Optimising writing StringBuilder's content to ServletResponse - java

I would like to obtain a few comments in regards to optimising my method created for writing of the whole content's of StringBuilder to a ServletResponse.
I did it to avoid creation of gigantic Strings at a single go before passing it to the out.write() method. In my situation a StringBuilder's content length, in some occasions, arrives at few million characters.
public static void writeResponse(ServletResponse response, StringBuilder sb) throws IOException {
try (PrintWriter out = response.getWriter()) {
int length = sb.length();
//to avoid creation of gigantic strings we are writing substrings from the sb
int bufferSize = (response.getBufferSize() != 0? response.getBufferSize():10000);
log.log(Level.INFO, "READY TO SEND To CLIENT, length of responseSB={0}", length);
if (length <= bufferSize) {
out.write(sb.toString());
} else {
int noWrites = length / bufferSize;
for (int i = 0; i < noWrites; i++) {
out.write(sb.substring(i * bufferSize, (i + 1) * bufferSize));
log.log(Level.INFO, "SENDING To CLIENT, write no={0} of {1}", new Object[]{(i + 1), noWrites});
}
int rest = length % bufferSize;
if (rest != 0) {
out.write(sb.substring(length - rest, length));
}
}
}
}
I want it to write a single (not chunked) message. Thus, I would like to know how accurately establish a response's buffer size in relation to a number of characters (or a String's length) it can fit?
At the moment, I am taking the current buffer size and using it as if it was expressing a number of characters it can fit, how to correctly evaluate the buffer size? Also I am not including the header size, how could I achieve it?
I would like to optimise its performance to maximum (so it works the fastest), any suggestion is much appreciated. Or maybe there is all together a better way of writing a gigantic StringBuilder content to ServletResponse?

The fastest way is:
out.write(sb.toString());
If you want to save on memory, replace StringBuilder with PrintWriter and pass response.getWriter() around.
Any optimization regarding buffer sizes will only make things slower. Without optimization, the cost is roughly: StringBuilder.toString() + out.write() which passed the long string to the container for chunking/sending.
With your optimization, it looks like this: StringBuilder.toString() + substring() + out.write() + copying substring into send buffer + many calls to container to send the pieces.
If you get rid of the builder, the number of calls to the container will stay the same (out.write() uses an internal buffer) but you won't waste memory to keep data around.
If you want to keep the StringBuilder, then find out how big the pages are and create a StringBuilder with a non-default size so it doesn't have to extend it's internal buffer all the time.

Related

Java Open BufferedWriter only once but rewrite content many times

I am running a long running operation, Say 100k jobs. i want to update the progress of it in a file once every 100 such jobs are completed.
i am opening the file using bufferedWriter with append mode as false. Writing it and then closing it. this is done once every 100 jobs are completed. So the file open and close would have happened 1000 times. Can i optimise it further by opening and closing the file only once?
public static void writeMetaData(String writeDir, JSONObject jsonObject) throws Exception {
String filePath = writeDir.concat("/").concat("metadata.txt");
BufferedWriter metaDataWriter = Files.newBufferedWriter(Paths.get(filePath), StandardCharsets.UTF_8, StandardOpenOption.TRUNCATE_EXISTING);
metaDataWriter.write(jsonObject.toString());
IOUtils.closeQuietly(metaDataWriter);
}
for(int i =0 ; i < 100000; i++) {
// do Something;
if(i % 100 == 0) {
writeMetaData(writeDir, jsonObject);
}
}
File should only have a single line.
Expected file content after 100 jobs:
progress: 100
Expected file content after 200 jobs:
progress: 200
Can this be optimised further?
First of all, an expression like writeDir.concat("/").concat("metadata.txt") is reducing readability and performance. A straight-forward writeDir + "/" + "metadata.txt" will provide better performance. But since you’re constructing a string merely for constructing a Path, it’s even more straight-forward not to do the Path’s job in your code but rather use Paths.get(writeDir, "metadata.txt").
You can not rewind a BufferedWriter but you can rewind a FileChannel. Therefore, to keep the channel open and rewind it when needed, you have to construct a new writer after rewinding:
public static void writeMetaData(FileChannel ch, JSONObject jsonObj) throws IOException {
ch.position(0);
if(ch.size() > 0) ch.truncate(0);
Writer w = Channels.newWriter(ch, StandardCharsets.UTF_8.newEncoder(), 8192);
w.write(jsonObj.toString());
w.flush();
}
try(FileChannel ch = FileChannel.open(Paths.get(writeDir, "metadata.txt"),
StandardOpenOption.WRITE, StandardOpenOption.CREATE)) {
for(int i = 0; i < 100000; i++) {
// do Something;
if(i % 100 == 0) {
writeMetaData(ch, jsonObject);
}
}
}
It’s important that the use of the Writer ends with flush() to force the write of all buffered data, but not close() as that would also close the underlying channel. Note that this code does not wrap the writer into a BufferedWriter; encoding text as UTF-8 is already a buffered operation and by requesting a larger buffer for the encoder, matching BufferedWriter’s default buffer size, we get the same effect of buffering without the copying overhead.
Since writing is not an end in itself, there’s a question left regarding your reading side. If the reader is trying to read the data in some intervals, there’s the risk of overlapping with the write, getting incomplete data.
You could use
public static void writeMetaData(FileChannel ch, JSONObject jsonObj) throws IOException {
try(FileLock lock = ch.lock()) {
ch.position(0);
if(ch.size() > 0) ch.truncate(0);
Writer w = Channels.newWriter(ch, StandardCharsets.UTF_8.newEncoder(), 8192);
w.write(jsonObj.toString());
w.flush();
}
}
to lock the file during the write. But depending on the system, file locking might not be mandatory but only affect readers also trying to get a read lock.
When you use JDK 11 or newer, you may consider using
for(int i = 0; i < 100000; i++) {
// do Something;
if(i % 100 == 0) {
Files.writeString(Paths.get(writeDir, "metadata.txt"), jsonObject.toString());
}
}
which clearly wins on simplicity (yes, that’s the complete code, no additional method required). The default options do already include the desired StandardCharsets.UTF_8 and StandardOpenOption.TRUNCATE_EXISTING.
While it does open and close the file internally, it has some other performance tweaks which may compensate. Especially in the likely case that the string consists of ASCII characters only, as the implementation will simply write the string’s internal array directly to the file then.
A Stream does not allow to go back and rewrite content. A way to achieve what you want is using a RandomAccessFile.
Its setLength() method will truncate the file if you pass 0.
Here is a simple example:
import java.io.*;
public class Test
{
public static void updateFile(RandomAccessFile raf, String content) throws IOException
{
raf.setLength(0);
raf.write(content.getBytes("UTF-8"));
}
public static void main(String[] args) throws IOException
{
try(RandomAccessFile raf = new RandomAccessFile("metadata.txt", "rw"))
{
updateFile(raf, "progress: 100");
updateFile(raf, "progress: 200");
}
}
}
File operations are typically buffered by the underlying kernel, and so you're unlikely to see much of a performance benefit by keeping an open file descriptor for this kind of low throughput application.
Keeping your code as a single operation that gets to leave no state after it finishes, rather than designing it as a continuous rewindable stream, makes for an elegant, simple, and unless you've specifically requested synchronous IO, then also sufficiently performant implementation that gets to benefit from the optimizations of all of the layers that sit beneath it.
When you do get measurable impedance to performance by this, which I suspect you never will, you could use the RandomAccessFile API, or go unnecessarily lower level by using FileChannel as others already specified.
I think you shouldn't compromise the simplicity/elegance of your design for this kind of micro-optimization, which in the grand scheme of things, is guaranteed to be insignificant (one tiny write operation per 100 jobs processed).

Is reading/writing in an array more efficient than reading/writing a char/byte one by one?

try(FileReader reader = new FileReader("input.txt")) {
int c;
while ((c = reader.read()) != -1)
System.out.print((char)c);
} catch (Exception ignored) { }
In this code, I read a char by char. Is it more efficient in someway to read a into an array of chars at once? In other words, is there any kind of optimization that happens when reading in arrays?
For example in this code, I have an array of char called arr and I read into it until there is noting left to read. Is it more efficient?
try(FileReader reader = new FileReader("input.txt")) {
int size;
char[] arr = new char[100];
while ((size = reader.read(arr)) != -1)
for (int i = 0; i < size; i++)
System.out.print(arr[i]);
} catch (Exception ignored) { }
The question applies for both reading/writing both chars/bytes.
Depends on the reader. The answer can be yes, though. Whatever Reader or InputStream is the actual 'raw' driver (the one that isn't just wrapping another reader or inputstream, but the one that is actually talking to the OS to get the data) - it may well implement the single-character read() method by asking the OS to read a single character.
In the end, you have a disk, and disks return data in blocks. So if you ask for 1 byte, you have 2 options as a computer:
Ask the disk for the block that contains the byte that is to be read. Store the block in memory someplace for a while. Return one byte; for the next few moments, if more requests for bytes come in from the same block, return from the stored data in memory and don't bother asking the disk at all. NOTE: This requires memory! Who allocates it? How much memory is okay? Tricky questions. OSes tend to give low level tools and don't like just picking values for any of these questions.
Ask the disk for the block that contains the byte that is to be read. Find the 1 byte needed from within this block. Ignore the rest of the data, return just that one byte. If in a few moments another byte from that block is asked for... ask the disk, again, for the whole block, and repeat this routine.
Which of the two models you get depends on many factors: For example: What kind of disk is it, what OS do you have, what underlying java reader are you using. But it is plausible you end up in this second mode and that is, as you can probably tell, usually incredibly slow, because you end up reading the same block 4000+ times instead of only once.
So, how to fix this? Well, java doesn't really know what the OS is doing either, so the safest bet is to let java do the caching. Then you have no dependencies on whatever the OS is doing.
You could write it yourself, so instead of:
for (int i = in.read(); i != -1; i = in.read()) {
processOneChar((char) i);
}
you could do:
char[] buffer = new char[4096];
while (true) {
int r = in.read(buffer);
if (r == -1) break;
for (int i = 0; i < r; i++) processOneChar(buffer[i]);
}
more code, but now the second scenario (the same block is read off the disk a ton of times) can no longer occur; you have given the OS the freedom to return to you up to 4096 chars worth of data.
Or, use a java builtin: BufferedX:
BufferedReader br = new BufferedReader(in);
for (int i = br.read(); i != -1; i = br.read()) {
processOneChar((char) i);
}
The implementation of BufferedReader guarantees that java will take care of making some reasonably sized buffer to avoid rereads of the same block off of disk.
NB: Note that the FileReader constructor you are using should not be used. It uses platform default encoding (anytime you convert bytes to characters, encoding is involved), and platform default is a recipe for untestable bugs, which are very bad. Use new FileReader(file, StandardCharsets.UTF_8) instead, or better yet, use the new API:
Path p = Paths.get("C:/file.txt");
try (BufferedReader br = Files.newBufferedReader(p)) {
for (int i = br.read(); i != -1; i = br.read()) {
processOneChar((char) i);
}
}
Note that this:
Defaults to UTF-8, because the Files API defaults to UTF-8 unlike most places in the VM.
Makes a bufferedreader immediately, no need to make it yourself.
Properly manages the resource (ensures it is closed regardless of how this code exits, be it normally or be exception), by using an ARM block.
Because a BufferedX is involved, no risk of the 'read the same block a lot' performance hole.
NB: The same logic applies when writing; disks such as SSDs can only write a whole block at a time. Now it's not just slow as molasses to write, you're also ruining your disk, as they get a limited number of writes.

How Buffer Streams works internally in Java

I'm reading about Buffer Streams. I searched about it and found many answers that clear my concepts but still have little more questions.
After searching, I have come to know that, Buffer is temporary memory(RAM) which helps program to read data quickly instead hard disk. and when Buffers empty then native input API is called.
After reading little more I got answer from here that is.
Reading data from disk byte-by-byte is very inefficient. One way to
speed it up is to use a buffer: instead of reading one byte at a time,
you read a few thousand bytes at once, and put them in a buffer, in
memory. Then you can look at the bytes in the buffer one by one.
I have two confusion,
1: How/Who data filled in Buffers? (native API how?) as quote above, who filled thousand bytes at once? and it will consume same time. Suppose I have 5MB data, and 5MB loaded once in Buffer in 5 Seconds. and then program use this data from buffer in 5 seconds. Total 10 seconds. But if I skip buffering, then program get direct data from hard disk in 1MB/2sec same as 10Sec total. Please clear my this confusion.
2: The second one how this line works
BufferedReader inputStream = new BufferedReader(new FileReader("xanadu.txt"));
As I'm thinking FileReader write data to buffer, then BufferedReader read data from buffer memory? Also explain this.
Thanks.
As for the performance of using buffering during read/write, it's probably minimal in impact since the OS will cache too, however buffering will reduce the number of calls to the OS, which will have an impact.
When you add other operations on top, such as character encoding/decoding or compression/decompression, the impact is greater as those operations are more efficient when done in blocks.
You second question said:
As I'm thinking FileReader write data to buffer, then BufferedReader read data from buffer memory? Also explain this.
I believe your thinking is wrong. Yes, technically the FileReader will write data to a buffer, but the buffer is not defined by the FileReader, it's defined by the caller of the FileReader.read(buffer) method.
The operation is initiated from outside, when some code calls BufferedReader.read() (any of the overloads). BufferedReader will then check it's buffer, and if enough data is available in the buffer, it will return the data without involving the FileReader. If more data is needed, the BufferedReader will call the FileReader.read(buffer) method to get the next chunk of data.
It's a pull operation, not a push, meaning the data is pulled out of the readers by the caller.
All the stuff is done by a private method named fill() i give you for educational purpose, but all java IDE let you see the source code yourself :
private void fill() throws IOException {
int dst;
if (markedChar <= UNMARKED) {
/* No mark */
dst = 0;
} else {
/* Marked */
int delta = nextChar - markedChar;
if (delta >= readAheadLimit) {
/* Gone past read-ahead limit: Invalidate mark */
markedChar = INVALIDATED;
readAheadLimit = 0;
dst = 0;
} else {
if (readAheadLimit <= cb.length) {
/* Shuffle in the current buffer */
// here copy the read chars in a memory buffer named cb
System.arraycopy(cb, markedChar, cb, 0, delta);
markedChar = 0;
dst = delta;
} else {
/* Reallocate buffer to accommodate read-ahead limit */
char ncb[] = new char[readAheadLimit];
System.arraycopy(cb, markedChar, ncb, 0, delta);
cb = ncb;
markedChar = 0;
dst = delta;
}
nextChar = nChars = delta;
}
}
int n;
do {
n = in.read(cb, dst, cb.length - dst);
} while (n == 0);
if (n > 0) {
nChars = dst + n;
nextChar = dst;
}
}

how to load first x bytes from URL with Java / Scala?

I want to read the first x bytes from a java.net.URLConnection (although I'm not forced to use this class - other suggestions welcome).
My code looks like this:
val head = new Array[Byte](2000)
new BufferedInputStream(connection.getInputStream).read(head)
IOUtils.toString(new ByteArrayInputStream(head), charset)
It works, but does this code load only the first 2000 bytes from the network?
Next trial
As 'JB Nizet' said it is not useful to use a buffered input stream, so I tried it with an InputStreamReader:
val head = new Array[Char](2000)
new InputStreamReader(connection.getInputStream, charset).read(head)
new String(head)
This code may be better, but the load times are about the same. So does this procedure limit the transferred bytes ?
No, it doesn't. It could read up to 8192 bytes (the deault buffer size of BufferedInputStream). It could also read 0 bytes, or any number of bytes between 0 and 2000, since you don't check the number of bytes that have actually been read, and which is returned by the read() method.
And finally, depending on the value of charset, and of the actual charset used by the HTTP response, this could return an incorrect string, or a String truncated in the middle of a multi-byte character. You should use a Reader to read text.
I suggest you read the Java IO tutorial.
You can use read(Reader, char[]) from Apache Commons IO. Just pass a 2000-character buffer to it and it will fill it with as many characters as possible, up to 2000.
Be sure you understand the objections in the other answers/comments, in particular:
Don't use Buffered... wrappers, it goes against your intentions.
If you read textual data, then use a Reader to read 2000 characters instead of InputStream reading 2000 bytes. The proper procedure would be to determine the character encoding from the headers of a response (Content-Type) and set that encoding into InputStreamReader.
Calling plain read(char[]) on a Reader will not fully fill the array you give to it. It can read as little as one character no matter how big the array is!
Don't forget to close the reader afterwards.
Other than that, I'd strongly recommend you to use Apache HttpClient in favor of java.net.URLConnection. It's much more flexible.
Edit: To understand the difference between Reader.read and IOUtils.read, it's worth examining the source of the latter:
public static int read(Reader input, char[] buffer,
int offset, int length)
throws IOException
{
if (length < 0) {
throw new IllegalArgumentException("Length must not be negative: " + length);
}
int remaining = length;
while (remaining > 0) {
int location = length - remaining;
int count = input.read(buffer, offset + location, remaining);
if (EOF == count) { // EOF
break;
}
remaining -= count;
}
return length - remaining;
}
Since Reader.read can read less characters than a given length (we only know it's at least 1 and at most the length), we need to iterate calling it until we get the amount we want.

Efficient way to search a stream for a string

Let's suppose that have a stream of text (or Reader in Java) that I'd like to check for a particular string. The stream of text might be very large so as soon as the search string is found I'd like to return true and also try to avoid storing the entire input in memory.
Naively, I might try to do something like this (in Java):
public boolean streamContainsString(Reader reader, String searchString) throws IOException {
char[] buffer = new char[1024];
int numCharsRead;
while((numCharsRead = reader.read(buffer)) > 0) {
if ((new String(buffer, 0, numCharsRead)).indexOf(searchString) >= 0)
return true;
}
return false;
}
Of course this fails to detect the given search string if it occurs on the boundary of the 1k buffer:
Search text: "stackoverflow"
Stream buffer 1: "abc.........stack"
Stream buffer 2: "overflow.......xyz"
How can I modify this code so that it correctly finds the given search string across the boundary of the buffer but without loading the entire stream into memory?
Edit: Note when searching a stream for a string, we're trying to minimise the number of reads from the stream (to avoid latency in a network/disk) and to keep memory usage constant regardless of the amount of data in the stream. Actual efficiency of the string matching algorithm is secondary but obviously, it would be nice to find a solution that used one of the more efficient of those algorithms.
There are three good solutions here:
If you want something that is easy and reasonably fast, go with no buffer, and instead implement a simple nondeterminstic finite-state machine. Your state will be a list of indices into the string you are searching, and your logic looks something like this (pseudocode):
String needle;
n = needle.length();
for every input character c do
add index 0 to the list
for every index i in the list do
if c == needle[i] then
if i + 1 == n then
return true
else
replace i in the list with i + 1
end
else
remove i from the list
end
end
end
This will find the string if it exists and you will never need a
buffer.
Slightly more work but also faster: do an NFA-to-DFA conversion that figures out in advance what lists of indices are possible, and assign each one to a small integer. (If you read about string search on Wikipedia, this is called the powerset construction.) Then you have a single state and you make a state-to-state transition on each incoming character. The NFA you want is just the DFA for the string preceded with a state that nondeterministically either drops a character or tries to consume the current character. You'll want an explicit error state as well.
If you want something faster, create a buffer whose size is at least twice n, and user Boyer-Moore to compile a state machine from needle. You'll have a lot of extra hassle because Boyer-Moore is not trivial to implement (although you'll find code online) and because you'll have to arrange to slide the string through the buffer. You'll have to build or find a circular buffer that can 'slide' without copying; otherwise you're likely to give back any performance gains you might get from Boyer-Moore.
I did a few changes to the Knuth Morris Pratt algorithm for partial searches. Since the actual comparison position is always less or equal than the next one there is no need for extra memory. The code with a Makefile is also available on github and it is written in Haxe to target multiple programming languages at once, including Java.
I also wrote a related article: searching for substrings in streams: a slight modification of the Knuth-Morris-Pratt algorithm in Haxe. The article mentions the Jakarta RegExp, now retired and resting in the Apache Attic. The Jakarta Regexp library “match” method in the RE class uses a CharacterIterator as a parameter.
class StreamOrientedKnuthMorrisPratt {
var m: Int;
var i: Int;
var ss:
var table: Array<Int>;
public function new(ss: String) {
this.ss = ss;
this.buildTable(this.ss);
}
public function begin() : Void {
this.m = 0;
this.i = 0;
}
public function partialSearch(s: String) : Int {
var offset = this.m + this.i;
while(this.m + this.i - offset < s.length) {
if(this.ss.substr(this.i, 1) == s.substr(this.m + this.i - offset,1)) {
if(this.i == this.ss.length - 1) {
return this.m;
}
this.i += 1;
} else {
this.m += this.i - this.table[this.i];
if(this.table[this.i] > -1)
this.i = this.table[this.i];
else
this.i = 0;
}
}
return -1;
}
private function buildTable(ss: String) : Void {
var pos = 2;
var cnd = 0;
this.table = new Array<Int>();
if(ss.length > 2)
this.table.insert(ss.length, 0);
else
this.table.insert(2, 0);
this.table[0] = -1;
this.table[1] = 0;
while(pos < ss.length) {
if(ss.substr(pos-1,1) == ss.substr(cnd, 1))
{
cnd += 1;
this.table[pos] = cnd;
pos += 1;
} else if(cnd > 0) {
cnd = this.table[cnd];
} else {
this.table[pos] = 0;
pos += 1;
}
}
}
public static function main() {
var KMP = new StreamOrientedKnuthMorrisPratt("aa");
KMP.begin();
trace(KMP.partialSearch("ccaabb"));
KMP.begin();
trace(KMP.partialSearch("ccarbb"));
trace(KMP.partialSearch("fgaabb"));
}
}
The Knuth-Morris-Pratt search algorithm never backs up; this is just the property you want for your stream search. I've used it before for this problem, though there may be easier ways using available Java libraries. (When this came up for me I was working in C in the 90s.)
KMP in essence is a fast way to build a string-matching DFA, like Norman Ramsey's suggestion #2.
This answer applied to the initial version of the question where the key was to read the stream only as far as necessary to match on a String, if that String was present. This solution would not meet the requirement to guarantee fixed memory utilisation, but may be worth considering if you have found this question and are not bound by that constraint.
If you are bound by the constant memory usage constraint, Java stores arrays of any type on the heap, and as such nulling the reference does not deallocate memory in any way; I think any solution involving arrays in a loop will consume memory on the heap and require GC.
For simple implementation, maybe Java 5's Scanner which can accept an InputStream and use a java.util.regex.Pattern to search the input for might save you worrying about the implementation details.
Here's an example of a potential implementation:
public boolean streamContainsString(Reader reader, String searchString)
throws IOException {
Scanner streamScanner = new Scanner(reader);
if (streamScanner.findWithinHorizon(searchString, 0) != null) {
return true;
} else {
return false;
}
}
I'm thinking regex because it sounds like a job for a Finite State Automaton, something that starts in an initial state, changing state character by character until it either rejects the string (no match) or gets to an accept state.
I think this is probably the most efficient matching logic you could use, and how you organize the reading of the information can be divorced from the matching logic for performance tuning.
It's also how regexes work.
Instead of having your buffer be an array, use an abstraction that implements a circular buffer. Your index calculation will be buf[(next+i) % sizeof(buf)], and you'll have to be careful to full the buffer one-half at a time. But as long as the search string fits in half the buffer, you'll find it.
I believe the best solution to this problem is to try to keep it simple. Remember, beacause I'm reading from a stream, I want to keep the number of reads from the stream to a minimum (as network or disk latency may be an issue) while keeping the amount of memory used constant (as the stream may be very large in size). Actual efficiency of the string matching is not the number one goal (as that has been studied to death already).
Based on AlbertoPL's suggestion, here's a simple solution that compares the buffer against the search string character by character. The key is that because the search is only done one character at a time, no back tracking is needed and therefore no circular buffers, or buffers of a particular size are needed.
Now, if someone can come up with a similar implementation based on Knuth-Morris-Pratt search algorithm then we'd have a nice efficient solution ;)
public boolean streamContainsString(Reader reader, String searchString) throws IOException {
char[] buffer = new char[1024];
int numCharsRead;
int count = 0;
while((numCharsRead = reader.read(buffer)) > 0) {
for (int c = 0; c < numCharsRead; c++) {
if (buffer[c] == searchString.charAt(count))
count++;
else
count = 0;
if (count == searchString.length()) return true;
}
}
return false;
}
If you're not tied to using a Reader, then you can use Java's NIO API to efficiently load the file. For example (untested, but should be close to working):
public boolean streamContainsString(File input, String searchString) throws IOException {
Pattern pattern = Pattern.compile(Pattern.quote(searchString));
FileInputStream fis = new FileInputStream(input);
FileChannel fc = fis.getChannel();
int sz = (int) fc.size();
MappedByteBuffer bb = fc.map(FileChannel.MapMode.READ_ONLY, 0, sz);
CharsetDecoder decoder = Charset.forName("UTF-8").newDecoder();
CharBuffer cb = decoder.decode(bb);
Matcher matcher = pattern.matcher(cb);
return matcher.matches();
}
This basically mmap()'s the file to search and relies on the operating system to do the right thing regarding cache and memory usage. Note however that map() is more expensive the just reading the file in to a large buffer for files less than around 10 KiB.
A very fast searching of a stream is implemented in the RingBuffer class from the Ujorm framework. See the sample:
Reader reader = RingBuffer.createReader("xxx ${abc} ${def} zzz");
String word1 = RingBuffer.findWord(reader, "${", "}");
assertEquals("abc", word1);
String word2 = RingBuffer.findWord(reader, "${", "}");
assertEquals("def", word2);
String word3 = RingBuffer.findWord(reader, "${", "}");
assertEquals("", word3);
The single class implementation is available on the SourceForge:
For more information see the link.
Implement a sliding window. Have your buffer around, move all elements in the buffer one forward and enter a single new character in the buffer at the end. If the buffer is equal to your searched word, it is contained.
Of course, if you want to make this more efficient, you can look at a way to prevent moving all elements in the buffer around, for example by having a cyclic buffer and a representation of the strings which 'cycles' the same way the buffer does, so you only need to check for content-equality. This saves moving all elements in the buffer.
I think you need to buffer a small amount at the boundary between buffers.
For example if your buffer size is 1024 and the length of the SearchString is 10, then as well as searching each 1024-byte buffer you also need to search each 18-byte transition between two buffers (9 bytes from the end of the previous buffer concatenated with 9 bytes from the start of the next buffer).
I'd say switch to a character by character solution, in which case you'd scan for the first character in your target text, then when you find that character increment a counter and look for the next character. Every time you don't find the next consecutive character restart the counter. It would work like this:
public boolean streamContainsString(Reader reader, String searchString) throws IOException {
char[] buffer = new char[1024];
int numCharsRead;
int count = 0;
while((numCharsRead = reader.read(buffer)) > 0) {
if (buffer[numCharsRead -1] == searchString.charAt(count))
count++;
else
count = 0;
if (count == searchString.size())
return true;
}
return false;
}
The only problem is when you're in the middle of looking through characters... in which case there needs to be a way of remembering your count variable. I don't see an easy way of doing so except as a private variable for the whole class. In which case you would not instantiate count inside this method.
You might be able to implement a very fast solution using Fast Fourier Transforms, which, if implemented properly, allow you to do string matching in times O(nlog(m)), where n is the length of the longer string to be matched, and m is the length of the shorter string. You could, for example, perform FFT as soon as you receive an stream input of length m, and if it matches, you can return, and if it doesn't match, you can throw away the first character in the stream input, wait for a new character to appear through the stream, and then perform FFT again.
You can increase the speed of search for very large strings by using some string search algorithm
If you're looking for a constant substring rather than a regex, I'd recommend Boyer-Moore. There's plenty of source code on the internet.
Also, use a circular buffer, to avoid think too hard about buffer boundaries.
Mike.
I also had a similar problem: skip bytes from the InputStream until specified string (or byte array). This is the simple code based on circular buffer. It is not very efficient but works for my needs:
private static boolean matches(int[] buffer, int offset, byte[] search) {
final int len = buffer.length;
for (int i = 0; i < len; ++i) {
if (search[i] != buffer[(offset + i) % len]) {
return false;
}
}
return true;
}
public static void skipBytes(InputStream stream, byte[] search) throws IOException {
final int[] buffer = new int[search.length];
for (int i = 0; i < search.length; ++i) {
buffer[i] = stream.read();
}
int offset = 0;
while (true) {
if (matches(buffer, offset, search)) {
break;
}
buffer[offset] = stream.read();
offset = (offset + 1) % buffer.length;
}
}
Here is my implementation:
static boolean containsKeywordInStream( Reader ir, String keyword, int bufferSize ) throws IOException{
SlidingContainsBuffer sb = new SlidingContainsBuffer( keyword );
char[] buffer = new char[ bufferSize ];
int read;
while( ( read = ir.read( buffer ) ) != -1 ){
if( sb.checkIfContains( buffer, read ) ){
return true;
}
}
return false;
}
SlidingContainsBuffer class:
class SlidingContainsBuffer{
private final char[] keyword;
private int keywordIndexToCheck = 0;
private boolean keywordFound = false;
SlidingContainsBuffer( String keyword ){
this.keyword = keyword.toCharArray();
}
boolean checkIfContains( char[] buffer, int read ){
for( int i = 0; i < read; i++ ){
if( keywordFound == false ){
if( keyword[ keywordIndexToCheck ] == buffer[ i ] ){
keywordIndexToCheck++;
if( keywordIndexToCheck == keyword.length ){
keywordFound = true;
}
} else {
keywordIndexToCheck = 0;
}
} else {
break;
}
}
return keywordFound;
}
}
This answer fully qualifies the task:
The implementation is able to find the searched keyword even if it was split between buffers
Minimum memory usage defined by the buffer size
Number of reads will be minimized by using bigger buffer

Categories

Resources