I notice that NetBeans is warning me about using Thread.sleep() in a while loop in my Java code, so I've done some research on the subject. It seems primarily the issue is one of performance, where your while condition may become true while the counter is still sleeping, thus wasting wall-clock time as you wait for the next iteration. This all makes perfect sense.
My application has a need to contact a remote system and periodically poll for the state of an operation, waiting until the operation is complete before sending the next request. At the moment the code logically does this:
String state = get state via RPC call
while (!state.equals("complete")) {
Thread.sleep(10000); // Wait 10 seconds
state = {update state via RPC call}
}
Given that the circumstance is checking a remote operation (which is a somewhat expensive process, in that it runs for several seconds), is this a valid use of Thread.sleep() in a while loop? Is there a better way to structure this logic? I've seen some examples where I could use a Timer class, but I fail to see the benefit, as it still seems to boil down to the same straightforward logic above, but with a lot more complexity thrown in.
Bear in mind that the remote system in this case is neither under my direct control, nor is it written in Java, so changing that end to be more "cooperative" in this scenario is not an option. My only option for updating my application's value for state is to create and send an XML message, receive a response, parse it, and then extract the piece of information I need.
Any suggestions or comments would be most welcome.
Unless your remote system can issue an event or otherwise notify you asynchronously, I don't think the above is at all unreasonable. You need to balance your sleep() time vs. the time/load that the RPC call makes, but I think that's the only issue and the above doesn't seem of concern at all.
Without being able to change the remote end to provide a "push" notification that it is done with its long-running process, that's about as well as you're going to be able to do. As long as the Thread.sleep time is long compared to the cost of polling, you should be OK.
You should (almost) never use sleep since its very inefficient and its not a good practice. Always use locks and condition variables where threads signal each other. See Mike Dahlin's Coding Standards for Programming with threads
A template is:
public class Foo{
private Lock lock;
private Condition c1;
private Condition c2;
public Foo()
{
lock = new SimpleLock();
c1 = lock.newCondition();
c2 = lock.newCondition();
...
}
public void doIt()
{
try{
lock.lock();
...
while(...){
c1.awaitUninterruptibly();
}
...
c2.signal();
}
finally{
lock.unlock();
}
}
}
Related
I've inherited some code and there is nobody of the original developers left. The code uses heavily CompletableFuture, and it's the first time I use it, so I'm still trying to wrap my head around it. As I understand it, a (Completable)Future is typically used with some multithreading mechanism that will allow us to do some other thing while a time consuming task is executing, and then simply fetch its result via the Future. As in the javadoc:
interface ArchiveSearcher { String search(String target); }
class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target) throws InterruptedException {
Future<String> future = executor.submit(new Callable<String>() {
public String call() {
return searcher.search(target);
}});
displayOtherThings(); // do other things while searching
try {
displayText(future.get()); // use future
} catch (ExecutionException ex) { cleanup(); return; }
}
}
However, in this application that I've inherited, the following pattern that doesn't use any multithreading appears a bunch of times:
public Object serve(Object input) throws ExecutionException, InterruptedException {
CompletableFuture<Object> result = delegate1(input);
return result.get();
}
private CompletableFuture<Object> delegate1(Object input) {
// Do things
return delegate2(input);
}
private CompletableFuture<Object> delegate2(Object input) {
return CompletableFuture.completedFuture(new Object());
}
To me, this is equivalent to:
public Object serve(Object input) {
Object result = delegate1(input);
return result;
}
private Object delegate1(Object input) {
// Do things
return delegate2(input);
}
private Object delegate2(Object input) {
return new Object();
}
Of course the code is much more complex, and returns exceptionallyCompletedFuture in case of error, but there are is Callable, no Runnable, no Executor, no supplyAsync() no sign of multithreading. What am I missing? What's the point of using a Future in a singled-threaded context?
Futures are critical for situations where there is asynchronous programming. One of the biggest advantages of asynchronous programming is it allows you to write very efficient code with a single thread.
Furthermore, futures tend to be an all-or-nothing proposition. If you want to write asynchronous code you have to do so from top to bottom, even if not every method does something asynchronous.
For example, consider you want to write a single threaded HTTP server like twisted or express. The top level of your server (very liberal pseudocode here) might look something like:
while (true) {
if (serverSocket.ready()) {
connection = serverSocket.accept();
futures.add(server.serve(connection));
}
for (Future future : futures) {
if (future.isDone()) {
Object result = future.get();
sendResult(result);
}
}
//Some kind of select-style wait here
}
There is only one thread but any time an operation happens that would normally require a wait (reading from database, file, reading in the request, etc.) it uses futures and doesn't block the one thread so you have a highly performant single threaded HTTP server.
Now, imagine what would happen if the highest level of your application was like the above and at some point some request at a very low level had to read something from a file. That file read would generate a future. If all of your middle layers in between didn't handle futures then you would have to block and it would defeat the purpose. This is why I say futures tend to be all-or-nothing.
So my guess is either:
Your friend does something asynchronous currently and you haven't caught it yet (does he ever read from a file or database or anything? If so, is he blocking?).
He was planning on someday doing something asynchronous and wanted to plan for it.
He spent a lot of time in other asynchronous frameworks and grew to like the style even if he isn't using it correctly.
Yes, for now there is no multithreading used in that code. Looks like there was an intention to write single-threaded code in such a way that if developer later decides to use multithreading then only
delegate2()
method should be modified.
ExecutorService implementations typically manage threads. I've used the ThreadPoolExecutor, which does exactly that. You commented out which ExecutorService your code uses.
The main point of asynchronous code is to defer the continuation code.
The most common scenario is I/O, where instead of waiting for an operation to finish, you say "do your thing and notify me when you're finished", or more commonly, "do your thing and do this when you're finished".
This doesn't imply threads at all. Reading from any device, be it a network card or a hard drive, usually has some sort of signal or interrupt sent from the device to the CPU. You could use the CPU in the meantime. The "notify me" is more common in lower-level code, where you implement a dispatching loop or scheduler; the "do this" is more common in higher-level code, where you use an established library or framework that dispatches and/or schedules for you.
Less common scenarios include deferring execution without blocking a thread (think of a timer versus Thread.sleep()) and splitting work. Actually, splitting work is very common with multiple threads, where you can improve performance with a bit of overhead, but not so much with a single thread, where the overhead is just, well, overhead.
The code you provide as an example that just builds completed CompletableFutures, whether successfully or exceptionally, is a part of the overhead of asynchronous code that isn't really asynchronous. That is, you must still follow a defined async style, which in this case requires a small amount of memory allocation for results, even if you can provide results immediately.
This may become noticeable on thousands of calls per second, or hundreds of calls per second per thread with dozens of threads.
Sometimes, you can optimize by having predefined completed futures for e.g. null, 0, 1, -1, an empty array/list/stream, or any other very common or even fixed result you may have specifically in your domain. A similar approach is to cache a wrapping future, not just the result, while the result remains the same. But I suggest you first profile before going this way, you may end up optimizing prematurely something that most probably is not a bottleneck.
i just started to learn programming (2 weeks ago), and i am trying to make a bot for a game. In the main class of the bot, there are 3 methods that needs to be returned within 2second, or it will return null. I want to avoid returning null and return what it has calculate during 2sec instead.
public ArrayList<PlaceArmiesMove> getPlaceArmiesMoves(BotState state, Long timeOut){
ArrayList<PlaceArmiesMove> placeArmiesMoves = new ArrayList<PlaceArmiesMove>();
// caculations filling the ArrayList
return placeArmiesMoves;
}
what i want to do is after 2 second, returning placeArmiesMoves, wether the method finished running or not. I have read about guava SimpleTimeLimiter and callWithTimeout() but i am totally lost about how to use it (i read something about multithreading but i just don't understand what this is)
i would be incredibly grateful if someone could help me! thanks
Given a function like getPlaceArmiesMove, there are several techniques you might use to bound its execution time.
Trust the function to keep track of time itself
If the function runs a loop, it can check on every iteration whether the time has expired.
long startTime = System.currentTimeMillis()
for (;;) {
// do some work
long elapsed = System.currentTimeMillis() - startTime;
if (elapsed >= timeOut) {
break;
}
}
This technique is simple, but there is no guarantee it will complete before the timeout; it depends on the function and how granular you can make the work (of course, if it's too granular, you'll be spending more time testing if the timeout has expired than actually doing work).
Run the function in a thread, and ask it to stop
I'm not familiar with Guava, but this seems to be what SimpleTimeLimiter is doing. In Java, it isn't generally possible to forcibly stop a thread, though it is possible to ignore the thread after a timeout (the function will run to completion, but you've already used its partial result, and ignore the complete result that comes in too late). Guava says that it interrupts the thread if it has not returned before the timeout. This works only if your function is testing to see if it has been interrupted, much like the "trust your function" technique.
See this answer for an example on how to test if your thread has been interrupted. Note that some Java methods (like Thread.sleep) may throw InterruptedException if the thread is interrupted.
In the end, sprinkling checks for isInterrupted() all over your function won't be much different than sprinkling manual checks for the timeout. So running in a thread, you still must trust your function, but there may be nicer helpers available for that sort of thing (e.g. Guava).
Run the function in a separate process, and kill it
An example of how to do this is left as an exercise, but if you run your function in a separate process (or a thread in languages that support forcibly stopping threads, e.g. Erlang, Ruby, others), then you can use the operating system facilities to kill the process if it does not complete after a timeout.
Having that process return a partial result will be challenging. It could periodically send "work-in-progress" to the calling process over a pipe, or periodically save work to a file.
Use Java's Timer package , however this will require you to understand concepts such as threads and method overriding. Nevertheless, if this is what you require, the answer is quite similar to this question How to set a timer in java
At one point in my application, I need to ask a cache (a HashMap, i.e.) for a value. If the value does not exist, I need to wait a little and try again. At the moment, this is implemented like this:
String result = cache.get(key);
for (int i = 0; result == null; i++) {
try {
Thread.sleep(5);
} catch (InterruptedException e) {
}
result = cache.get(key);
}
While it works, I have a feeling that using Thread.sleep is kinda false. Does the JDK provide anything for this sort of task? I thought about using an ScheduledExecutorService, but the thing is that it has to run in the main thread.
I would argue that your design is fundamentally problematic. Locking and memory visibility issues notwithstanding, you are essentially polling for an event using high level code. This is neither efficient nor very responsive w.r.t. latency.
You should switch to a more event-driven approach. At the very least, use an object monitor or a lock to wait for that value to be set, rather than polling.
Even better, use a message bus to register handlers and process events as they come - you can easily construct a multithreaded message bus using any BlockingQueue implementation to pass message objects.
Try using the BlockingQueue as a cache.
I don't think there is anyway around Thread.sleep if you really have to execute on the main thread.
Other possibility is using Object.wait(). It is almost like Thread.sleep() for you but supports interrupting by calling notify() on the same monitor.
Other possibility for you is to user java.util.Timer= (as was already mentioned by #Hovercraft Full Of Eels)
You could use a self populating cache(guava LoadingCache), so the get(...) will block until the data is fetched.
Combine it with a ExecutorService -> Future#get(long timeout, TimeUnit unit) And you could have timeouts too.
Hope i pointed you into the right direction :)
I have a critical section of my (Java) code which basically goes like the snippet below. They're coming in from a nio server.
void messageReceived(User user, Message message) {
synchronized(entryLock) {
userRegistry.updateLastMessageReceived(user,time());
server.receive(user,message);
}
}
However, a high percentage of my messages are not going to change the server state, really. They're merely the client saying "hello, I'm still here". I really don't want to have to make that inside the synchronization block.
I could use a synchronous map or something like that, but it's still going to incur a synchronization penalty.
What I would really like to do is to have something like a drop box, like this
void messageReceived(User user, Message message) {
dropbox.add(new UserReceived(user,time());
if(message.getType() != message.TYPE_KEPT_ALIVE) {
synchronized(entryLock) {
server.receive(user,message);
}
}
}
I have a cleanup routine to automatically put clients that aren't active to sleep. So instead of synchronizing on every kept alive message to update the registry, the cleanup routine can simply compile the kept alive messages in a single synchronization block.
So naturally, reconigizing a need for this, the first thing I did was start making a solution. Then I decided this was a non-trivial class, and a problem that was more than likely fairly common. so here I am.
tl;dr Is there a Java library or other solution I can use to facilitate atomically adding to a list of objects in an asynchronous manner? Collecting from the list in an asychronous manner is not required. I just don't want to synchronize on every add to the list.
ConcurrentLinkedQueue claims to be:
This implementation employs an efficient "wait-free" algorithm based on one described in Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms by Maged M. Michael and Michael L. Scott.
I'm not sure what the quotes on "wait-free" entail but the Concurrent* classes are good places to look for structures like you're looking for.
You might also be interested in the following: Effective Concurrency: Lock-Free Code — A False Sense of Security. It talks about how hard these things are to get right, even for experts.
Well, there are few things you must bear in mind.
First, there is very little "synchronization cost" if there is little contention (more than one thread trying to enter the synchronized block at the same time).
Second, if there is contention, you're going to incur some cost no matter what technique you're using. Paul is right about ConcurrentLinkedQueue and the "wait-free" means that thread concurrency control is not done using locks, but still, you will always pay some price for contention. You may also want to look at ConcurrentHashMap because I'm not sure a list is what you're looking for. Using both classes is quite simple and common.
If you want to be more adventurous, you might find some non-locking synchronization primitives in java.util.concurrent.atomic.
One thing we could do is to use a simple ArrayList for keep-alive messages:
Keep adding to this list whenever each keep-alive message comes.
The other thread would synch on a lock X and read and process
keep-alives. Note that this thread is not removing from list only
reading/copying.
Finally in messageReceived itself you check if the list has grown
say beyond 1000, in which case you synch on the lock X and clear the
list.
List keepAliveList = new ArrayList();
void messageReceived(User user, Message message) {
if(message.getType() == message.TYPE_KEPT_ALIVE) {
if(keepAliveList.size() > THRESHOLD) {
synchronized(X) {
processList.addAll(list);
list.clear();
}
}
keepAliveList.add(message);
}
}
//on another thread
void checkKeepAlives() {
synchronized(X) {
processList.addAll(list)
}
processKeepAlives(processList);
}
This question already has answers here:
How can I abort a running JDBC transaction?
(4 answers)
Closed 5 years ago.
I have a program that continually polls the database for change in value of some field. It runs in the background and currently uses a while(true) and a sleep() method to set the interval. I am wondering if this is a good practice? And, what could be a more efficient way to implement this? The program is meant to run at all times.
Consequently, the only way to stop the program is by issuing a kill on the process ID. The program could be in the middle of a JDBC call. How could I go about terminating it more gracefully? I understand that the best option would be to devise some kind of exit strategy by using a flag that will be periodically checked by the thread. But, I am unable to think of a way/condition of changing the value of this flag. Any ideas?
I am wondering if this is a good practice?
No. It's not good. Sometimes, it's all you've got, but it's not good.
And, what could be a more efficient way to implement this?
How do things get into the database in the first place?
The best change is to fix programs that insert/update the database to make requests which go to the database and to your program. A JMS topic is good for this kind of thing.
The next best change is to add a trigger to the database to enqueue each insert/update event into a queue. The queue could feed a JMS topic (or queue) for processing by your program.
The fall-back plan is your polling loop.
Your polling loop, however, should not trivially do work. It should drop a message into a queue for some other JDBC process to work on. A termination request is another message that can be dropped into the JMS queue. When your program gets the termination message, it absolutely must be finished with the prior JDBC request and can stop gracefully.
Before doing any of this, look at ESB solutions. Sun's JCAPS or TIBCO already have this. An open source ESB like Mulesource or Jitterbit may already have this functionality already built and tested.
This is really too big an issue to answer completely in this format. Do yourself a favour and go buy Java Concurrency in Practice. There is no better resource for concurrency on the Java 5+ platform out there. There are whole chapters devoted to this subject.
On the subject of killing your process during a JDBC call, that should be fine. I believe there are issues with interrupting a JDBC call (in that you can't?) but that's a different issue.
As others have said, the fact that you have to poll is probably indicative of a deeper problem with the design of your system... but sometimes that's the way it goes, so...
If you'd like to handle "killing" the process a little more gracefully, you could install a shutdown hook which is called when you hit Ctrl+C:
volatile boolean stop = false;
Runtime.getRuntime().addShutdownHook(new Thread("shutdown thread") {
public void run() {
stop = true;
}
});
then periodically check the stop variable.
A more elegant solution is to wait on an event:
boolean stop = false;
final Object event = new Object();
Runtime.getRuntime().addShutdownHook(new Thread("shutdown thread") {
public void run() {
synchronized(event) {
stop = true;
event.notifyAll();
}
}
});
// ... and in your polling loop ...
synchronized(event) {
while(!stop) {
// ... do JDBC access ...
try {
// Wait 30 seconds, but break out as soon as the event is fired.
event.wait(30000);
}
catch(InterruptedException e) {
// Log a message and exit. Never ignore interrupted exception.
break;
}
}
}
Or something like that.
Note that a Timer (or similar) would be better in that you could at least reuse it and let it do with all of the details of sleeping, scheduling, exception handling, etc...
There are many reasons your app could die. Don't focus on just the one.
If it's even theoretically possible for your JDBC work to leave things in a half-correct state, then you have a bug you should fix. All of your DB work should be in a transaction. It should go or not go.
This is Java. Move your processing to a second thread. Now you can
Read from stdin in a loop. If someone types "QUIT", set the while flag to false and exit.
Create a AWT or Swing frame with a STOP button.
Pretend you are a Unix daemon and create a server socket. Wait for someone to open the socket and send "QUIT". (This has the added bonus that you can change the sleep to a select with timeout.)
There must be hundreds of variants on this.
Set up a signal handler for SIGTERM that sets a flag telling your loop to exit its next time through.
Regarding the question "The program could be in the middle of a JDBC call. How could I go about terminating it more gracefully?" - see How can I abort a running jdbc transaction?
Note that using a poll with sleep() is rarely the correct solution - implemented improperly, it can end up hogging CPU resources (the JVM thread-scheduler ends up spending inordinate amount of time sleeping and waking up the thread).
I‘ve created a Service class in my current company’s utility library for these kinds of problems:
public class Service implements Runnable {
private boolean shouldStop = false;
public synchronized stop() {
shouldStop = true;
notify();
}
private synchronized shouldStop() {
return shouldStop;
}
public void run() {
setUp();
while (!shouldStop()) {
doStuff();
sleep(60 * 1000);
}
}
private synchronized sleep(long delay) {
try {
wait(delay);
} catch (InterruptedException ie1) {
/* ignore. */
}
}
}
Of course this is far from complete but you should get the gist. This will enable you to simply call the stop() method when you want the program to stop and it will exit cleanly.
If that's your application and you can modify it, you can:
Make it read a file
Read for the value of a flag.
When you want to kill it, you just modify the file and the application will exit gracefully.
Not need to work it that harder that that.
You could make the field a compound value that includes (conceptually) a process-ID and a timestamp. [Better yet, use two or more fields.] Start a thread in the process that owns access to the field, and have it loop, sleeping and updating the timestamp. Then a polling process that is waiting to own access to the field can observe that the timestamp has not updated in some time T (which is much greater than the time of the updating loop's sleep interval) and assume that the previously-owning process has died.
But this is still prone to failure.
In other languages, I always try to use flock() calls to synchronize on a file. Not sure what the Java equivalent is. Get real concurrency if you at all possibly can.
I'm surprised nobody mentioned the interrupt mechanism implemented in Java. It's supposed to be a solution to the problem of stopping a thread. All other solutions have at least one flaw, that's why this mechanism is needed to be implemented in the Java concurrency library.
You can stop a thread by sending it an interrupt() message, but there are others ways that threads get interrupted. When this happens an InterruptedException is thrown. That's why you have to handle it when calling sleep() for example. That's where you can do cleanup and end gracefully, like closing the database connection.
Java9 has another "potential" answer to this: Thread.onSpinWait():
Indicates that the caller is momentarily unable to progress, until the occurrence of one or more actions on the part of other activities. By invoking this method within each iteration of a spin-wait loop construct, the calling thread indicates to the runtime that it is busy-waiting. The runtime may take action to improve the performance of invoking spin-wait loop constructions.
See JEP 285 for more details.
I think you should poll it with timertask instead.
My computer is running a while loop 1075566 times in 10 seconds.
Thats 107557 times in one second.
How often is it truly needed to poll it? A TimerTask runs at its fastest 1000 times in 1 second. You give it a parameter in int (miliseconds) as parameters. If you are content with that - that means you strain your cpu 108 times less with that task.
If you would be happy with polling once each second that is (108 * 1000). 108 000 times less straining. That also mean that you could check 108 000 values with the same cpu strain that you had with your one while loop - beause the you dont assign your cpu to check as often. Remember the cpu has a clock cycle. Mine is 3 600 000 000 hertz (cycles per second).
If your goal is to have it updated for a user - you can run a check each time the user logs in (or manually let him ask for an update) - that would practically not strain the cpu whatsoever.
You can also use thread.sleep(miliseconds); to lower the strain of your polling thread (as it wont be polling as often) you where doing.