I have been working in a Government Project using EJBs. I have found some Server issues while deploying EJBs. People working in my project have thought about removing EJBs from between the RequestHandler & DAO and to directly call DAO methods from RequestHandler.
My argument with this matter is, how can we even think about removing EJBs from the project which itself has the base framework as EJB !!!
Please inform about the correct solution required to improve performance while deployment & also inform the other way to improve speed & performance.
I have worked on a few projects where removing EJB improved performance dramatically.
For me using EJBs is about improving productivity and the quality of the solution you produce rather than worrying about performance. Usually performance isn't a big issue, but if it is you can throw hardware at it and use a cloud/distributed solution, which costs less than it used to. i.e. it can be cheaper than spending more time developing.
Check whether you are doing remote EJB calls or local EJB calls.
Doing remote calls within a project might lead to performance issues (if you are logically working locally).
it's impossible to answer the question with no information provided. however, if you don't use the ejb services for anything you may as well get rid of them. it's not unlikely the reason to call your dao via ejb in the first place was to utilize CMT, so if you ditch ejb you need to handle transactions by other means.
in general, my advice is to try to figure out what the question/problem really is before you start looking for answers.
Depends on what EJBs you are talking about.
Session Beans : Having them or not will have barely any impact on performance.
Entity Beans : Entity beans can have a drastic effect on performance. I would use them in a situation where you are dealing with complex transactions in create, delete or update calls (CRUD). In situations where I am just calling a query (CRUD) which returns 1000s of records I might switch to pure JDBC.
A lot of JPA/EJB containers these days are pretty smart, so maybe they can delegate performance issues to the database level.
For example: If I return 10000 customer objects, and each customer has multiple addresses, I could join the customer and address objects in the EJB layer. This may be as fast as creating a join in the database level and returning data as a view if the EJB container is smart enough.
Related
within our company it's kind of standard to create repositories for data which is originally stored in the database as described for example in https://thinkinginobjects.com/2012/08/26/dont-use-dao-use-repository/.
Our web infrastructure consist of a few independent web applications within Tomcat 7 for printing, product description, product order (this is not persisted in the database!), category description etc.
They are all build on Servlet 2 API.
So each instance/implementation of repository holds a specialised kind of data represented by serializable classes and the instances of this serialzable classes are set up/filled by an periodically executed database query (for every resultrow the setters of the fields are called; reminds me of domain oriented entity beans with CMP).
The repositories are initialized on the servlets init sequences (so every servlet keeps it's own set of instances).
Each context has a own connection to the Oracle database (set up by resource description file on deployment).
All the data is read only, we never need to write back to the database.
Because we need some of these data types for more than one web application (context) and some even for more than one servlet within the same web context repositories with an identical data type are instantiated more than once - e.g. four times, twice within the same application.
In the end some of the data is doubled and I'm not sure if this is as clever and efficient as it should be. It should be possible to share the same repository object to more than one application (JNDI?) but at least it must be possible to share it for several servlets within the same application context.
Despite I'm irritated by the idea to use a "self build" repository instead of something like a well tested, open developed cache (ehcache, jcs, ...) because some of these caches also provide options for distributed caches (so it should also work within the same container).
If certain entries are searched the search algorithm iterates over all entries in the repository (s. link above). For every search pattern there are specialised functions which are directly called from within the business logic classes using the "entity beans"; there's no specification object or interface.
In the end the application server as a whole does not perform that well and it uses a hell lot of RAM (at least for approximately 10000 DB entries); this is in my opinion most probably correlated to the use of serializeable XSD-to-JAXB-generated classes.
Additionally every time a application is deployed for tests you have to wait at least two minutes until all entries of the database have been loaded into the repositories - when deploying on live there's a well recognizable out of service phase on context/servlet start up.
I tend to think all of this is closely related to the solutions I described above.
Because I haven't got any experiences in this field and I'm new in the company I don't want to be to obtrusive.
Maybe you can help me to evaluate ideas for a better setup:
Is it for performance and memory better to unify all the repositories into one "repository servlet" and request objects from there via HTTP (don't think so, though it seems quite modular/distributed system friendly) or should I try to go with JNDI (never did that before) and connect to the repository similar to a JDBC database?
Wouldn't it be even more sensible, faster and efficient to at least use only one single connection pool for the whole Tomcat (and reference this connection pool from within the web apps deployment descriptor)? Or might that slow down connections or limit it in any other aspect?
I was told that the cache system (ehcache) didn't work well (at least not with the performance of the self written solution - though: I can't believe that). I imagine the usage of repositories backed by a distributed (as across all contexts) cache used in all web applications should not only reduce memory footprint significantly but should not be significantly slower. - I believe it will be faster and have shorter start up times respectively it shouldn't be needed to redeploy it that often.
I'm very grateful for every tip or hint and your thoughts. Would be marvellous to get a peer review of my ideas based on practical experiences.
So thank you very much in advance!
Is it better to hold a repository for every web application (context) or is it better to share a common instance by JDNI or a similar technique
Unless someone proves me otherwise I would say there is no way to do it, in a standard way, meaning as defined in the Servlet Sepc or in the rest of the Java EE spec canon.
There are technical ways to do it which probably depend on a specific application server implementation, but this cannot be "better" in its universal sense.
If you have two applications that operate on the same data, I wonder whether the partitioning of the applications is useful. Maybe all functionality operating on some kind of data needs to be in the same application?
within our company it's kind of standard to create repositories for data which is originally stored in the database as described for example in https://thinkinginobjects.com/2012/08/26/dont-use-dao-use-repository/.
I looked up Evans in our book shelf. The blog post is quite weird. A repository and a DAO are basically the same thing, it provides CRUD operations for an object or for a tree of objects (Evans says only the the aggregate roots).
The repositories are initialized on the servlets init sequences (so every servlet keeps it's own set of instances). Each context has a own connection to the Oracle database (set up by resource description file on deployment). [ ... ]
In the end the application server as a whole does not perform that well and it uses a hell lot of RAM
When something performs badly its the best to do profiling, e.g. with YourKit or with perf and FlameGraphs if you are on Linux. If your applications need a lot of RAM, analyze the heap e.g. with Eclipse MAT. There is no way somebody can give you a recommendation or hint on a best practice without seeing any line of code.
A general answer would include anyting about performance tuning for Oracle DBs, JDBC, Java Collections and Concurrent Programming, Networking and Operating Systems.
I was told that the cache system (ehcache) didn't work well (at least not with the performance of the self written solution - though: I can't believe that)
I can. EHCache is between 10-20 times slower then a simple HashMap. See: cache benchmarks. You only need a map, when you do a complete preload and don't have any mutations.
I imagine the usage of repositories backed by a distributed (as across all contexts) cache used in all web applications should not only reduce memory footprint significantly but should not be significantly slower
Distributed caches need to go over the network and add serialization/deserialization overhead. That's probably another factor 30 slower. When is the distributed cache updated?
I'm very grateful for every tip or hint and your thoughts.
Wrap up:
Do the normal software engineering homework, do profiling and analyzing and spend the effort of tuning at the right places
Ask specific questions on one topic on stackoverflow and share your code and performance data. Ask a question about one thing at one time and read https://stackoverflow.com/help/on-topic
You may also come to the conclusion that there is nothing to tune. There are applications out there that need a day to build up an in memory data structure from persistent data. Maybe its just a lot of data? If you do not like the downtime use green blue deployment. Also use smaller data sets for development and testing
I have a requirement to migrate a legacy CORBA system to any latest java technology. The main problem I am facing is to provide long lived transaction(db) in the proposed system. Currently the client(Swing App) retain the CORBA service object and perform multiple db txn before actually committing/rolling back all the txn. Service layer keep the state of connection object through out to complete transaction.
I wanted to reproduce this mechanism in my new system(REST/WS) so that either Swing client/Web(future) can work in the same as is.
eg:
try {
service1.updateXXData(); // --> insert in to table XX
service2.updateUUData() //--> insert in to table UU
service1.updateZZData(); // --> insert in to table ZZ
service2.updateAAData(); // --> insert in to table AA
service1.commit(); // con.commmit();
service2.commit(); // con.commmit();
}
exception(){
service1.rollback(); // con.rollback();
service2.rollback(); // con.rollback();
}
Now I wanted to migrate CORBA to any modern technolgy, but still I am at large to find a solution for this. ( the concern is client do not want to make any change to service layer or db layer) , they just wanted to remove CORBA.
couple of options available for me are
Migrate CORBA to RMI --> so that changes required to current system are minimal, but transaction management,connection pooling, retaining state need to do my self.
Migrate CORBA to Stateful EJB --> Compare RMI more changes required, but better since I can use container managed connection pooling, maintain state in a better way.
Migrate CORBA to Stateful Webservice(SOAP) --> More futuristic, but lot of changes required - How ever I can convert IDL to WSDL, and delegate the call to implementation layer
Migrate CORBA to REST --> Most desired if possible - but the amount of time required to migrate is huge , Code changes would require from UI layer to service layer.
Thank you very much in advance
The order in which I would choose the options, from best to worst, would be 4, 3, 2, and 1, however I'd avoid stateful beans or services if humanly possible to do so.
I'll go over the implementation details of what you'll have to do in detail.
For any of these solutions, you'll have to use XA-compliant data sources and transactions so you can guarantee ACID compliance, preferably from an application server so you don't have to generate the transaction yourself. This should be an improvement from your existing application as it almost certainly can't guarantee that, but be advised that in my experience, people put loads of hacks in to essentially reinvent JTA, so watch out for that.
For 4, you'll want to use container-managed transactions with XA. You might do this by injecting a #PersistenceContext backed by a JTA connection. Yes, this costs a ton of time, testing, and effort, but it has two bonuses: First, moving to the web will be a lot easier, and it sounds like that time is coming. Second, those that come after you are more likely to be well-versed in newer web service technologies than bare CORBA and RMI.
For 3, you'll also want to use container-managed transactions with XA. SOAP would not be my first choice as it uses very verbose messages and REST is more popular, but it could be done. If it's stateful, though, you'll have to use bean-managed transactions instead and then hang on to resources across web service calls. This is dangerous, as it could potentially deadlock the whole system.
For 2, you can go two ways, either using container-managed transactions with XA by using a stateless session facade for a stateful EJB. You can use a client JAR for your EJB and package that with the Swing app. Using the stateless facade is preferable, as it will reduce the load on your application server. Keep in mind that you can generate web services from stateless EJB beans too, essentially turning this into #3.
For 1... well, good luck. It is possible to use RMI to interface with EJB's, and generate your own stub and tie, though this is not recommended, and for very good reason. This hasn't been a popular practice for years, may require the stubs and ties to be regenerated periodically, and may require an understanding of the low-level functions of the app server. Even here, you'll want XA transactions. You don't want to handle the transaction management yourself, if possible.
Ultimately, as I'm sure everyone will agree, the choice is yours on what to do, and there's no "right" or "wrong" way, despite the opinions stated above. If it were me (and it's not), I'd ask two important questions of myself and my customer:
Is this for a contract or temporary engagement, and if so what is the term? Do I get first pick at another contract for this same system later when they want additional updates? (In other words, how much money am I going to get out of this vs. how much time am I spending? If it's going to be a long term, then I would go with 4 or 3, otherwise 3 or 2 would be better.)
Why get rid of CORBA? "Because it's old" is an honest answer, but what's the impetus of getting rid of the "old hotness?" Do they plan on expanding usage of this system in the future? Is there some license about to expire and they just want to keep the lights on? Is it because they don't want to dump this on some younger programmer who might not know how to deal with low-level stuff like this? What do you want the system to do in two years, five years, or longer?
(OK, so that's more than two questions :D)
We have a project with a pretty considerable number of EJB 2 stateless session beans which were created quite a long time ago. These are not the first-line beans which are accessed from our client via RMI, rather they are used by that code to perform specific functions. However, I've come to believe that there's nothing to be gained by having them as session beans at all.
They do not need to be accessed via
RMI.
They do not retain any state,
they are just code that was factored
out of the first set of beans to
reduce their complexity.
They don't
have multiple different
implementations which we are swapping
out, each one has been as it was for
years (barring bug fixes and feature
additions).
None of them alter the
transaction that comes into them from the bean calling them
(that is they don't require a new
transaction, not participate in the
existing one, or otherwise change
things).
Why should these not all just be classes with a couple of static functions and no EJB trappings at all?
The only reason I can see is for clustering purposes (if you are doing clustering). That is the hand off to those beans could be on another VM on another machine if clustering is being done right to spread the load around.
That is likely not the case, and the movement to EJB's was just over-engineering. I'm suffering with that too.
Even transactions aren't really enough to justify it, you can have a single EJB that handles the transactions and call the different code through it via a Command type pattern.
There seems to be no reason why they shouldn't just be simple POJO's rather than stateless session beans. I think this is the conclusion that people came to after using EJB 1.x in this manner as well.
It's also the reason why frameworks such as Spring exist as an alternative to EJB's.
I'd say change them over to be just standard POJO's, but make sure you have a safety net of unit and functional tests (which might be a little bit harder with EJB's) to help you.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 9 years ago.
Improve this question
Is there a viable alternative to Hibernate? Preferably something that doesn't base itself on JPA.
Our problem is that we are building a complex (as in, many objects refer to each other) stateful RIA system. It seems as Hibernate is designed to be used mainly on one-off applications - JSF and the like.
The problem is mainly that of lazy loading. Since there can be several HTTP requests between the initialization and actually loading lazy collections, a session per transaction is out of the question. A long-lived session (one per application) doesn't work well either, because once a transaction hits a snag and throws an exception, the whole session is invalidated, thus the lazy loaded objects break. Then there's all kinds of stuff that just don't work for us (like implicit data persisting of data from outside an initialized transaction).
My poor explanations aside, the bottom line is that Hibernate does magic we don't like. It seems like TopLink isn't any better, it also being written on top of EJB.
So, a stateless persistence layer (or even bright-enough object-oriented database abstraction layer) is what we would need the most.
Any thoughts, or am I asking for something that doesn't exist?
Edit: I'm sorry for my ambiguous terminology, and thank you all for your corrections and insightful answers. Those who corrected me, you are all correct, I meant JPA, not EJB.
If you're after another JPA provider (Hibernate is one of these) then take a look at EclipseLink. It's far more fully-featured than the JPA 1.0 reference implementation of TopLink Essentials. In fact, EclipseLink will be the JPA 2.0 reference implementation shipped with Glassfish V3 Final.
JPA is good because you can use it both inside and outside a container. I've written Swing clients that use JPA to good effect. It doesn't have the same stigma and XML baggage that EJB 2.0/2.1 came with.
If you're after an even lighter weight solution then look no further than ibatis, which I consider to be my persistence technology of choice for the Java platform. It's lightweight, relies on SQL (it's amazing how much time ORM users spend trying to make their ORM produce good SQL) and does 90-95% of what JPA does (including lazy loading of related entities if you want).
Just to correct a couple of points:
JPA is the peristence layer of EJB, not built on EJB;
Any decent JPA provider has a whole lot of caching going on and it can be hard to figure it all out (this would be a good example of "Why is Simplicity So Complex?"). Unless you're doing something you haven't indicatd, exceptions shouldn't be an issue for your managed objects. Runtime exceptions typically rollback transactions (if you use Spring's transaction management and who doesn't do that?). The provider will maintain cached copies of loaded or persisted objects. This can be problematic if you want to update outside of the entity manager (requiring an explicit cache flush or use of EntityManager.refresh()).
As mentioned, JPA <> EJB, they're not even related. EJB 3 happens to leverage JPA, but that's about it. We have a bunch of stuff using JPA that doesn't even come close to running EJB.
Your problem is not the technology, it's your design.
Or, I should say, your design is not an easy fit on pretty much ANY modern framework.
Specifically, you're trying to keep transactions alive over several HTTP requests.
Naturally, most every common idiom is that each request is in itself one or more transactions, rather than each request being a portion of a larger transaction.
There is also obvious confusion when you used the term "stateless" and "transaction" in the same discussion, as transactions are inherently stateful.
Your big issue is simply managing your transactions manually.
If you transaction is occurring over several HTTP requests, AND those HTTP requests happen to be running "very quicky", right after one another, then you shouldn't really be having any real problem, save that you WILL have to ensure that your HTTP requests are using the same DB connection in order to leverage the Databases transaction facility.
That is, in simple terms, you get a connection to the DB, stuff it in the session, and make sure that for the duration of the transaction, all of your HTTP requests go through not only that same session, but in such a way that the actual Connection is still valid. Specifically, I don't believe there is an off the shelf JDBC connection that will actually survive failover or load balancing from one machine to another.
So, simply, if you want to use DB transactions, you need to ensure that your using the same DB Connection.
Now, if your long running transaction has "user interactions" within it, i.e. you start the DB transaction and wait for the user to "do something", then, quite simply, that design is all wrong. You DO NOT want to do that, as long lived transactions, especially in interactive environments, are just simply Bad. Like "Crossing The Streams" Bad. Don't do it. Batch transactions are different, but interactive long lived transactions are Bad.
You want to keep your interactive transactions as short lived as practical.
Now, if you can NOT ensure you will be able to use the same DB connection for your transaction, then, congratulations, you get to implement your own transactions. That means you get to design your system and data flows as if you have no transactional capability on the back end.
That essentially means that you will need to come up with your own mechanism to "commit" your data.
A good way to do this would be where you build up your data incrementally into a single "transaction" document, then feed that document to a "save" routine that does much of the real work. Like, you could store a row in the database, and flag it as "unsaved". You do that with all of your rows, and finally call a routine that runs through all of the data you just stored, and marks it all as "saved" in a single transaction mini-batch process.
Meanwhile, all of your other SQL "ignores" data that is not "saved". Throw in some time stamps and have a reaper process scavenging (if you really want to bother -- it may well be actually cheaper to just leave dead rows in the DB, depends on volume), these dead "unsaved" rows, as these are "uncomitted" transactions.
It's not as bad as it sounds. If you truly want a stateless environment, which is what it sounds like to me, then you'll need to do something like this.
Mind, in all of this the persistence tech really has nothing to do with it. The problem is how you use your transactions, rather than the tech so much.
I think you should have a look at apache cayenne which is a very good alternative to "big" frameworks. With its decent modeler, the learning curve is shorten by a good documentation.
I've looked at SimpleORM last year, and was very impressed by its lightweight no-magic design. Now there seems to be a version 3, but I don't have any experience with that one.
Ebean ORM (http://www.avaje.org)
It is a simpler more intuitive ORM to use.
Uses JPA Annotations for Mapping (#Entity, #OneToMany etc)
Sessionless API - No Hibernate Session or JPA Entity Manager
Lazy loading just works
Partial Object support for greater performance
Automatic Query tuning via "Autofetch"
Spring Integration
Large Query Support
Great support for Batch processing
Background fetching
DDL Generation
You can use raw SQL if you like (as good as Ibatis)
LGPL licence
Rob.
BEA Kodo (formerlly Solarmetric Kodo) is another alternative. It supports JPA, JDO, and EJ3. It is highly configurable and can support agressive pre-fetching, detaching/attaching of objects, etc.
Though, from what you've described, Toplink should be able to handle your problems. Mostly, it sounds like you need to be able to attach/detach objects from the persistence layer as requests start and end.
Just for reference, why the OP's design is his biggest problem: spanning transactions across multiple user requests means you can have as many open transactions at a given time as there are users connected to your app - a transaction keeps the connection busy until it is committed/rolled back. With thousand of simultaneously connected users, this can potentially mean thousands of connections. Most databases don't support this.
Neither Hibernate nor Toplink (EclipseLink) is based on EJB, they are both POJO persistancy frameworks (ORM).
I agree with the previous answer: iBatis is a good alternative to ORM frameworks: full control over sql, with a good caching mechanism.
One other option is Torque, I am not saying it is better than any of the options mentioned above but just that it is another option to look at.
It is getting quite old now but may fit some of your requirements.
Torque
When I was myself looking for a replacement to Hibernate I stumbled upon DataNucleus Access Platform, which is an Apache2-licensed ORM. It isn't just ORM as it provides persistence and retrieval of data also in other datasources than RDBMS, like LDAP, DB4O and XML. I don't have any usage experience, but it looks interesting.
Consider breaking your paradigm completely with something like tox. If you need Java classes you could load the XML result into JDOM.
We currently have a web application loading a Spring application context which instantiates a stack of business objects, DAO objects and Hibernate. We would like to share this stack with another web application, to avoid having multiple instances of the same objects.
We have looked into several approaches; exposing the objects using JMX or JNDI, or using EJB3.
The different approaches all have their issues, and we are looking for a lightweight method.
Any suggestions on how to solve this?
Edit: I have received comments requesting me to elaborate a bit, so here goes:
The main problem we want to solve is that we want to have only one instance of Hibernate. This is due to problems with invalidation of Hibernate's 2nd level cache when running several client applications working with the same datasource. Also, the business/DAO/Hibernate stack is growing rather large, so not duplicating it just makes more sense.
First, we tried to look at how the business layer alone could be exposed to other web apps, and Spring offers JMX wrapping at the price of a tiny amount of XML. However, we were unable to bind the JMX entities to the JNDI tree, so we couldn't lookup the objects from the web apps.
Then we tried binding the business layer directly to JNDI. Although Spring didn't offer any method for this, using JNDITemplate to bind them was also trivial. But this led to several new problems: 1) Security manager denies access to RMI classloader, so the client failed once we tried to invoke methods on the JNDI resource. 2) Once the security issues were resolved, JBoss threw IllegalArgumentException: object is not an instance of declaring class. A bit of reading reveals that we need stub implementations for the JNDI resources, but this seems like a lot of hassle (perhaps Spring can help us?)
We haven't looked too much into EJB yet, but after the first two tries I'm wondering if what we're trying to achieve is at all possible.
To sum up what we're trying to achieve: One JBoss instance, several web apps utilizing one stack of business objects on top of DAO layer and Hibernate.
Best regards,
Nils
Are the web applications deployed on the same server?
I can't speak for Spring, but it is straightforward to move your business logic in to the EJB tier using Session Beans.
The application organization is straight forward. The Logic goes in to Session Beans, and these Session Beans are bundled within a single jar as an Java EE artifact with a ejb-jar.xml file (in EJB3, this will likely be practically empty).
Then bundle you Entity classes in to a seperate jar file.
Next, you will build each web app in to their own WAR file.
Finally, all of the jars and the wars are bundled in to a Java EE EAR, with the associated application.xml file (again, this will likely be quite minimal, simply enumerating the jars in the EAR).
This EAR is deployed wholesale to the app server.
Each WAR is effectively independent -- their own sessions, there own context paths, etc. But they share the common EJB back end, so you have only a single 2nd level cache.
You also use local references and calling semantic to talk to the EJBs since they're in the same server. No need for remote calls here.
I think this solves quite well the issue you're having, and its is quite straightforward in Java EE 5 with EJB 3.
Also, you can still use Spring for much of your work, as I understand, but I'm not a Spring person so I can not speak to the details.
What about spring parentContext?
Check out this article:
http://springtips.blogspot.com/2007/06/using-shared-parent-application-context.html
Terracotta might be a good fit here (disclosure: I am a developer for Terracotta). Terracotta transparently clusters Java objects at the JVM level, and integrates with both Spring and Hibernate. It is free and open source.
As you said, the problem of more than one client web app using an L2 cache is keeping those caches in synch. With Terracotta you can cluster a single Hibernate L2 cache. Each client node works with it's copy of that clustered cache, and Terracotta keeps it in synch. This link explains more.
As for your business objects, you can use Terracotta's Spring integration to cluster your beans - each web app can share clustered bean instances, and Terracotta keeps the clustered state in synch transparently.
Actually, if you want a lightweight solution and don't need transactions or clustering just use Spring support for RMI. It allows to expose Spring beans remotely using simple annotations in the latest versions. See http://static.springframework.org/spring/docs/2.0.x/reference/remoting.html.
You should take a look at the Terracotta Reference Web Application - Examinator. It has most of the components you are looking for - it's got Hibernate, JPA, and Spring with a MySQL backend.
It's been pre-tuned to scale up to 16 nodes, 20k concurrent users.
Check it out here: http://reference.terracotta.org/examinator
Thank you for your answers so far. We're still not quite there, but we have tried a few things now and see things more clearly. Here's a short update:
The solution which appears to be the most viable is EJB. However, this will require some amount of changes in our code, so we're not going to fully implement that solution right now. I'm almost surprised that we haven't been able to find some Spring feature to help us out here.
We have also tried the JNDI route, which ends with the need for stubs for all shared interfaces. This feels like a lot of hassle, considering that everything is on the same server anyway.
Yesterday, we had a small break through with JMX. Although JMX is definately not meant for this kind of use, we have proven that it can be done - with no code changes and a minimal amount of XML (a big Thank You to Spring for MBeanExporter and MBeanProxyFactoryBean). The major drawbacks to this method are performance and the fact that our domain classes must be shared through JBoss' server/lib folder. I.e., we have to remove some dependencies from our WARs and move them to server/lib, else we get ClassCastException when the business layer returns objects from our own domain model. I fully understand why this happens, but it is not ideal for what we're trying to achieve.
I thought it was time for a little update, because what appears to be the best solution will take some time to implement. I'll post our findings here once we've done that job.
Spring does have an integration point that might be of interest to you: EJB 3 injection nterceptor. This enables you to access spring beans from EJBs.
I'm not really sure what you are trying to solve; at the end of the day each jvm will either have replicated instances of the objects, or stubs representing objects existing on another (logical) server.
You could, setup a third 'business logic' server that has a remote api which your two web apps could call. The typical solution is to use EJB, but I think spring has remoting options built into its stack.
The other option is to use some form of shared cache architecture... which will synchronize object changes between the servers, but you still have two sets of instances.
Take a look at JBossCache. It allows you to easily share/replicate maps of data between mulitple JVM instances (same box or different). It is easy to use and has lots of wire level protocol options (TCP, UDP Multicast, etc.).