This question already has answers here:
Is Java "pass-by-reference" or "pass-by-value"?
(93 answers)
Closed 8 years ago.
Here a beginners question.
Is there any difference in JAVA between passing an object as argument to a method or returning that object from the method. For instance: Is it better to pass a List as an argument and fill it in the method or just allow the method to return a list?
My guess is that it should be no difference since a reference is returned and nothing is copied. But is there something more subtle behind?
thanks in advance
Altober
Many of the comments seem to have misunderstood what you mean.
I believe you're asking the difference between
public void myMethod(List list) {
list.add(new Object());
}
and
public List myMethod() {
List list = new ArrayList();
list.add(new Object());
return list;
}
Correct me if I'm wrong.
There is no rule to say which one is right. It all depends on how you wish to design your program. The latter method won't allow you to use existing Lists, so there may be performance issues to be considered.
You can also perform method chaining when returning values from a method, so sometimes you could take both a parameter and returning a value. A variation from this is a method that will use an existing List if it is passed as a parameter, but create a new List if the parameter is null. However this can be confusing to the caller.
First, there is no "pass by reference" in Java: the language is passing references by value (it is not the same thing).
The answer to your question is "it depends": passing an object as an argument to a method lets you reuse the same object in multiple invocations, while returning an object forces the method to supply a new or an existing object to the caller.
Consider this example: you are collecting data from several methods, and you need to put all the data in one list. You can have methods returning lists with their data
interface DataSource {
void supplyData(List<Data> list);
}
or you could pass these methods a list, and have them add their data to the same list:
interface DataSource {
List<Data> supplyData();
}
In the first case, you could loop through multiple data sources, passing them the same list:
List<Data> bigList = new ArrayList<Data>();
foreach (DataSource s : mySources) {
s.supplyData(bigList);
}
In the second case, you would need to get individual lists from the calls of supplyData, and put their content in a big list that you keep in your loop:
List<Data> bigList = new ArrayList<Data>();
foreach (DataSource s : mySources) {
List<Data> tmp = s.supplyData();
bigList.addAll(tmp);
}
In the second case each invocation creates a temporary list tmp that gets discarded after its content is added to the big list.
Note that passing an existing list is not necessarily a better solution - in fact, there are situations when you should avoid that.
For example, when you deal with externally supplied plug-ins, you should prefer the second strategy. Otherwise, a malicious implementation of the DataSource interface would be able to manipulate the common list in ways not expected by your program, such as adding its items ahead of everyone else's, removing items that came from other sources, examining items from other sources, and so on.
In addition to the answer from dasblinkenlight, which is correct (it depends), returning a list from the method also has advantages over passing a list as argument.
By passing a list as argument, the caller has the responsibility to choose the appropriate List implementation, to initialize it to the appropriate size, and to pass a list that is compatible with the algorithm of the called method. Often, the caller doesn't have the knowledge that is necessary to make the good choice.
Whereas if the called method returns a list, it can:
return Collections.emptyList() if nothing has to be returned
return a well-dimensioned ArrayList
return a subList or an unmodifable view or transformed view of a list it already has in memory, instead of making a copy
do anything with the list it creates without fearing that the list passed as argument is unmodifiable, or fixed-size, or already contains elements.
No difference, both are references to list object.
Personally I prefer that results are given by return and leave the arguments. But that might force you to create a new list, and that might cost you (performance, memory).
Returning allows for chaining.
As you are probably aware, everything in Java is pass-by-value.
Is there any difference in JAVA between passing an object as argument to a method or returning that object from the method?
No real difference as it is the reference that is being passed around in both cases.
Is it better to pass a List as an argument and fill it in the method or just allow the method to return a list?
Depends on your requirements I guess. Does the method require a list as input or can it construct it entirely by itself?
My guess is that it should be no difference since a reference is returned and nothing is copied?
Strictly speaking, this is not true as a copy of the reference is returned.
I have a structure like this:
public class Foo
{
public int A ;
public int B ;
public int C ;
}
I need to add these to a collection one-by-one in such a way that I end up with no more than one copy where A, B, and C are all equal. I also need references to the objects for another class, like this:
public class Bar
{
public Foo A ;
public Foo B ;
public Foo C ;
}
I tried using a TreeSet < Foo >, which worked to ensure uniqueness, but I cannot get a reference back out of a TreeSet (only a boolean of whether or not it is/was in the set), so I can't pass that reference on to Bar. I tried using a TreeMap < Foo , Integer > along with an ArrayList < Foo >, and that works to ensure uniqueness and to allow me to get references to the objects, but it wastes a massive amount of time and memory to maintain the ArrayList and the Integers.
I need a way to say "If this Foo is not yet in the collection, add it; Otherwise, give me the Foo already in the collection instead of the one I created to check for its presence in the collection.".
(It just occurred to me that I could do something like TreeMap < Foo , Foo >, and that would do what I want, but it still seems like a waste, even though it's nowhere near as much of one, so I'll continue with this question in hope of enlightenment.)
(And yes, I did implement Comparable to do the uniqueness-check in the trees; That part works already.)
I would use e.g. a TreeMap<Foo, Foo> object. When you put a new Foo in the map, specify it as both the key and the value. This lets you use get to return the Foo already in the collection. Note that you have to handle the case of a Foo already being in the map yourself.
A solution in Sorted collection in Java by Neil Coffey gave what I need, which is using ArrayList < Foo > and always doing Collections . binarySearch to get either the index of the element already in the list, or the point at which the element should be inserted into the list.
This maintains a constantly-sorted list at O(log n) time like a tree, but allows retrieval of existing instances at the same time. Unfortunately, it has O(n) insertion time, but that isn't the end of the world in this case, though it's still suboptimal.
To ensure uniqueness in a Set, you need to over-ride equals() and hashcode() so that two instances of Foo with the same A,B,C are .equals().
Ideally, anything you put in a Set should be immutable (i.e. your three ints should be final. From the documentation:
Great care must be exercised if mutable objects are used as set
elements. The behavior of a set is not specified if the value of an
object is changed in a manner that affects equals comparisons while
the object is an element in the set.
Unfortunately, Set doesn't provide any method that allows you to get the actual instance - you would need a Map or another collection as you have already tried.
Update another approach would be to create your own modified version of TreeSet based on the JDK source code to add a method to obtain the instance you need (extending the standard TreeSet won't do what you need because the relevant fields are private, unless you use reflection to access them).
Apparently a TreeList is based on a TreeMap thus making this approach redundant, but I thought I'd just comment on it anyway for completeness.
If a copy of a Foo object exists in the TreeList (e.g. as returned by contains) then you can retrieve the copy using the tailSet and first methods.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I understand that only one instance of any object according to .equals() is allowed in a Set and that you shouldn't "need to" get an object from the Set if you already have an equivalent object, but I would still like to have a .get() method that returns the actual instance of the object in the Set (or null) given an equivalent object as a parameter.
Any ideas/theories as to why it was designed like this?
I usually have to hack around this by using a Map and making the key and the value same, or something like that.
EDIT: I don't think people understand my question so far. I want the exact object instance that is already in the set, not a possibly different object instance where .equals() returns true.
As to why I would want this behavior, typically .equals() does not take into account all the properties of the object. I want to provide some dummy lookup object and get back the actual object instance in the Set.
While the purity argument does make the method get(Object) suspect, the underlying intent is not moot.
There are various class and interface families that slightly redefine equals(Object). One need look no further than the collections interfaces. For example, an ArrayList and a LinkedList can be equal; their respective contents merely need to be the same and in the same order.
Consequently, there are very good reasons for finding the matching element in a set. Perhaps a clearer way of indicating intent is to have a method like
public interface Collection<E> extends ... {
...
public E findMatch(Object o) throws UnsupportedOperationException;
...
}
Note that this API has value broader that within Set.
As to the question itself, I don't have any theory as to why such an operation was omitted. I will say that the minimal spanning set argument does not hold, because many operations defined in the collections APIs are motivated by convenience and efficiency.
The problem is: Set is not for "getting" objects, is for adding and test for presence.
I understand what are you looking for, I had a similar situation and ended using a map of the same object in key and value.
EDIT: Just to clarify: http://en.wikipedia.org/wiki/Set_(abstract_data_type)
I had the same question in java forum years ago. They told me that the Set interface is defined. It cannot be changed because it will break the current implementations of Set interface. Then, they started to claim bullshit, like you see here: "Set does not need the get method" and started to drill me that Map must always be used to get elements from a set.
If you use the set only for mathematical operations, like intersection or union, then may be contains() is sufficient. However, Set is defined in collections to store data. I explained for need get() in Set using the relational data model.
In what follows, an SQL table is like a class. The columns define attributes (known as fields in Java) and records represent instances of the class. So that an object is a vector of fields. Some of the fields are primary keys. They define uniqueness of the object. This is what you do for contains() in Java:
class Element {
public int hashCode() {return sumOfKeyFields()}
public boolean equals(Object e) {keyField1.equals(e) && keyField2.equals(e) && ..}
I'm not aware of DB internals. But, you specify key fields only once, when define a table. You just annotate key fields with #primary. You do not specify the keys second time, when add a record to the table. You do not separate keys from data, as you do in mapping. SQL tables are sets. They are not maps. Yet, they provide get() in addition to maintaining uniqueness and contains() check.
In "Art of Computer Programming", introducing the search, D. Knuth says the same:
Most of this chapter is devoted to the study of a very simple search
problem: how to find the data that has been stored with a given
identification.
You see, data is store with identification. Not identification pointing to data but data with identification. He continues:
For example, in a numerical application we might want
to find f(x), given x and a table of the values of f; in a
nonnumerical application, we might want to find the English
translation of a given Russian word.
It looks like he starts to speak about mapping. However,
In general, we shall suppose that a set of N records has been stored,
and the problem is to locate the appropriate one. We generally require
the N keys to be distinct, so that each key uniquely identifies its
record. The collection of all records is called a table or file,
where the word "table" is usually used to indicate a small file, and
"file" is usually used to indicate a large table. A large file or a
group of files is frequently called a database.
Algorithms for searching are presented with a so-called argument, K,
and the problem is to find which record has K as its key. Although the
goal of searching is to find the information stored in the record
associated with K, the algorithms in this chapter generally ignore
everything but the keys themselves. In practice we can find the
associated data once we have located K; for example, if K appears in
location TABLE + i, the associated data (or a pointer to it) might be
in location TABLE + i + 1
That is, the search locates the key filed of the record and it should not "map" the key to the data. Both are located in the same record, as fileds of java object. That is, search algorithm examines the key fields of the record, as it does in the set, rather than some remote key, as it does in the map.
We are given N items to be sorted; we shall call them records, and
the entire collection of N records will be called a file. Each
record Rj has a key Kj, which governs the sorting process. Additional
data, besides the key, is usually also present; this extra "satellite
information" has no effect on sorting except that it must be carried
along as part of each record.
Neither, I see no need to duplicate the keys in an extra "key set" in his discussion of sorting.
... ["The Art of Computer Programming", Chapter 6, Introduction]
entity set is collection or set all entities of a particular entity type
[http://wiki.answers.com/Q/What_is_entity_and_entity_set_in_dbms]
The objects of single class share their class attributes. Similarly, do records in DB. They share column attributes.
A special case of a collection is a class extent, which is the
collection of all objects belonging to the class. Class extents allow
classes to be treated like relations
... ["Database System Concepts", 6th Edition]
Basically, class describes the attributes common to all its instances. A table in relational DB does the same. "The easiest mapping you will ever have is a property mapping of a single attribute to a single column." This is the case I'm talking about.
I'm so verbose on proving the analogy (isomorphism) between objects and DB records because there are stupid people who do not accept it (to prove that their Set must not have the get method)
You see in replays how people, who do not understand this, say that Set with get would be redundant? It is because their abused map, which they impose to use in place of set, introduces the redundancy. Their call to put(obj.getKey(), obj) stores two keys: the original key as part of the object and a copy of it in the key set of the map. The duplication is the redundancy. It also involves more bloat in the code and wastes memory consumed at Runtime. I do not know about DB internals, but principles of good design and database normalization say that such duplication is bad idea - there must be only one source of truth. Redundancy means that inconsistency may happen: the key maps to an object that has a different key. Inconsistency is a manifestation of redundancy. Edgar F. Codd proposed DB normalization just to get rid of redundancies and their inferred inconsistencies. The teachers are explicit on the normalization: Normalization will never generate two tables with a one-to-one relationship between them. There is no theoretical reason to separate a single entity like this with some fields in a single record of one table and others in a single record of another table
So, we have 4 arguments, why using a map for implementing get in set is bad:
the map is unnecessary when we have a set of unique objects
map introduces redundancy in Runtime storage
map introduces code bloat in the DB (in the Collections)
using map contradicts the data storage normalization
Even if you are not aware of the record set idea and data normalization, playing with collections, you may discover this data structure and algorithm yourself, as we, org.eclipse.KeyedHashSet and C++ STL designers did.
I was banned from Sun forum for pointing out these ideas. The bigotry is the only argument against the reason and this world is dominated by bigots. They do not want to see concepts and how things can be different/improved. They see only actual world and cannot imagine that design of Java Collections may have deficiencies and could be improved. It is dangerous to remind rationale things to such people. They teach you their blindness and punish if you do not obey.
Added Dec 2013: SICP also says that DB is a set with keyed records rather than a map:
A typical data-management system spends a large amount of time
accessing or modifying the data in the records and therefore requires
an efficient method for accessing records. This is done by identifying
a part of each record to serve as an identifying key. Now we represent
the data base as a set of records.
Well, if you've already "got" the thing from the set, you don't need to get() it, do you? ;-)
Your approach of using a Map is The Right Thing, I think. It sounds like you're trying to "canonicalize" objects via their equals() method, which I've always accomplished using a Map as you suggest.
I'm not sure if you're looking for an explanation of why Sets behave this way, or for a simple solution to the problem it poses. Other answers dealt with the former, so here's a suggestion for the latter.
You can iterate over the Set's elements and test each one of them for equality using the equals() method. It's easy to implement and hardly error-prone. Obviously if you're not sure if the element is in the set or not, check with the contains() method beforehand.
This isn't efficient compared to, for example, HashSet's contains() method, which does "find" the stored element, but won't return it. If your sets may contain many elements it might even be a reason to use a "heavier" workaround like the map implementation you mentioned. However, if it's that important for you (and I do see the benefit of having this ability), it's probably worth it.
So I understand that you may have two equal objects but they are not the same instance.
Such as
Integer a = new Integer(3);
Integer b = new Integer(3);
In which case a.equals(b) because they refer to the same intrinsic value but a != b because they are two different objects.
There are other implementations of Set, such as IdentitySet, which do a different comparison between items.
However, I think that you are trying to apply a different philosophy to Java. If your objects are equal (a.equals(b)) although a and b have a different state or meaning, there is something wrong here. You may want to split that class into two or more semantic classes which implement a common interface - or maybe reconsider .equals and .hashCode.
If you have Joshua Bloch's Effective Java, have a look at the chapters called "Obey the general contract when overriding equals" and "Minimize mutability".
Just use the Map solution... a TreeSet and a HashSet also do it since they are backed up by a TreeMap and a HashMap, so there is no penalty in doing so (actualy it should be a minimal gain).
You may also extend your favorite Set to add the get() method.
[]]
I think your only solution, given some Set implementation, is to iterate over its elements to find one that is equals() -- then you have the actual object in the Set that matched.
K target = ...;
Set<K> set = ...;
for (K element : set) {
if (target.equals(element)) {
return element;
}
}
If you think about it as a mathematical set, you can derive a way to find the object.
Intersect the set with a collection of object containing only the object you want to find. If the intersection is not empty, the only item left in the set is the one you were looking for.
public <T> T findInSet(T findMe, Set<T> inHere){
inHere.retainAll(Arrays.asList(findMe));
if(!inHere.isEmpty){
return inHere.iterator().next();
}
return null;
}
Its not the most efficient use of memory, but its functionally and mathematically correct.
"I want the exact object instance that is already in the set, not a possibly different object instance where .equals() returns true."
This doesn't make sense. Say you do:
Set<Foo> s = new Set<Foo>();
s.Add(new Foo(...));
...
Foo newFoo = ...;
You now do:
s.contains(newFoo)
If you want that to only be true if an object in the set is == newFoo, implement Foo's equals and hashCode with object identity. Or, if you're trying to map multiple equal objects to a canonical original, then a Map may be the right choice.
I think the expectation is that equals truely represent some equality, not simply that the two objects have the same primary key, for example. And if equals represented two really equal objects, then a get would be redundant. The use case you want suggests a Map, and perhaps a different value for the key, something that represents a primary key, rather than the whole object, and then properly implement equals and hashcode accordingly.
Functional Java has an implementation of a persistent Set (backed by a red/black tree) that incidentally includes a split method that seems to do kind of what you want. It returns a triplet of:
The set of all elements that appear before the found object.
An object of type Option that is either empty or contains the found object if it exists in the set.
The set of all elements that appear after the found object.
You would do something like this:
MyElementType found = hayStack.split(needle)._2().orSome(hay);
Object fromSet = set.tailSet(obj).first();
if (! obj.equals(fromSet)) fromSet = null;
does what you are looking for. I don't know why java hides it.
Say, I have a User POJO with ID and name.
ID keeps the contract between equals and hashcode.
name is not part of object equality.
I want to update the name of the user based on the input from somewhere say, UI.
As java set doesn't provide get method, I need to iterate over the set in my code and update the name when I find the equal object (i.e. when ID matches).
If you had get method, this code could have been shortened.
Java now comes with all kind of stupid things like javadb and enhanced for loop, I don't understand why in this particular case they are being purist.
I had the same problem. I fixed it by converting my set to a Map, and then getting them from the map. I used this method:
public Map<MyObject, MyObject> convertSetToMap(Set<MyObject> set)
{
Map<MyObject, MyObject> myObjectMap = new HashMap<MyObject, MyObject>();
for(MyObject myObject: set){
myObjectMap.put(myObject, myObject);
}
return myObjectMap
}
Now you can get items from your set by calling this method like this:
convertSetToMap(myset).get(myobject);
You can override the equals in your class to let it check on only a certain properties like Id or name.
if you have made a request for this in Java bug parade list it here and we can vote it up. I think at least the convenience class java.util.Collections that just takes a set and an object
and is implemented something like
searchSet(Set ss, Object searchFor){
Iterator it = ss.iterator();
while(it.hasNext()){
Object s = it.next();
if(s != null && s.equals(searchFor)){
return s;
}
}
This is obviously a shortcoming of the Set API.
Simply, I want to lookup an object in my Set and update its property.
And I HAVE TO loop through my (Hash)Set to get to my object... Sigh...
I agree that I'd like to see Set implementations provide a get() method.
As one option, in the case where your Objects implement (or can implement) java.lang.Comparable, you can use a TreeSet. Then the get() type function can be obtained by calling ceiling() or floor(), followed by a check for the result being non-null and equal to the comparison Object, such as:
TreeSet myTreeSet<MyObject> = new TreeSet();
:
:
// Equivalent of a get() and a null-check, except for the incorrect value sitting in
// returnedMyObject in the not-equal case.
MyObject returnedMyObject = myTreeSet.ceiling(comparisonMyObject);
if ((null != returnedMyObject) && returnedMyObject.equals(comparisonMyObject)) {
:
:
}
The reason why there is no get is simple:
If you need to get the object X from the set is because you need something from X and you dont have the object.
If you do not have the object then you need some means (key) to locate it. ..its name, a number what ever. Thats what maps are for right.
map.get( "key" ) -> X!
Sets do not have keys, you need yo traverse them to get the objects.
So, why not add a handy get( X ) -> X
That makes no sense right, because you have X already, purist will say.
But now look at it as non purist, and see if you really want this:
Say I make object Y, wich matches the equals of X, so that set.get(Y)->X. Volia, then I can access the data of X that I didn have. Say for example X has a method called get flag() and I want the result of that.
Now look at this code.
Y
X = map.get( Y );
So Y.equals( x ) true!
but..
Y.flag() == X.flag() = false. ( Were not they equals ?)
So, you see, if set allowed you to get the objects like that It surely is to break the basic semantic of the equals. Later you are going to live with little clones of X all claming that they are the same when they are not.
You need a map, to store stuff and use a key to retrieve it.
I understand that only one instance of any object according to .equals() is allowed in a Set and that you shouldn't "need to" get an object from the Set if you already have an equivalent object, but I would still like to have a .get() method that returns the actual instance of the object in the Set (or null) given an equivalent object as a parameter.
The simple interface/API gives more freedom during implementation. For example if Set interface would be reduced just to single contains() method we get a set definition typical for functional programming - it is just a predicate, no objects are actually stored. It is also true for java.util.EnumSet - it contains only a bitmap for each possible value.
It's just an opinion. I believe we need to understand that we have several java class without fields/properties, i.e. only methods. In that case equals cannot be measured by comparing function, one such example is requestHandlers. See the below example of a JAX-RS application. In this context SET makes more sense then any data structure.
#ApplicationPath("/")
public class GlobalEventCollectorApplication extends Application {
#Override
public Set<Class<?>> getClasses() {
Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(EventReceiverService.class);
classes.add(VirtualNetworkEventSerializer.class);
return classes;
}
}
To answer your question, if you have an shallow-employee object ( i.e. only EMPID, which is used in equals method to determine uniqueness ) , and if you want to get a deep-object by doing a lookup in set, SET is not the data-structure , as its purpose is different.
List is ordered data structure. So it follows the insertion order. Hence the data you put will be available at exact position the time you inserted.
List<Integer> list = new ArrayList<>();
list.add(1);
list.add(2);
list.add(3);
list.get(0); // will return value 1
Remember this as simple array.
Set is un ordered data structure. So it follows no order. The data you insert at certain position will be available any position.
Set<Integer> set = new HashSet<>();
set.add(1);
set.add(2);
set.add(3);
//assume it has get method
set.get(0); // what are you expecting this to return. 1?..
But it will return something else. Hence it does not make any sense to create get method in Set.
**Note****For explanation I used int type, this same is applicable for Object type also.
I think you've answered your own question: it is redundant.
Set provides Set#contains (Object o) which provides the equivalent identity test of your desired Set#get(Object o) and returns a boolean, as would be expected.
Say you are adding x number of objects to a collection, and after or before adding them to a collection you are modifying the objects attributes. When would you add the element to the collection before or after the object has been modified.
Option A)
public static void addToCollection(List<MyObject> objects) {
MyObject newObject = new MyObject();
objects.add(newObject);
newObject.setMyAttr("ok");
}
Option B)
public static void addToCollection(List<MyObject> objects) {
MyObject newObject = new MyObject();
newObject.setMyAttr("ok");
objects.add(newObject);
}
To be on the safe side, you should modify before adding, unless there is a specific reason you cannot do this, and you know the collection can handle the modification. The example can reasonably be assumed to be safe, since the general List contract does not depend upon object attributes - but that says nothing about specific implementations, which may have additional behavior that depends upon the object's value.
TreeSet, and Maps in general do no tolerate modifying objects after they have been inserted, because the structure of the collection is dependent upon the attributes of the object. For trees, any attributes used by the comparator cannot be changed once the item has been added. For maps, it's the hashCode that must remain constant.
So, in general, modify first, and then add. This becomes even more important with concurrent collections, since adding first can lead to other collection users seeing an object before it been assigned it's final state.
The example you provided won't have any issues because you're using a List collection which doesn't care about the Object contents.
If you were using something like TreeMap which internally sorts the contents of the Object keys it stores it could cause the Collection to get into an unexpected state. Again this depends on if the equals method uses the attribute you're changing to compare.
The safest way is to modify the object before placing it into the collection.
One of the good design rules to follow, is not to expose half-constructed object to a 3rd party subsystem.
So, according to this rule, initialize your object to the best of your abilities and then add it to the list.
If objects is an ArrayList then the net result is probably the same, however imaging if objects is a special flavor of List that fires some kind of notification event every time a new object is added to it, then the order will matter greatly.
In my opinion its depend of the settted attribure and tyle of collection, if the collection is a Set and the attribute have infulance on the method equal or hascode then definitely i will set this property before this refer also to sorterd list etc. in other cases this is irrelevant. But for this exapmle where object is created i will first set the atributes than add to collection because the code is better organized.
I think either way it's the same, personally I like B, :)
It really does boil down to what the situation requires. Functionally there's no difference.
One thing you should be careful with, is being sure you have the correct handle to the object you want to modify.
Certainly in this instance, modifying the object is part of the "create the object" thought, and so should be grouped with the constructor as such. After you "create the object" you "add it to the collection". Thus, I would do B, and maybe even add a blank line after the modification to give more emphasis on the two separate thoughts.