Find items by property in JLIST - java

I have a JList peopleList populated with a objects of Person class
class Person
{
private String name;
private String age;
private void setName(String value)
{
name = value;
}
private String getName()
{
return name;
}
}
Current to find a person with name I do
public boolean personByNameExists(String name)
{
for(int index = 0 ; index < peopleList .getModel().getSize() ; index ++)
{
Person pl = (Person) peopleList .getModel().getElementAt(index);
if( p1.getName().equals(name))
{
return true;
}
}
}
I am wondering if there is way to do the same operation with out going through the whole list. I am from .Net back ground and in C# I would use LINQ is there something similar in Java?

It depends a bit on the use-case. If you just want to find an entry on the model side, you can keep looping over your ListModel, or loop over the data structure behind the ListModel which can be a regular List implementation, and then you can use the methods suggested by haylem.
If you want to search on your JList, and present the search result visually to the user (for example highlight them and scroll to the relevant entry) I would highly recommend taking a look at the SwingX project which supports this out-of-the-box

You're looking for a typical filter functionality.
I'd recommend you look at Google Guava's:
Collections2.filter(Collection, Predicate),
Iterables.filter(Iterable, Class),
or Iterables.filter(Iterable, Predicate)
You can find more info here or even look at this SO question (your question is a duplicate):
filter and sort list using google collections
Update: As kleopatra made me realize, you might be using a normal ListModel.
You could specifiy a custom model when creating your JList, that either:
implements a Collection or Iterable interface,
or provides a method to return a view of the data filtered by the property you want.

Related

How I can access and add value from the list which is nested in the hashmap and list in Java

I am trying to add value for the List which is stored in HashMap and that has one parent List.
When I try to do so I get "The method get in type is not compatible with the List"
I am trying the following code, logic is :
If I get the matching value of tID in the txnValue List I am just adding the "Values" List otherwise I am creating the new HashMap.
List < HashMap > txnvalues = new ArrayList < HashMap > ();
for (LinkedHashMap < String, Object > linkedHashMap: resultset) {
HashMap data = new HashMap < > ();
HashMap attrData = new HashMap < > ();
List values = new ArrayList < > ();
data.put("values", new ArrayList < > ());
attrData.put("attrID", linkedHashMap.get("ID"));
attrData.put("attrVal", linkedHashMap.get("VAL"));
String txnID = linkedHashMap.get("T_ID").toString();
if (!txnvalues.stream().anyMatch(list -> list.containsValue(txnID))) {
data.put("tID", linkedHashMap.get("T_ID"));
values.add(attrData);
data.put("Values", values);
txnvalues.add(data);
} else {
txnvalues.get("Values").add(attrData); // this Line throws error
}
}
Example :
[{
"tID":123,
"Values":[{attrID:1,attrVal:123}]
}]
//Here If linkedHashmap.get("T_ID") = 123 which matches with tID then I want to add data in the Values
[{
"tID":123,
"Values":[{attrID:1,attrVal:123},{attrID:11,attrVal:467}]
}]
//If it doesn't match then I want to create new Hashmap and update txnValues Like this
[{
"tID":123,
"Values":[{attrID:1,attrVal:123},{attrID:2,attrVal:3435}]
},
{
"tID":456,
"Values":[{attrID:2,attrVal:233}]
}
]
I decided to parameterize all of your various iterables. Below is the parameterized code.
List<HashMap<String, List<HashMap<String, Object>>>> txnvalues = new ArrayList<HashMap<String, List<HashMap<String, Object>>>>();
for (LinkedHashMap<String, Object> linkedHashMap : resultset) {//Error here
HashMap<String, List<HashMap<String, Object>>> data = new HashMap<String, List<HashMap<String, Object>>>();
HashMap<String, Object> attrData = new HashMap<String, Object>();
List<HashMap<String, Object>> values = new ArrayList<HashMap<String, Object>>();
data.put("values", new ArrayList<>());
attrData.put("attrID", linkedHashMap.get("ID"));
attrData.put("attrVal", linkedHashMap.get("VAL"));
String txnID = linkedHashMap.get("T_ID").toString();
if (!txnvalues.stream().anyMatch(list -> list.containsValue(txnID))) {
data.put("tID", linkedHashMap.get("T_ID")); //Error here
values.add(attrData);
data.put("Values", values);
txnvalues.add(data);
} else {
txnvalues.get("Values").add(attrData); //Error here
}
}
First, you have multiple errors in your code such as trying to put a String key and Object value into data, which is a HashMap that only takes a String key and a List(of HashMaps of Strings and Objects) value. Another such is trying to get an item from txnvalues by a String, when txnvalues is a List and therefore requires an integer index parameter.
Second, you have a variable here which is never defined: resultset. We don't know what it is or how it is used, since it's never referenced elsewhere.
Third, there are many many ways to handle nested sets. This >-> List<HashMap<String, List<HashMap<String, Object>>>> is simply horrible.
Please re-write your code in a way that is readable, parameterized, and can properly compile without errors. Just parameterizing will help you keep track of which iterables take which parameters and will help prevent the problem you had when you came here for help.
I'm probably late with this answer. Nevertheless, I'll introduce a possible remedy accompanied by a detailed explanation.
At the first glance, such a deeply nested collection seems contrived and incomprehensible. But problems that you can see in this code aren't something unusual, they could be observed in many questions on StackOverflow, and in many repositories. The only difference is in concentration.
Let's try to examine it closely. A map is a data structure that is commonly misused by beginners because it allows to combine objects of different nature. I am pretty sure that provided code models something more or less tangible. Did you notice that PO tries to access an entry that has a string key called "id"? That's a clear indicator that collections here are used in place of objects.
If I say object graph can be far more complex, it probably wouldn't be something new. But how to reason about the code that is written in such a way?
Let's step aside for a moment and consider the following task:
there are a number of sailboats, you need to determine which of them will win the race and return its name as a result;
input provided as a plain text and consists of the following parameters: unique name, displacement, and weight (only these three for simplicity);
the speed of the vessel depends on its displacement and weight (i.e. formula is provided, we need only parse the values);
It is very likely that somebody can come up with such a solution:
create a Map<String, List<Double>>, where the key is a sailboat's name and the value is a list that contains displacement and weight;
then just iterate over the entry set, apply the formula and so find the fastest vessel.
Only a couple of methods, and it seems that a separate class for a sailboat will allegedly increase the overall complexity and amount of code. That's a common delusion for many students. The creation of a separate class will provide a logical structure to the code and will pay off if you would wish to extend or reuse it. Note that not only attributes of the sailboat must belong to this class but also the methods that allow to compute sailboat's speed and compare sailboats based on it.
Decomposition is a skill and it has to be exercised. And for those of you who didn't realize from the beginning that a sailboat in the previous example has to be represented by an object, I advise to try the next exercise: describe a university, a candy shop, a grocery store, a cat, anything you like but without using objects. First, think about a couple of use-cases that entail accessing some properties of the elements of the system that you're trying to model. Then draw diagrams and write the code using warriors collections and arrays, pay attention that the more complex your system becomes, the more cumbersome become all nested maps and lists, which make you write your code like this:
map.get(something).get(something).add(somethingElse);
And then, when you see the problems, you are ready to implement the classes that make sense in your domain model and compare the two approaches.
Disclaimer: understanding decomposition is a crucial thing but class design is a very broad topic, there are lots of things to study in this area like classic principles and design patterns. But before diving into these topics, you have to have a firm understanding of decomposition and OOP. Without this knowledge even with an object-oriented approach, your solution could become convoluted and difficult to manage. But this is a step in the right direction. The fact alone that you are using an object-oriented language doesn't automatically make your solution object-oriented. It's a skill, and it has to be exercised.
It was a very long digression, now let's get to the point.
As I already said, I'm convinced that the post author had in mind some kind of natural use case. Instead of names that describe the system in this maze of data structures we can see only dump get() and put(). But there's a clue in the usage of map. An id as a key is a clear indicator that it has to be an object which is substituted by a map.
That is a start of a journey, I'll try to provide a scenario that makes sense (at least a bit) and pieces of a system that fits into a structure depicted in the scheme provided at the start of this post.
Let's consider an organization that sells something (I'm not trying to guess what was the author's intention, but providing a use case that will allow to reason about the code). There are a bunch of departments, each with a unique identifier.
Each department has a collection of products that it sells. Department gets different products from different suppliers. And in turn, each product has a unique id a collection of suppliers represented by plain string (it looks contrived, but keep in mind it's just an illustration of what the code does).
As a use-case, let's assume that the company launches a new product and it must be accessible in all its departments. The code checks whether the department has this product already, if not, the product will be added with a default set of suppliers, otherwise it merges the existing set of suppliers and the default one.
As you can see the code in the main method is very concise. Note that all the miscellanies of data structures are still there, but we are not accessing them directly. As the information expert principle suggests, this logic is hidden inside the objects. That makes this solution reusable and less error-prone.
public static void main(String[] args) {
// this list is a rough equivalent of the "List<Map<String, List<Map<String, Object>>>> txnvalues"
List<Department> departments =
List.of(new Department("dep11"), new Department("dep12"));
Product newProd = new Product("id123"); // a NEW Product with id = "id123"
newProd.addAllSuppliers(List.of("supplierA", "supplierB"));
for (Department dep: departments) { // launching the new Product
dep.mergeProduct(newProd);
}
}
public class Department {
private final String departmentId;
private final Map<String, Product> idToProduct;
public Department(String departmentName) {
this.departmentId = departmentName;
this.idToProduct = new HashMap<>();
}
public void mergeProduct(Product prod) {
idToProduct.merge(prod.getId(), prod, Product::merge);
}
public void mergeAllProducts(Iterable<Product> products) {
for (Product prod: products) {
mergeProduct(prod);
}
}
public void addProduct(Product prod) {
idToProduct.put(prod.getId(), prod);
}
public void addAllProducts(Iterable<Product> products) {
for (Product prod: products) {
addProduct(prod);
}
}
public String getId() {
return departmentId;
}
public Map<String, Product> getIdToProduct() {
return Collections.unmodifiableMap(idToProduct);
}
#Override
public boolean equals(Object o) {
if (this == o) return true;
if (o instanceof Department other) {
return departmentId.equals(other.departmentId);
} else return false;
}
#Override
public int hashCode() {
return Objects.hash(departmentId);
}
}
public class Product {
private final String productId;
private final Set<String> suppliers;
public Product(String id) {
this.productId = id;
this.suppliers = new HashSet<>();
}
public boolean addSupplier(String newSup) {
return suppliers.add(newSup);
}
public boolean addAllSuppliers(Collection<String> newSup) {
return suppliers.addAll(newSup);
}
public Product merge(Product other) {
if (!this.equals(other)) throw new IllegalArgumentException();
Product merged = new Product(productId);
merged.addAllSuppliers(this.suppliers);
merged.addAllSuppliers(other.suppliers);
return merged;
}
public String getId() {
return productId;
}
public Set<String> getSuppliers() {
return Collections.unmodifiableSet(suppliers);
}
#Override
public boolean equals(Object o) {
if (this == o) return true;
if (o instanceof Product other) {
return this.productId.equals(other.productId);
} else return false;
}
#Override
public int hashCode() {
return Objects.hash(productId);
}
}
Further steps:
First of all make sure that you don't have gaps in the core concepts of OOP: encapsulation, inheritance, and polymorphism.
Draw before you start to code, it's not necessary to create a full-blown UML diagram. Even a rough set of named boxes with arrows will help you understand better how your system is structured and how its parts interact with each other.
Read and apply. Extend your knowledge gradually and try to apply it. High cohesion, Low coupling, SOLID, and lots of helpful reading can be found here, for instance this recent post
Write a bit, test a bit: don't wait until your code became a beast. Write a bit and give it a try, add something else and take a look at how these parts fit together.
In the else block, you call get method of txnvalues which a list of HashMaps and thus it expects an integer index. I believe you assume that at this point you've got a reference to the HashMap to which you would add the values. But you don't.
So, you need to find the index where to add the values, which means you have to look through the txnvalues list again.
For this reason, you should use a different approach:
txnvalues.stream()
.filter(m -> m.get("tID").equals(txnID))
.findFirst()
.ifPresentOrElse(
m -> m.get("Values").add(attrData),
() -> {
HashMap data = new HashMap<>();
// Other stuff to fill the data
txnvalues.add(data);
}
);
Here .filter(m -> m.get("tID").equals(txnID)) corresponds to your .anyMatch(list -> list.containsValue(txnID)) (the parameter list is actually instance of HashMap).
I changed the condition: according to your data sample, you looking for Map which has txnID value for the "tID" key, therefore getting the value of this key is faster than looking through all the values in the HashMap. (It may return null.)
So filter will return only the entries which contain match the required value of the "tID" key. Then .findFirst() “returns” the reference to that HashMap. Now .ifPresentOrElse performs the actions you want:
m.get("Values").add(attrData) into the list; this corresponds your one line of code in the else block;
the other code is what you had in the if block: if nothing is found, create the new instance.

Accessing a list in a Java object

I have been trying to figure this for 1hr30 now and its too confusing for what seems like a really simple problem so I came here to ask.
I send a get request to a 3rd party API to get anime (movie) details as xml.
I store these in a class Ann.java that was automatically generated by netbean's JAXB xml bindings from a sample xml response.
Originally the xml file I used returned only a single anime entry so I could use
String output = gt.fetchMovie().getAnime().getName();
Where gt is my web service. This would print the name of the anime to my IDE.
I changed the setup so that the 3rd party API response gives me multiple anime results instead of just one. I now search for "evangelion" and get 3 results.
However, the new schema of the xml and java class means that attributes are stored as lists. E.g. if I want to access an anime's getName it is within this structure:
public class Ann {
protected List<Object> animeOrManga;
public List<Object> getAnimeOrManga() {
if (animeOrManga == null) {
animeOrManga = new ArrayList<Object>();
}
return this.animeOrManga;
}
public String getName() {
return name;
}
I have been trying to figure out how to return getName but can't find anything that explains what I want to do. I'm not smart enough to just "figure this out" and have been 1hr30 trial and error already.
I know I want to do something like this but guessing the syntax is impossible and everything just goes red, or cannot find symbol, or whatever.
List<Object> = gt.fetchMovie().getAnimeOrManga();
For each (list object)
getName();
Thankyou for reading!
how about create a class that has name attribute like
public class Animal {
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
then you can use with
List<Animal> animeOrManga = gt.fetchMovie().getAnimeOrManga();
then you can use with each.
The pseudocodish you provided can be written in Java as follows:
List<Ann> list = new ArrayList<Ann> // You want the list as specific as possible
list.clone(gt.getAnimeOrManga());
for(Ann listObject : list) { // For each loop
listObject.getName();
}
What is used is a for-each loop, which is exactly what is sounds: for each thing in this list do this.
The clone() method takes an arraylist and copies it into the new one.
See here: How do I copy the contents of one ArrayList into another?

java best data structure for two to many relations

So I have three important factors, filenames which there are many, there will also be duplicates, violation types which there are 6 of, and the data relating to them.
I was thinking of using a Map for this but it only accepts two types, so I want to sort the data by the filename and for every entry under that filename, i want to retrieve the violation type, from what i want it to retrieve all the matches from the data, so say it's a map I could of said map.get(filename, violation) and it will retrieve all the results that match that.
Is there a data structure that can allow me to do this? or am I being lazy and should just sort the data myself when it comes to outputting it.
One other way to approach this would be to use a custom Class for holding the needed data. Essentially 'building' your own node that you can iterate over.
For example! you could create the following class object: (Node.java)
import java.util.*;
public class Node
{
private String violationType;
private String dataInside;
public Node()
{
this("", "");
}
public Node(String violationType)
{
this(violationType, "");
}
public Node(String violationType, String dataInside)
{
this.violationType = violationType;
this.dataInside = dataInside;
}
public void setViolationType(String violationType)
{
this.violationType = violationType;
}
public void setDataInside(String dataInside)
{
this.dataInside = dataInside;
}
public String getViolationType()
{
return violationType;
}
public String getDataInside()
{
return dataInside;
}
}
ok, great, so we have this 'node' thing with some setters, some getters, and some constructors for ease of use. Cool. Now lets see how to use it:
import java.util.*;
public class main{
public static void main(String[] args){
Map<String, Node> customMap = new HashMap<String, Node>();
customMap.put("MyFilename", new Node("Violation 1", "Some Data"));
System.out.println("This is a test of the custom Node: " + customMap.get("MyFilename").getViolationType());
}
}
Now we have a map that relates all of the data you need it to. Now, you'll get a lot of people saying 'Don't reinvent the wheel" when it comes to things like this, because built in libraries are far more optimized. That is true! If you can find a data structure that is built into java that suits your needs, USE IT. That's always a good policy to follow. That being said, if you have a pretty custom situation, sometimes it calls for a custom approach. Don't be afraid to make your own objects like this, it's easy to do in Java, and it could save you a lot of time and headache!
EDIT
So, after re-reading the OP's question, I realize you want an entire list of associated data for the given violation of a given filename. In which case, you would switch the private String dataInside to something like private ArrayList<String> dataInside; which would allow you to associate as much data as you wanted, still inside that node, just inside of an arraylist. Also note, you'd have to switch up the getters/setters a little to accomodate a list, but that's not too bad.
You could use a custom class for a mapkey which contains the two fields filename and violation type. When doing so you need to implement equals() and hashCode() methods do ensure instances of that class can be used as key for map.
You can use TreeMap. TreeMap is sorted according to the natural ordering of its keys.
TreeMap<String, List<String>> map = new TreeMap<String, List<String>>();

Benefits of factoring a new class vs string values for elements in a Set

This is more of a design question with implications for code simplicity vs. performance.
Lets say you want to make sure a set of values for a given user id are the same between two systems. The example here is to check that a student id has the same number of course enrollments in System A and System B.
For this we create:
List<String> studentList = new ArrayList<String>();
Set<String> sysAEnrollments = new HashSet<String>();
Set<String> sysBEnrollments = new HashSet<String>();
private Map<String, String> badEnrollList = new HashMap<String, String>();
And fill them appropriately, given a list of student ids(studentList):
studentList = getCurrentStudentList();
for (String id : studentList){
sysAEnrollments = getSysAEnrollments(id);
sysBEnrollments = getSysBEnrollments(id);
if (!sysAEnrollments.containsAll(sysBEnrollments)){
badEnrollList.put(id, getBadEnrollmentsById(id, sysAEnrollments, sysBEnrollments));
}
}
Question: What should the method 'getBadEnrollmentsById' return?
Either a concatenated string with enough meaning so it can just be printed out.
Or have a new object, for example another collection with the list of course ids that could be used for further processing but harder to use for printed output.
Is it worth designing thoroughly all expected objects or replace some of them with concatenated strings for clarity and performance?
NOTES:
System A is preferred as the authoritative source
Output from getBadEnrollmentsById should have all courses and flag those missing in system B.
PROPOSED SOLUTION: (2012-SEP-14)
EDIT (2012-SEP-17): Updated the Course class to include hashCode and equals
As suggested by user351721 I continued modelling the remaining objects that match the expected results/requirements.
Slight changes made a big difference and allowed me to go over this design flaw and finish with the implementation.
The revised collections are:
List<String> studentList = new ArrayList<String>();
Enrollment sysAEnrollments;
Enrollment sysBEnrollments;
Map<String, List<String>> badEnrollList = new HashMap<String, List<String>>();
And we populate the Enrollments:
for (String id : studentList){
sysAEnrollments = getSysAEnrollments(id);
sysBEnrollments = getSysBEnrollments(id);
if (!sysAEnrollments.getCourses().containsAll(sysBEnrollments.getCourses())){
List<String> missingCourses = getProblemEnrollmentListById(id, sysAEnrollments, sysBEnrollments);
badEnrollList.put(id, missingCourses);
}
}
So for now the output can be printed from badEnrollList by getting at each ArrayList and printing the course names. A course name with a * will mean that it's missing in sysB.
The Enrollment class looks like this:
public class Enrollment {
private Set<Course> courses = new HashSet<Course>();
public void setCourses(Set<Course> courses){
this.courses = courses;
}
public Set<Course> getCourses(){
return this.courses;
}
}
And the Course class ended up like this:
public class Course {
private String id;
private String name;
public String getId() {
return id;
}
public void setId(final String id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(final String name) {
this.name = name;
}
// Must override hashCode() and equals()
#Override
public boolean equals(Object o){
if (o == this)
return true;
if (!(o instanceof Course))
return false;
Course c = (Course) o;
return c.id.equals(this.id) && c.name.equals(this.name);
}
#Override
public int hashCode(){
// Magic numbers as shown on Joshua Bloch's book "Effective Java" 2nd Edition, p.48
int result = 17;
result = 31 * this.id.hashCode();
result = 31 * this.name.hashCode();
return result;
}
}
The changes might look subtle but the important clue is that Enrollments are not a collection of strings, Enrollments are a collection of Courses AND each Course has a name and a availability property. They don't seem to do much but by using them I am defining the objects that I'm working with and documenting how these classes can be reused in the future.
"Growing Object-Oriented Software, Guided by Tests" addresses this question: chapter 7, "Value Types". Worth reading. An excerpt:
The more code we write, the more we’re convinced that we should define types to represent value concepts in the domain, even if they don’t do much. It helps to create a consistent domain model that is more self-explanatory. If we create, for example, an Item type in a system, instead of just using String, we can f ind all the code that’s relevant for a change without having to chase through the method calls
concatenated strings
would mean you have to define a pattern and corresponding set of valid strings and implement validation and translation to entity classes. Providing an interface or class would make it easier to update your code in a year or so, not to mention other programmers that might work with your application. Why not store student, enrollment or course objects in badEnrollList? How do these objects look like and what do you want to do with them?
In general: Yes, designing thoroughly all expected objects is worth it.
I feel that a collection, such as List<String> would be a desirable return value. This allows you to more efficiently capture multiple discrepancies between the two sets, and process the missing courses in your second object more intuitively. Printing the list wouldn't be that hard, either - depending on how you wished to convey the information.
It's also worth mentioning that the .equals() method for Set is a cleaner and more intuitive way to ensure equivalence between two sets.
Instead of using all these sets and maps, I'd use Plain Old Java Objects (POJOs) that reflect the actual business objects in question. From what you've indicated, you have Students who have an id of some sort, and who are enrolled in classes on System A and on System B. I would build up a set of Student objects defined like so:
public class Student {
private String id;
private List<String> enrollmentsA;
private List<String> enrollmentsB;
// appropriate getters and setters
}
Depending on if you want to do anything else with Classes, it may even be preferable to create some form of EnrolledClass object to represent that too.
Within the students class, I'd then have a method that would determine the "bad" enrollments. If all that you want to do with this data is generate an email message, it may even be as simple as a String:
public String getBadEnrollmentsMessage() {
List<String> enrolledBoth = getCommonEnrollments();
List<String> enrolledOnlyA = getAOnlyEnrollments();
List<String> enrolledOnlyB = getBOnlyEnrollments();
StringBuilder output;
// format the contents of the above lists into output
// format should be however you want it in the email.
return output.toString();
}
Then you could have a map of Students to email enrollments messages:
HashMap<Student, String> studentEmails;
for (Student s : allStudents) {
studentEmails.put(s, s.getBadEnrollmentsMessage());
}
Of course, if you have a method like getBadEnrollmentsMessage(), I'm not even sure you need the Map of students and strings in the first place. Frankly you could just create a sendEnrollmentEmail method, pass in a Student, and extract the message via getBadEnrollmentsMessage() right there.

Extracting objects from List<X> based on some other list property collection

I've a class -
public class Data implements Identifiable{
private Integer id;
public Integer getId(){
return id;
}
}
now I've two collections-
List<Data> data1 = // few hundred Objects
Set<Integer> dataIds = // few object ids
I would like to extract the List<Data> from data1 which has ids in dataIds
How should be my approach? I'va guava in my classpath so can go with guava's Functional approach if comparable in performance/efficiency .
Unless all you want to do is iterate through the result once or you need a reusable live filtered view, you probably want a non-view list containing the matches. Creating a List or Set to store the result and then iterating through the data list and adding matches is a perfectly good approach and easy to understand!
List<Data> result = Lists.newArrayList();
for (Data data : data1) {
if (dataIds.contains(data.getId()))
result.add(data);
}
I see your Data class implements an Identifiable interface. Given that, you could create a Function<Identifiable, Integer> that gets the ID... Identifiables.getIdFunction() or something. This is nice because it'd likely be useful in various other places (I talk about that approach in a blog post here). With that in place, doing this with Guava would be fairly simple as well:
Predicate<Identifiable> predicate = Predicates.compose(
Predicates.in(dataIds), Identifiables.getIdFunction());
List<Data> filtered = Lists.newArrayList(Iterables.filter(data1, predicate));
This is basically functionally equivalent to the first example, but seems like it'd be harder to understand. Since there isn't any clear benefit to doing this (unlike in a situation where you want to just use the live view), my recommendation would be to just go with the first.
How about
Collections2.filter(
data1,
new Predicate<Data>() {
public boolean apply(Data d) {
return dataIds.contains(d.getId());
}
}
)
p.s. remember not to overcomplicate things, unless truly necessary.
With LambdaJ you could write:
List<Data> result = extract(data1, on(Data.class).getId());

Categories

Resources