (there's where the edit distance algorithms would come in handy), or do special sorts.
Java uses a stable sort for objects, so to sort by e.g. name, then address, then key, you would just do each sort, but choose your comparators in the reverse order.
Also if you have access to the actual database, and it's a real relational database, I'd recommend doing some of your searches as queries where possible. And if you need to go back and forth between your Java objects and the DB, then using an ORM may end up being a good option.

Large Array Comparison

I have ~25.000 distinct names in an SQL database, and would like to perform edit-distance comparison on all of these in order to normalize e.g. John Doe & Jhon Doe.
When the db was only around 1000 names I used to store all distinct names in an array. Then I would use two for-loops on that array, thereby comparing each element in the array to each of the others. When the edit-distance gave a match of say >0.9 I would execute an SQL-query substituting one value for the other in all records.
With my much larger database this is not possible anymore. What would you guys do?
ps: I'm also curious about any multithreaded solutions to this because the process is taking ages now.
pps: I'm coding in Java
What about computing the soundex of each of your names and possibly storing it in the database? You can even do that on DB side, for instance there's a MySQL SOUNDEX function.
After computing the soundex of each name, all you have to do is group the rows by identical soundex.
EDIT:
If soundex is too coarse for your application, you can first select candidates by comparing their soundexes, and use your usual metric on each set of candidates.
There is no way around pairwise matching: the way as efficient as it gets.
If you need to do your record linkage faster, try using a string distance metrics that requires less computations than the edit distance (Bonacci distance, Jaro–Winkler distance, etc.)
You could also use another metric as a preprocessing step, and then compute edit distance to confirm or deny the match.

most efficient Java data structure for searching triples of strings

Suppose I have a large list (around 10,000 entries) of string triples as such:
car noun yes
dog noun no
effect noun yes
effect verb no
Suppose I am presented with a string double - for example, (effect, verb) - and I need to quickly look in the list to see if the pair appears and, if it does, whether its value is yes or no. (For this example the double does appear and the value is "no".)
What is the best data structure in Java to store the list and the most efficient way to perform the search? I am running hundreds of thousands of these searches so speed is of the essence.
Thanks!
You might consider using a HashMap<YourDouble, String>. Searches will be O(1).
You could either create an object, YourDouble which holds the first two values, or else append one to the other -- if values will still be unique -- and use HashMap<String, String>.
I would create a HashMultimap for each type of search you want, e.g. "all three", "each pair", and "each single field". When you build the list, populate all the different maps, then you can fetch from whichever map is appropriate for your query.
(The downside is that you'll need a type for at least each arity, e.g. use just String for the "single field" maps, but a Pair for the two-field maps, and a Triple for the three-field map.)
You could use a HashMap where the key is the concatenation of the first two strings, the ones which you'll use for lookups, and the value is a Boolean, representing the yes and no strings.
Alternatively, it seems the words in the second column would be fewer, since they represent categories. You could have a HashMap<String, HashMap<String, Boolean>> where you first index by e.g. "noun", "verb" etc. and then you index by e.g. "car", "dog", "effect", to get to your boolean. This would probably be more space-efficient.
10k doesn't seem that large to me. Have you tried a DB?
The place to look for information like this is the Semantic Web. A number of projects work on Triple Stores of just this type. There's a list at the bottom of the Triple Store page of implementations.
As far as java is concerned your algorithms are almost certainly going to be language dependent and if you find a good algorithm implemented in C its java port will also be fast.
Also, what's your data set look like? Are there a lot of 2 matches such that subject and verb are often the same? How many matches are you expecting to get? MapReduce will work work well for finding one match in 10k but won't work as well doing a query that returns a 8k of 10k where the query can't be easily partitioned.
There's a query language made just for this problem too: SPARQL. The bigdata blog has some good insights, though again 10k doesn't seem that large.

Matching substrings from a dictionary to other string: suggestions?

Hellow Stack Overflow people. I'd like some suggestions regarding the following problem. I am using Java.
I have an array #1 with a number of Strings. For example, two of the strings might be: "An apple fell on Newton's head" and "Apples grow on trees".
On the other side, I have another array #2 with terms like (Fruits => Apple, Orange, Peach; Items => Pen, Book; ...). I'd call this array my "dictionary".
By comparing items from one array to the other, I need to see in which "category" the items from #1 fall into from #2. E.g. Both from #1 would fall under "Fruits".
My most important consideration is speed. I need to do those operations fast. A structure allowing constant time retrieval would be good.
I considered a Hashset with the contains() method, but it doesn't allow substrings. I also tried running regex like (apple|orange|peach|...etc) with case insensitive flag on, but I read that it will not be fast when the terms increase in number (minimum 200 to be expected). Finally, I searched, and am considering using an ArrayList with indexOf() but I don't know about its performance. I also need to know which of the terms actually matched, so in this case, it would be "Apple".
Please provide your views, ideas and suggestions on this problem.
I saw Aho-Corasick algorithm, but the keywords/terms are very likely to change often. So I don't think I can use that. Oh, I'm no expert in text mining and maths, so please elaborate on complex concepts.
Thank you, Stack Overflow people, for your time! :)
If you use a multimap from Google Collections, they have a function to invert the map (so you can start with a map like {"Fruits" => [Apple]}, and produce a map with {"Apple" => ["Fruits"]}. So you can lookup the word and find a list of categories for it, in one call to the map.
I would expect I'd want to split the strings myself and lookup the words in the map one at a time, so that I could do stemming (adjusting for different word endings) and stopword-filtering. Using the map should get good lookup times, plus it's easy to try out.
Would a suffix tree or similar data structure work for your application? It offers O(m) string lookup, where m is the length of the search string, after an O(n2)--or better with some trickery--initial setup, and, with some extra effort, you can associate arbitrary data, such as a reference to a category, with complete words in your dictionary. If you don't want to code it yourself, I believe the BioJava library includes an implementation.
You can also add strings to a suffix tree after initial setup, although the cost will still be around O(n2). That's probably not a big deal if you're adding short words.
If you have only 200 terms to look for, regexps might actually work for you. Of course the regular expression is large, but if you compile it once and just use this compiled Pattern the lookup time is probably linear in the combined length of all the strings in array#1 and I don't see how you can hope for being better than that.
So the algorithm would be: concatenate the words of array#2 which you want to look for into the regular expression, compile it, and then find the matches in array#1 .
(Regular expressions are compiled into a state machine - that is on each character of the string it just does a table lookup for the next state. If the regular expression is complicated you might have backtracking that increases the time, but your regular expression has a very simple structure.)

Categories

Resources