3D Game Geometry - java

I have a simple game that uses a 3D grid representation, something like:
Blocks grid[10][10][10];
The person in the game is represented by a point and a sight vector:
double x,y,z, dx,dy,dz;
I draw the grid with 3 nested for loops:
for(...) for(...) for(...)
draw(grid[i][j][k]);
The obvious problem with this is when the size of the grid grows within the hundreds, fps drop dramatically. With some intuition, I realized that:
Blocks that were hidden by other blocks in the grid don't need to be rendered
Blocks that were not within the person's vision field also don't need to be rendered (ie. blocks that were behind the person)
My question is, given a grid[][][], a person's x,y,z, and a sight vector dx,dy,dz, how could I figure out which blocks need to be rendered and which don't?

I looked into using JMonkeyEngine, a 3D game engine, a while back and looked at some of the techniques they employ. From what I remember, they use something called culling. They build a tree structure of everything that exists in the 'world'. The idea then is that you have a subset of this tree that represents the visible objects at any given time. In other words, these are the things that need to be rendered. So, say for example that I have a room with objects in the room. The room is on the tree and the objects in the room are children of the tree. If I am outside of the room, then I prune (remove) this branch of the tree which then means I don't render it. The reason this works so well is that I don't have to evaluate EVERY object in the world to see if it should be rendered, but instead I quickly prune whole portions of the world that I know shouldn't be rendered.
Even better, then when I step inside the room, I trim the entire rest of the world from the tree and then only render the room and all its descendants.
I think a lot of the design decisions that the JMonkeyEngine team made were based on things in David Eberly's book, 3D Game Engine Design. I don't know the technical details of how to implement an approach like this, but I bet this book would be a great starting point for you.
Here is an interesting article on some different culling algorithms:
View Frustum Culling
Back-face Culling
Cell-based occlusion culling
PVS-based arbitrary geometry occlusion culling
Others

First you need a spatial partitioning structure, if you are using uniform block sizes, probably the most effective structure will be an octree. Then you will need to write an algorithm that can calculate if a box is on a particular side of (or intersecting) a plane. Once you have that you can work out which leaf nodes of the octree are inside the six sides of your view frustum - that's view culling. Also using the octree you can determine which blocks occlude others (sometimes called frustum masking), but get the first part working first.

It sounds like you're going for a minecraft-y type thing.
Take a look at this android minecraft level renderer.
The points to note are:
You only have to draw the faces of blocks that are shared with transparent blocks. e.g.: don't bother drawing the faces between two opaque blocks - the player will never see them.
You'll probably want to batch up your visible block geometry into chunklets (and stick it into a VBO) and determine visibility on a per-chunklet basis. Finding exactly which blocks can be seen will probably take longer than just flinging the VBO at the gpu and accepting the overdraw.
A flood-fill works pretty well to determine which chunklets are visible - limit the fill using the view frustum, view direction (if you're facing in the +ve x direction, don't flood in the -ve direction), and simple analyses of chunklet data (e.g.: if an entire face of a chunklet is opaque, don't flood through that face)

Related

How do you create and render a 3D Fractal?

So I've been assigned a recursive art project for my AP CS class and have a bunch of spare time, so I've decided to try something a little bit more ambitious.
My plan is to create a 3D fractal, either rendered and shaded in a visualization with GL, or represented via spatially mapping the respective equations' outputs to points on a cube and drawing those. If this explanation seems unclear, please check out the links at the bottom for images. Now, I don't need the fractal to be able to be modified in-program. I just need it to render a single BufferedImage, which I'll be putting directly on a JFrame.
My experience in Java, as far as this project goes, is a bit limited. I've drawn Mandelbrot and Julia set fractals before, but I have little to no experience drawing/rendering objects in 3D in Java. This is all stuff I can look up and figure out myself though, so no worries here.
Thus, the question: How does one map a fractal that should be in the 2nd dimension (e.g. log(no. of subdivided entities)*log(side length of subdivision) = 2) to the 3rd dimension (e.g. log(no. of subdivided entities)*log(side length of subdivision) = 3)? I'm lost trying to mathematically work this out, and I believe there is a more organized approach to go about this circumventing a lot of the math that already exists.
Also, if you are aware of a structured approach to render a 2D fractal, as drawn by a formula, and render it in 3D, provided the respective formula is provided (power is raised), please let me know. I've heard of Ray Tracers, no idea what they are, a brief summary would be cool.
Here are links with pictures of the result I want to obtain:
http://2008.sub.blue/assets/0000/4575/power8_large.jpg
https://www.youtube.com/watch?v=rK8jhCVlCtU
It looks like the image is an example of a Mandelbulb. The is a similar iteration formula to the Mandlebrot set but using 3D points and a novel idea of what raising a 3D point to a power means.

How can I add a Continuous LOD for a single object?

I have got a single object.
A heightmap.
(Ignore the flag and the water - We have imaginations, right? ;) )
However, the issue is that I display this as a single display list. Therefore, I cannot "check the distance" of the map from the player, nor make the map less detailed, because I am only able to treat the map as a single object.
I have tried using shaders, however these are too late in the pipeline to be able to affect performance (If I use a shader to cut out EVERYTHING in the entire game, the game still lags as if it has everything else).
So, how can I add a Continuous Level Of Detail to the terrain, before it is too late, without splitting it into a ton of different objects (And even that wouldn't work well)?
You can split your map up into squares that you can display independently and only create those mesh objects when the player comes close enough to potentially render, and only render when inside the sight of the player.
besides that you can use a tesselation shader to create the continuous level of detail. it involves drawing flat quads and using the control shader to say how many vertices must be drawn and the evaluation shader to displace them upwards based on the height map (that you pass in as a texture).
or to be radical you can create a flat mesh that is fine grained in the center and decreases in detail further out, then using the vertex shader you can displace the vertices with the height map, the center remains under the camera but you use the position of the camera to offset the sampled coordinates of the height map (and texture map)

Collision Detection in libgdx

My question is mostly related to the theory behind it. I make a 2D game for a project and i detect collisions by using the .overlaps method in the Rectangle class and the collisions are handled beautifully. First of all , is that considered to be a continuous or discrete collision technique. As i'm reading the theory i say it is discrete ,however i'm reading in online articles that the major disadvantage of discrete is that it detects collision after it actually happened. So,my question is the following : is it actually discrete and if it is why i see no disadvantages?
Thanks
This is discreet because we only know if two bounding boxes collided after we check if the imaginary/invisible boxes intersected meaning they already overlapped. So by the time you take action (update) due to that collision, the objects are not in the collided position. Worse case, if they are not in relative speed, they can pass through. Think of the classic helicopter game where you dodge obstacles by going up and down. Say you put the velocity of the chopper on x really high, depending on your frame rate which depends on the hardware, you will see different positions of actual collision. For continuous, one object has to be aware of the physics properties of the other objects it may collide with to predict possible collision.
In reality, for 2d games like the helicopter game I mentioned, it really doesn't matter much. You can simulate the result of the collision by doing changes on an object's rotation, velocity, gravity and through some nice animations. If your game objects have abstract shapes, you should use something like box2d. There's a good Intersector class as well.
Also, you can experiment with different bounding box sizes (bounds) of an object rather than creating the bounding box of the object equal to its width and height.

Jumping and standing on objects in 2D game

Im making small 2D game and i would like how should, theoretically work jumping and standing on objects.
For jumping should there be some kind of gravity?Should i use collision detection?
Good example of what i want to undestand is jumping in Mario.
I think for jumping it would be best to create some simple model which use "game time". I would personally create some physical model based on gravity, but you can go for whatever you want.
If you want your character to "stand" on object, you will have to create some collision detection. Good start is to approximate object by one or more circles (or lines) compute collision of them and in case the approximation collides determine the final state by some more precise method.
In terms of should there be gravity and collision detection - personally for such a thing I'd say yes and yes! It doesn't have to be complicated but once you have those things in place the pseudocode for the "main loop" becomes relatively simple:
if not colliding with object underneath, apply gravity
if user presses jump key and not colliding with surface //i.e. if we're in the air already, don't jump again
apply upward velocity
That is of course oversimplified and there are other corner cases to deal with (like making sure when you're coming down after jumping, you don't end up embedded or potentially going through the floor.
You might want to take a look at Greenfoot which handles a lot of things like all the Java2d stuff, collision detection etc. for you. Even if you don't stick with it it'd be a good platform for building a prototype or playing around with the ideas talked about.
Standing on objects implies collision detection, you can approximate the characters and the environment objects with primitive shapes (rectangles, circles etc.).
To check if to shapes are colliding, check axis one by one (X and Y axis in your case). Here is an explanation of the "separating axis theorem" (Section 1).

Flocking boids behaviour problem

Yesterday I came across Craig Reynolds' Boids, and subsequently figured that I'd give implementing a simple 2D version in Java a go.
I've put together a fairly basic setup based closely on Conrad Parker's notes.
However, I'm getting some rather bizarre (in my opinion) behaviour. Currently, my boids move reasonably quickly into a rough grid or lattice, and proceed to twitch on the spot. By that I mean they move around a little and rotate very frequently.
Currently, I have implemented:
Alignment
Cohesion
Separation
Velocity limiting
Initially, my boids are randomly distributed across the screen area (slightly different to Parker's method), and their velocities are all directed towards the centre of the screen area (note that randomly initialised velocities give the same result). Changing the velocity limit value only changes how quickly the boids move into this pattern, not formation of the pattern.
As I see it, this could be:
A consequence of the parameters I'm using (right now my code is as described in Parker's pseudocode; I have not yet tried areas of influence defined by an angle and a radius as described by Reynolds.)
Something I need to implement but am not aware of.
Something I am doing wrong.
The expected behaviour would be something more along the lines of a two dimensional version of what happens in the applet on Reynolds' boids page, although right now I haven't implemented any way to keep the boids on screen.
Has anyone encountered this before? Any ideas about the cause and/or how to fix it? I can post a .gif of the behaviour in question if it helps.
Perhaps your weighting for the separation rule is too strong, causing all the boids to move as far away from all neighboring boids as they can. There are various constants in my pseudocode which act as weights: /100 in rule 1 and /8 in rule 3 (and an implicit *1 in rule 2); these can be tweaked, which is often useful for modelling different behaviors such as closely-swarming insects or gliding birds.
Also the arbitrary |distance| < 100 in the separation rule should be modified to match the units of your simulation; this rule should only apply to boids within close proximity, basically to avoid collisions.
Have fun!
If they see everyone, they will all try to move with average velocity. If they see only some there can be some separated groups.
And if they are randomly distributed, it will be close to zero.
If you limit them by rectangle and either repulse them from walls or teleport them to other side when they got close) and have too high separation, they will be pushed from walls (from walls itself or from other who just were teleported, who will then be pushed to other side (and push and be pushed again)).
So try tighter cohesion, limited sight, more space and distribute them clustered (pick random point and place multiple of them small random distance from there), not uniformly or normaly.
I encountered this problem as well. I solved it by making sure that the method for updating each boid's velocity added the new velocity onto the old, instead of resetting it. Essentially, what's happening is this: The boids are trying to move away from each other but can't accelerate (because their velocities are being reset instead of increasing, as they should), thus the "twitching". Your method for updating velocities should look like
def set_velocity(self, dxdy):
self.velocity = (self.velocity[0] + dxdy[0], self.velocity[1] + dxdy[1])
where velocity and dxdy are 2-tuples.
I wonder if you have a problem with collision rectangles. If you implemented something based on overlapping rectangles (like, say, this), you can end up with the behaviour you describe when two rectangles are close enough that any movement causes them to intersect. (Or even worse if one rectangle can end up totally inside another.)
One solution to this problem is to make sure each boid only looks in a forwards direction. Then you avoid the situation where A cannot move because B is too close in front, but B cannot move because A is too close behind.
A quick check is to actually paint all of your collision rectangles and colour any intersecting ones a different colour. It often gives a clue as to the cause of the stopping and twitching.

Categories

Resources