Solve system of two equations in Android / java - java

I have two equations (Distance and slope of a line formula)
d = sqrt( (x2 - x1)^2 + (y2 - y1)^2 )
m = (y2 - y1) / (x2 - x1)
Known: d, m, x1, y1
Unknown: x2, y2
The problem is the distance equation isn't linear...
Is there a way to code this in java (using Android compatible libraries) to solve? I tried doing simple guessing but it is too slow.
Thanks
EDIT: Code for triangle
Point p1 = new Point();
Point p2 = new Point();
projection.toPixels(gp1, p1);
projection.toPixels(gp2, p2);
Point p3 = new Point();
double slope = (p2.y - p1.y) / (p2.x - p1.x);
double x = 0;
if (p2.y - p1.y >= 0 && p2.x - p1.x >= 0) {
x = - Math.sqrt(600 / (1 + slope*slope)) + p2.x;
} else if (p2.y - p1.y >= 0 && p2.x - p1.x < 0) {
x = Math.sqrt(600 / (1 + slope*slope)) + p2.x;
} else if (p2.y - p1.y < 0 && p2.x - p1.x >= 0) {
x = - Math.sqrt(600 / (1 + slope*slope)) + p2.x;
} else if (p2.y - p1.y < 0 && p2.x - p1.x < 0) {
x = Math.sqrt(600 / (1 + slope*slope)) + p2.x;
}
double y = -slope*p2.x + slope*x + p2.y;
p3.set((int) x, (int) y);
double inverseSlope = 0;
if (slope == 0) {
inverseSlope = Double.MAX_VALUE;
} else {
inverseSlope = -1 / slope;
}
x = -Math.sqrt(300 / (1 + inverseSlope*inverseSlope)) + p3.x;
y = -Math.sqrt(300 / (1 + inverseSlope*inverseSlope))*inverseSlope + p3.y;
Point p4 = new Point();
p4.set((int) x, (int) y);
x = Math.sqrt(300 / (1 + inverseSlope*inverseSlope)) + p3.x;
y = Math.sqrt(300 / (1 + inverseSlope*inverseSlope))*inverseSlope + p3.y;
Point p5 = new Point();
p5.set((int)x, (int) y);
Path path = new Path();
path.moveTo(p2.x, p2.y);
path.lineTo(p4.x, p4.y);
path.moveTo(p4.x, p4.y);
path.lineTo(p5.x, p5.y);
path.moveTo(p5.x, p5.y);
path.lineTo(p2.x, p2.y);
path.moveTo(p2.x, p2.y);
canvas.drawPath(path, mPaint);
It appears it is being caused by slope is always an integer so when it is < 1 it is 0 which is not good...

Please review the algebra below:
Define
x = x2-x1
and
y = y2-y1
Then
m * x = y
and
d^2 = x^2 + m^2 * x^2 = (1 + m^2) * x^2
Therefore
x = sqrt(d^2 / (1 + m^2))
then
x2 - x1 = sqrt(d^2 / (1 + m^2))
so
x2 = sqrt(d^2 / (1 + m^2) + x1
Similarly
y = sqrt(d^2 / (1 + m^2)) * m
y2 = sqrt(d^2 / (1 + m^2)) * m + y1
So the answer is:
x2 = sqrt(d^2 / (1 + m^2)) + x1
y2 = sqrt(d^2 / (1 + m^2)) * m + y1

the "library" you're looking for is called mathematics :)
you can ask wolfram alpha:
http://www.wolframalpha.com/input/?i=solve+d+%3D+sqrt%28+%28x2+-+x1%29%5E2+%2B+%28y2+-+y1%29%5E2+%29%2C+m+%3D+%28y2+-+y1%29+%2F+%28x2+-+x1%29+over+the+reals
(don't ask me why it knows x2 and y2 are interresting)
you can do such things by hand, but be very careful not to drop signs. even though this stuff is taught in school they have little respect for detail. note that in this case there are two possible solutions and you need ensure that d > 0 in all cases!

Related

Rotate a point around another point, when the user move his/her mouse?

I've spent almost a week to figure this out, but I still cant find a solution.
The language is Java.
Bellow is my current formula for rotating a random point:
rotatedx = (int) ((x - centerx)*Math.cos(theta) - (y - centery)*Math.sin(theta) + centerx);
rotatedy = (int) ((y - centery)*Math.cos(theta) + (y - centery)*Math.sin(theta) + centery);
Bellow is how I calculate theta (trying to make the point rotate when the user moves his/her mouse):
double dx = mousex - centerx;
double dy = mousey - centery;
theta = Math.atan2(dy, dx);
The formula works, sort of.
int onex = 100, oney = 100;
int twox = 150, twoy = 100;
int threex = 100, threey = 150;
int fourx = 150, foury = 150;
int centerx = 125, centery = 125;
onex = (int) ((onex - centerx)*Math.cos(theta) - (oney - centery)*Math.sin(theta) + centerx);
oney = (int) ((oney - centery)*Math.cos(theta) + (oney - centery)*Math.sin(theta) + centery);
twox = (int) ((twox - centerx)*Math.cos(theta) - (twoy - centery)*Math.sin(theta) + centerx);
twoy = (int) ((twoy - centery)*Math.cos(theta) + (twoy - centery)*Math.sin(theta) + centery);
threex = (int) ((threex - centerx)*Math.cos(theta) - (threey - centery)*Math.sin(theta) + centerx);
threey = (int) ((threey - centery)*Math.cos(theta) + (threey - centery)*Math.sin(theta) + centery);
fourx = (int) ((fourx - centerx)*Math.cos(theta) - (foury - centery)*Math.sin(theta) + centerx);
foury = (int) ((foury - centery)*Math.cos(theta) + (foury - centery)*Math.sin(theta) + centery);
But it only works when all point's (including the center point) X equals to it's Y, so only point one and four works. Point two and three were in a weird motion, moving back and forth passing through the center point.
Perhaps Someone could tell me how to rotate a point around another point when the user move's the mouse? or how do I convert the Theta value into degrees and rotate the point with degrees instead of theta?
Its my first time posting on this site.
You have a typo in rotating formula for rotatedy, you use (y - centery) in both expressions. There should be x in the second term:
rotatedy = (int) ((y - centery)*Math.cos(theta) + (x - centerx)*Math.sin(theta) + centery);
The same is true for oney, twoy, threey, foury.
The problem was solved, I was being stupid.
Instead of Transforming the original point's X and Y,
onex = (int) ((onex - centerx)*Math.cos(theta) - (oney - centery)*Math.sin(theta) +
centerx);
oney = (int) ((oney - centery)*Math.cos(theta) + (oney - centery)*Math.sin(theta) +
centery);
I should declare a new point, and my formula was incorrect:
newonex = (int) ((onex - centerx)*Math.cos(theta) - (oney - centery)*Math.sin(theta) +
centerx);
newoney = (int) ((onex - centerx)*Math.cos(theta) + (oney - centery)*Math.sin(theta) +
centery);

Find the normal of the intersection between a polygon and a line libgdx

I have modified some code in the Intersector class in libgdx to find the intersection between a line and a polygon. However, I am unsure how to calculate the normal of the point of collision. Below is some code that I have.
public static Vector2 intersectSegmentPolygon (Vector2 p1, Vector2 p2, Polygon polygon) {
float[] vertices = polygon.getTransformedVertices();
float x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y;
int n = vertices.length;
float x3 = vertices[n - 2], y3 = vertices[n - 1];
for (int i = 0; i < n; i += 2) {
float x4 = vertices[i], y4 = vertices[i + 1];
float d = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
if (d != 0) {
float yd = y1 - y3;
float xd = x1 - x3;
float ua = ((x4 - x3) * yd - (y4 - y3) * xd) / d;
if (ua >= 0 && ua <= 1) {
float ub = ((x2 - x1) * yd - (y2 - y1) * xd) / d;
if (ub >= 0 && ub <= 1) {
return new Vector2(x1 + (x2 - x1) * ua, y1 + (y2 - y1) * ua);
}
}
}
x3 = x4;
y3 = y4;
}
return null;
}

Smoothing a list of Longitude Latitude Points in Java

Im trying to work out how to smooth a big list of longitude latitude points i currently draw a line from point to point and interpolate each point in-between but as i change direction it shows a sharp turn where i would like to smooth this out to a neat curve, but i dont know exactly where the turns are so i need an algorithm to smooth over an average of points.
I have done some research into this already and had a look at the Bezier curve but does not work as i expect, i took the implementation that i found here.
http://sourcecodesforfree.blogspot.co.uk/2013/05/33-bezier-curve.html
I cant really find much documentation on how the Bezier Curve algorithm works, or at least not fully understanding how it works.
function bspline(lats, lons) {
var i, t, ax, ay, bx, by, cx, cy, dx, dy, lat, lon, points;
points = [];
// For every point
for (i = 2; i < lats.length - 2; i++) {
for (t = 0; t < 1; t += 0.2) {
ax = (-lats[i - 2] + 3 * lats[i - 1] - 3 * lats[i] + lats[i + 1]) / 6;
ay = (-lons[i - 2] + 3 * lons[i - 1] - 3 * lons[i] + lons[i + 1]) / 6;
bx = (lats[i - 2] - 2 * lats[i - 1] + lats[i]) / 2;
by = (lons[i - 2] - 2 * lons[i - 1] + lons[i]) / 2;
cx = (-lats[i - 2] + lats[i]) / 2;
cy = (-lons[i - 2] + lons[i]) / 2;
dx = (lats[i - 2] + 4 * lats[i - 1] + lats[i]) / 6;
dy = (lons[i - 2] + 4 * lons[i - 1] + lons[i]) / 6;
lat = ax * Math.pow(t + 0.1, 3) + bx * Math.pow(t + 0.1, 2) + cx * (t + 0.1) + dx;
lon = ay * Math.pow(t + 0.1, 3) + by * Math.pow(t + 0.1, 2) + cy * (t + 0.1) + dy;
points.push(new google.maps.LatLng(lat, lon));
}
}
return points;
}
Above code in JavaScript else logic are same just change bit variables and method as JAVA then check
Or
please find an Algorithm from this link en.wikipedia.org/wiki/Interpolation#Linear_interpolation

Why is my Rotation Matrix not working?

I have various entities in my game that have hit-boxes defined by Vector array's,
one of my entities rotates slowly to follow the player's movements so naturally I need the hit-box to rotate too.
My code results in warped and distorted lines as I draw each vertex to the screen. My entites are 64 x 64 in size so + 32 indicates the center of the object.
public void rotateVertices(Vector2[] vertices, double angle) {
double cos = Math.cos(angle);
double sin = Math.sin(angle);
for(int i = 0; i < vertices.length; i++){
Vector2 v = vertices[i];
vertices[i].x = ((v.x - (x + 32)) * cos - (v.y - (y + 32)) * sin) + (x + 32);
vertices[i].y = ((v.x - (x + 32)) * sin + (v.y - (y + 32)) * cos) + (y + 32);
}
}
my constructor:
public EnemyTriBall(Handler handler, float x, float y) {
super(handler, x, y, 3, 6);
vertices[0] = new Vector2(x + 25, y + 13);
vertices[1] = new Vector2(x + 64, y + 33);
vertices[2] = new Vector2(x + 25, y + 53);
}
Here:
Vector2 v = vertices[i];
You don't make a copy of the old vector, you just reference vectices[i]. So when you do this:
vertices[i].x = ((v.x - (x + 32)) * cos - (v.y - (y + 32)) * sin) + (x + 32);
you modify x of of the original vector. Then in the next line:
vertices[i].y = ((v.x - (x + 32)) * sin + (v.y - (y + 32)) * cos) + (y + 32);
You use old v.y but new v.x which gives you weird results. The easiest fix would be to get x and y and use them instead:
float vx = vertices[i].x;
float vy = vertices[i].y;
vertices[i].x = ((vx - (x + 32)) * cos - (vy - (y + 32)) * sin) + (x + 32);
vertices[i].y = ((vx - (x + 32)) * sin + (vy - (y + 32)) * cos) + (y + 32);
There might be other issues, I did not check the formulas but I'd start with this one.

Andres' algorithm - Draw a circular chromatic gradiation

I wrote a program which draws a circle colored thanks to a chromatic gradation, using the Andres' algorithm. Here is an execution's result :
Now I would want to shift this gradation. For example, I would want the red to begin at the right of the circle. Or at 70°. Etc.
So I have a shift, in radians. And I must use it in my Andres' algorithm.
But I don't understand how. However, I see two ways to do that :
Either I change the Andres' algorithm, I mean I change the coordinates of each pixel of each octant (= I change the circle's drawing) ;
Or I really shift the gradation and not the drawing.
I would prefer the solution number one. And I know it will make use of trigonometry. But my skills are too bad and I really need your help please...
Here is the source of my Andres' implementation. If you need it, I can also show you the code of my gradation-function. Thank you in advance.
NB : the most important part is just below the line while (y >= x) (id est : the octants' coordinates).
case "Andres' algorithm":
w = 2 * Math.PI;
for(double current_thickness = 0; current_thickness < this.thickness; current_thickness++) {
x = 0;
y = (int) (radius + current_thickness);
double d = radius + current_thickness - 1;
while (y >= x) {
double octant_1_x = x0 + x, octant_1_y = y0 + y;
double octant_2_x = x0 + y, octant_2_y = y0 + x;
double octant_3_x = x0 - x, octant_3_y = y0 + y;
double octant_4_x = x0 - y, octant_4_y = y0 + x;
double octant_5_x = x0 + x, octant_5_y = y0 - y;
double octant_6_x = x0 + y, octant_6_y = y0 - x;
double octant_7_x = x0 - x, octant_7_y = y0 - y;
double octant_8_x = x0 - y, octant_8_y = y0 - x;
max_counter++;
double[] rgb_gradation_octant_1 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_1_y - y0, octant_1_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_1_x, octant_1_y, Color.color(rgb_gradation_octant_1[0], rgb_gradation_octant_1[1], rgb_gradation_octant_1[2]))); // octant n°1
double[] rgb_gradation_octant_2 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_2_y - y0, octant_2_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_2_x, octant_2_y, Color.color(rgb_gradation_octant_2[0], rgb_gradation_octant_2[1], rgb_gradation_octant_2[2])));
double[] rgb_gradation_octant_3 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_3_y - y0, octant_3_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_3_x, octant_3_y, Color.color(rgb_gradation_octant_3[0], rgb_gradation_octant_3[1], rgb_gradation_octant_3[2])));
double[] rgb_gradation_octant_4 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_4_y - y0, octant_4_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_4_x, octant_4_y, Color.color(rgb_gradation_octant_4[0], rgb_gradation_octant_4[1], rgb_gradation_octant_4[2]))); // octant n°4
double[] rgb_gradation_octant_5 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_5_y-y0, octant_5_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_5_x, octant_5_y, Color.color(rgb_gradation_octant_5[0], rgb_gradation_octant_5[1], rgb_gradation_octant_5[2]))); // octant n°5
double[] rgb_gradation_octant_6 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_6_y-y0, octant_6_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_6_x, octant_6_y, Color.color(rgb_gradation_octant_6[0], rgb_gradation_octant_6[1], rgb_gradation_octant_6[2])));
double[] rgb_gradation_octant_7 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_7_y-y0, octant_7_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_7_x, octant_7_y, Color.color(rgb_gradation_octant_7[0], rgb_gradation_octant_7[1], rgb_gradation_octant_7[2])));
double[] rgb_gradation_octant_8 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_8_y-y0, octant_8_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_8_x, octant_8_y, Color.color(rgb_gradation_octant_8[0], rgb_gradation_octant_8[1], rgb_gradation_octant_8[2]))); // octant n°8
if (d >= 2 * x) {
d -= 2 * x + 1;
x++;
} else if (d < 2 * (radius + thickness - y)) {
d += 2 * y - 1;
y--;
} else {
d += 2 * (y - x - 1);
y--;
x++;
}
}
}
gui.getImageAnimation().setMax(max_counter*8);
break;
In 2 dimensions, you can achieve rotation with the following formulas:
x' = x cos f - y sin f
y' = y cos f + x sin f
Instead of repeating the transformation in every Pixel instantiation, you could write a helper that creates a rotated pixel and returns it. I meant something like:
Pixel rotated_pixel (double x, double y, Pixel rotation_center, Color color, double angle) {
double x0 = rotation_center.x,
y0 = rotation_center.y, // Oh god I hope I'm not also wrong about the field names now
sinw = Math.sin(angle), cosw = Math.cos(angle),
x_rot = x0 + (x-x0)*cosw - (y-y0)*sinw,
y_rot = y0 + (y-y0)*cosw + (x-x0)*sinw;
return new Pixel(x_rot, y_rot, color); // or smth
}
Then you can use it like updates.add(rotated_pixel(x,y,whatever));
I'm sorry that I cannot check the validity of this code; I don't currently have access to a computer with Java.
Thanks to #kubuzetto , the code below allows me to draw a circle taking account of a shift, expressed in radians. I mean its drawing begins at a certain angle (which is the shift). I still use Andres.
The only new problem with this solution is that gaps appear when the circle is rotated (ie. : when there is a shift).
Indeed :
http://imgur.com/BcAsP9n
I thought it was because of a cast which would have decreased the precision of the coordinates, but it's not the case.
If someone see why there is this problem, it would be fine !
/**
* Constructs a Pixel taking account of a shift and near the position (x0 ; y0)
* #param x
* #param y
* #param color
* #param angle
* #param x0
* #param y0
*/
Pixel(double x, double y, Color color, double angle, double x0, double y0) {
this.x = (int) (x0 + (x-x0) * Math.cos(angle) - (y-y0) * Math.sin(angle));
this.y = (int) (y0 + (y-y0) * Math.cos(angle) + (x-x0) * Math.sin(angle));
this.color = color;
}
And the Andres' algorithm :
case "Andres' algorithm":
w = 2 * Math.PI;
for(double current_thickness = 0; current_thickness < this.thickness; current_thickness++) {
x = 0;
y = (int) (radius + current_thickness);
double d = radius + current_thickness - 1;
while (y >= x) {
double octant_1_x = x0 + x, octant_1_y = y0 + y;
double octant_2_x = x0 + y, octant_2_y = y0 + x;
double octant_3_x = x0 - x, octant_3_y = y0 + y;
double octant_4_x = x0 - y, octant_4_y = y0 + x;
double octant_5_x = x0 + x, octant_5_y = y0 - y;
double octant_6_x = x0 + y, octant_6_y = y0 - x;
double octant_7_x = x0 - x, octant_7_y = y0 - y;
double octant_8_x = x0 - y, octant_8_y = y0 - x;
max_counter++;
double[] rgb_gradation_octant_1 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_1_y - y0, octant_1_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_1_x, octant_1_y,
Color.color(rgb_gradation_octant_1[0], rgb_gradation_octant_1[1], rgb_gradation_octant_1[2]),
circle_gradation_beginning, x0, y0)); // octant n°1
double[] rgb_gradation_octant_2 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_2_y - y0, octant_2_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_2_x, octant_2_y,
Color.color(rgb_gradation_octant_2[0], rgb_gradation_octant_2[1], rgb_gradation_octant_2[2]),
circle_gradation_beginning, x0, y0));
double[] rgb_gradation_octant_3 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_3_y - y0, octant_3_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_3_x, octant_3_y,
Color.color(rgb_gradation_octant_3[0], rgb_gradation_octant_3[1], rgb_gradation_octant_3[2]),
circle_gradation_beginning, x0, y0));
double[] rgb_gradation_octant_4 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_4_y - y0, octant_4_x - x0) + Math.PI, w);
updates.add(new Pixel(octant_4_x, octant_4_y,
Color.color(rgb_gradation_octant_4[0], rgb_gradation_octant_4[1], rgb_gradation_octant_4[2]),
circle_gradation_beginning, x0, y0)); // octant n°4
double[] rgb_gradation_octant_5 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_5_y-y0, octant_5_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_5_x, octant_5_y,
Color.color(rgb_gradation_octant_5[0], rgb_gradation_octant_5[1], rgb_gradation_octant_5[2]),
circle_gradation_beginning, x0, y0)); // octant n°5
double[] rgb_gradation_octant_6 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_6_y-y0, octant_6_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_6_x, octant_6_y,
Color.color(rgb_gradation_octant_6[0], rgb_gradation_octant_6[1], rgb_gradation_octant_6[2]),
circle_gradation_beginning, x0, y0));
double[] rgb_gradation_octant_7 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_7_y-y0, octant_7_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_7_x, octant_7_y,
Color.color(rgb_gradation_octant_7[0], rgb_gradation_octant_7[1], rgb_gradation_octant_7[2]),
circle_gradation_beginning, x0, y0));
double[] rgb_gradation_octant_8 = PhotoRetouchingFormulas.chromatic_gradation(Math.atan2(octant_8_y-y0, octant_8_x-x0) + Math.PI, w);
updates.add(new Pixel(octant_8_x, octant_8_y,
Color.color(rgb_gradation_octant_8[0], rgb_gradation_octant_8[1], rgb_gradation_octant_8[2]),
circle_gradation_beginning, x0, y0)); // octant n°8
if (d >= 2 * x) {
d -= 2 * x + 1;
x++;
} else if (d < 2 * (radius + thickness - y)) {
d += 2 * y - 1;
y--;
} else {
d += 2 * (y - x - 1);
y--;
x++;
}
}
}
gui.getImageAnimation().setMax(max_counter*8);
break;

Categories

Resources