Always try-catch-finally for exceptions? Central error management? - java

I wonder if I always have to use try-catch-error blocks that clutter the code a lot, if I want to catch an error.
Or can I somehow define a global error catcher?
Especially regarding Java EE Webapps.
For every unhandled ex I'd like to log to a specific file, and display a general error page to the user.
I thought I might achieve that with aspects. But for aspects to catch on #AfterThrowing, I too have to introduce try-catch blocks. And as there is no central class for the backing-facades, I would have to surround every backing method with trycatches.
Then the aspect would take them, but I need something to catch without explicit throws exceptions.
How could I to that?

You are looking for the declare soft construct. This will wrap the given exception in a SoftException (an AspectJ-specific RuntimeException) so that it does not need to be explicitly handled. Then you can handle all of these exceptions with some AfterThrowing advice.
declare soft only exists in code style AspectJ (ie- there is no annotation for this). So, you will need to compile your code using the AspectJ compiler, but you can still use load-time weaving for this if you like.
See here:
http://www.eclipse.org/aspectj/doc/released/progguide/quick-other.html
And here:
http://www.eclipse.org/aspectj/doc/released/adk15notebook/declare-soft.html
Here's a code snippet that shows how it can be done:
aspect ErrorHandler {
declare soft : Exception : within(*);
after() throwing(Exception e) : handler(e) {
// do something...
}
}
This will route all exceptions in your system through your custom error handler. And you won't need to explicitly catch or throw them.
It's simple and powerful. Perhaps too powerful, though. I'd recommend refining and being more precise about exactly which exceptions should be softened and which ones need to be advised, but this is the basic idea.

You don't have to do this in every method.
You should not catch an exception that you can't "handle". Handling means more than just rethrowing or logging or printing a stack trace. I think handling means implementing a meaningful recovery strategy.
It might mean "the buck stops here": You're Gandalf on the bridge at the edge of a layer boundary, and no exception shall pass. You don't want users to see nasty messages, so you catch and route them to a friend, easy to understand page that tells them what to do next.
Finally isn't always necessary, but it's perfect for cleaning up resources like file handles and database cursors.
If you cannot handle an exception, there's no shame in adding the throws clause to the method signature and letting callers figure out what they want to do.

In the general case, there is no mechanism to do this - Java does not have what you're looking for.
However, depending on your circumstances, it might be possible.
web.xml Exception Handler
The web.xml file allows you to define a URL to be used to handle specified exception type. (See, for example, http://wiki.metawerx.net/wiki/Web.xml.ExceptionType).
Since you're writing a webapp, you may be able to just let the exceptions throw all the way to the top, and then handle them this way.
Custom interceptor
You mention that you have backing-facades. Depending on how they're being constructed, you may be able to put a generic proxy in front of them to catch and handle the exceptions you're interested in. You've tagged your question with spring, to you might want to look at Spring AOP Proxies.
There might be other ways to get what you want, but it will depend on the specifics of your application's architecture.

The finer control you have of the exceptions, the easier it will be to debug/provide a meaningful message.
To which extent? I would link that to the complexity / expected lifetime of your application. The bigger those are, the finer should be your handling.
I see two main approachs:
User approach: You get at least one exception handling for each UI action (so you can say: "Do not push that button AGAIN").
Debugger approach: Every method has its control.
Keep in mind that most handling could be just logging of rethrowing of the exception.
More to the point, most probably, your Java EE framework will have log options in its configuration files (many of them working with java.util.loggin or log4j). You could tweak that; of course, what is send to each log category will depend of the framework implementation (so maybe not all ERROR messages will be Exceptions).

Related

When is it suitable to throw an Exception?

I've seen some code recently where the author was throwing exceptions for almost every constructor and throwing runtime exceptions for things like the code below, in a method that returns int:
if(condition){
return 1;
}
if(condition){
return 2;
}
if(condition){
return 3;
}
throw new RuntimeException("Unreachable code");
// method ends here
I wouldn't have personally thrown an exception there, because I would have structured it using if and else if statements, and in this particular case your code would be fundamentally wrong for it not to satisfy one of the conditions anyway.
There are plenty of places you could throw runtime exceptions, that would never be reached if you're code is working correctly, sometimes it just seems like the author doesn't trust the code to work, in the case of the code block above. Also, every constructor could throw an exception for if it doesn't initialize correctly, but you could also structure it so that the object would be null - which you could then check for in main, for instance.
What I'm asking, basically, is when is it worth throwing an exception?
The point of exceptions is to communicate exceptional situations.
In that sense: if it is absolutely unexpected that all your conditions are false in your example, and that there is also no valid return value to indicate that situation, then throwing that RuntimeException is the reasonable thing to do here; but I would probably change the message to:
throw new RuntimeException("All conditions failed: " + some data)
As said: it is about communicating; in this case to the person debugging the problem. So it might be helpful here to include the information that is required to understand why exactly all those checks turned out false.
The point is: there is a contract for that method; and that contract should include such details. Meaning: if that method is public, you should probably add a #throws RuntimeException with a clear description.
And it is also a valid practice to use RuntimeException for such situations; as you do not want to pollute your method signatures with checked exceptions all over the place.
Edit: of course, balancing is required. Example: my classes often look like:
public class Whatever {
private final Foo theFoo;
public Whatever(Foo theFoo) {
Objects.requireNonNull(theFoo, "theFoo must not be null");
this.theFoo = theFoo;
So, there might be a NPE thrown from my constructors; yes. But: only there. All my methods can rely on the fact that all fields were initialized to non-null; and they are final, so they will always be non-null.
Meaning: one has to stay reasonable; and "develop" a feeling for: which problems are exceptional but possible; and which ones are so impossible that you don't pollute your code all over the place to check for them.
Finally; just to make that clear - adding exceptions is only one part of the equation. When something throws, then you need something to catch! Therefore, as said: balancing comes in. Whatever you do in your code has to "add value" to it. If your code doesn't fulfill a clear, defined purpose, then chances are: you don't need it!
GhostCat has basically covered all that need to be said when and why we should use exceptions. Just to take it further, the best thing to do is to weigh the cost benefit of including an exception. The cost in this context refers to performance as well as degraded client friendliness of the application while the benefit is the smooth running of the application as well as being user-friendly. In my opinion first one should distinguish between application and system error. Then these errors further need to be scrutinised after dichotomizing them into compile and runtime ( note that compile time errors normally do not need to be handled with exception but to debug and find out issues you need to handle them using debug tools such as assert of C++). Even if the nitty-gritty of inclusion of exception handlers depends on the context of the specific application, generally, one can postulate the following principles as a starting point:
1- Identify critical hotspot crash points of the code;
2- Distinguish between system and application errors;
3-Identify run time and compile time errors;
4- Handle compile time error using debugging tools such as assert or preprocessor directives. Also, include exception handlers or trace or debug to handle runtime errors
4-weigh the consequences of handling exceptions at run time;
5- Then provide a testable framework, which normally can be handled during Unit Test, to identify where exceptions need to be included or not.
6- Finally, decide where you need to include the exception handlers for your production code taking into account factors you think are decisive and need to include exception handler to handle them.
7- Finally finally .... you need to have a crash proof exception handler that should be triggered in the unlikely scenario that the application crashes and include fallback safety to handle states to make the application very user-friendly.

When on a non handled exception, how to catch the current variables too?

I have created a structure to catch all non handled exceptions on the system and send them by e-mail.
But, I need a way to catch the current variables of the method that has thrown the exception too.
I know this is possible in PHP (log the current variables, event using $GLOBALS), but how we can do this with Java?
This is very important for us to really understand what caused the exception.
The process need to be automatically too, because we can't put try catch on all of the system methods, but the exception handler class need to find a way to get this variables. But what is this way?
This isn't possible. When an exception is thrown, Java just records the call stack (i.e. method pointers) which it then translates into method signatures (without arguments) and line numbers (if they are available).
The local variables and method parameters are not recorded so at the time when you catch an exception, they are not accessible anymore.
There is no cheap or simple way to achieve what you want. This is part of the cost you pay for Java being much faster than PHP.
If you use techniques like AOP, you can log method parameter when a method is called to a file but that still doesn't allow you to pass them to an exception handler. Also accessing local variables is hard even with AOP.
You could buy a product like dynatrace which allows rewriting byte code to add log statements to the code at runtime.
Or you can wait for errors to come in. Usually, the clump in certain areas. Then add log statements to those vulnerable places or throw new exceptions which show you interesting local variables.
What you are asking for is basically debugging state. That triggered me to search around a bit and found this:
https://github.com/ankon/attachable-debugger
and this
https://www.takipi.com/
Hope it helps/
If you can't modify the methods in which the exceptions are occurring, you can't (not without some instrumenting tool that injects code into the class files). There is no way to access the arguments to / variables in the method that threw the exception later, after that method has been terminated by a throw, in a handler for the exception that was thrown.
So your choices are:
Modify all the methods to catch exceptions and rethrow with the details, or
Modify all the methods to log their variables before doing operations that may cause exceptions
Both are ugly, and both involve modifying all the methods.
You're probably better off not trying. Just capture the stack trace of the exception (and any inner exception and/or suppressed exceptions), and if you need precise variable state information, you'll have to replicate the error and debug.
Or if you really, really need the info, you'll need to locate and use a tool that can inject code into the class files to record the information.

When to log chained exceptions?

I am a green developer trying to get a handle (har-har) on error handling in a large multi-layer java application. There are many situations where I believe that chaining exceptions through several layers is a good idea; e.g. when a failure in calling out to some external service at the lowest layer causes problems all the way up in the view:
Content X requested, but user isn't authorized
caused by: List of authorized users is null
caused by: User-management webservice responded Bad Request- Parameter foo must be formatted like 'xyz'
The most important exception, the one whose stacktrace I really want to examine, is the last in the chain; that I made a bad request and I need to fix foo's formatting. But when I let this exception bubble up through the layers, nicely chained in exceptions that are meaningful to each layer... when I eventually catch and log the thing, the default logging behavior always shows me gobs of detail about the outermost exception, and maybe 5 lines of stacktrace of the root cause.
This makes me want to log exceptions as they happen, AND let them bubble up, but then you end up logging most things twice; when they happen and when they are eventually caught.
What is the best practice here?
I would recommend a different approach of exception management. At the top most layer of the application (like request entry point) create a try catch block to call any runtime exception. It's preferable that you have 2 catch blocks:
- for your application specific (business) exceptions
- for the rest (exception)
As you can see youl'l need to introduce you own exception type that you'll extend to create different exceptions for different purposes. For example you can create a custom exception for every layer of the application, for each integrarion etc. Use unchecked exeptions as they all will be handled on the top level. When any exceptional situation ocures (catch of low level exception) you should:
- Put a description associated with the business context (for example "failed to load account data from DB"
- Add description of the original exception (for example "Original error: Connection to DB failed")
- Pass original exception to your exception in order to not loose the trace
- Throw and forget. In other words top level catch block is responsible to handle it appropriatelly (rollback a transaction, show error message or anything else you may need
Great question, I'm curious about other answers you will get.
I tend to take a "more is better" approach, and log at each step of the way. Does this make large logs? Yes, but when you're debugging an issue in a large Java application, you will be thankful for every log line you have. There are also tools (at the very least the grep, awk, sed trio) to help you filter through large files.
Another technique is to write this logging code, but turn it down (if you're using something like log4j, to the TRACE level). This way, should you run into an issue, you may not have the logs available, but it's a one line change (to lower the logging threshold) and you start generating a wealth of data for debugging.
In tandem with the previous technique, most logging libraries (again I'm falling back on my knowledge of log4j here) allow you to tune the log levels of different java packages. This means that you can write all of these "catch and rethrow" log lines as trace, and turn down the logging on lower level packages to WARN while you keep upper level packages at DEBUG or TRACE.

When would you prefer to declare an exception rather than handling it in Java?

I know we can declare the exception for our method if we want it to be handled by the calling method. This will even allow us to do stuff like write to the OutputStream without wrapping the code in try/catch block if the enclosing method throws IOException.
My question is: Can anyone provide an instance where this is usually done where you'd like the calling method to handle the exception instead of the current method?
Edit: I meant calling method instead of super class in the last line.
In general, I would say design your exception flow so that the exception is caught by the code that can actually take appropriate action.
This usually means that in a "library" method (or, some kind of general utility method in a large project), you will be throwing exceptions not catching them.
On the other hand, if you have a situation where you find yourself declaring your method to throw an exception that you believe in practice will hardly ever occur (e.g. serialisation generally involves all sorts of spurious checked exceptions which in practice won't occur, e.g. if you're deserialising an Integer, it's really unlikely that the Integer class is not present, but you still have to catch the appropriate exception), then you have a third option of re-casting to a RuntimeException.
I guess by "super class" you mean the code that called your method.
If you expect the caller to know more about the problem compared to your method, than you can pass this responsibility up the calling stack.
In general, if you do not know how to handle the problem, don't. Ether pass it or wrap it in another exception.
If you can't handle the error at the point in a sensible way (e.g. displaying error message, taking an alternative path, etcetera), then just let it bubble up.
If you want the error to be handled at a different level of the application.
Here's a semi-concrete example. Let's say I've got a web application which is implemented as a series of states and actions. Suppose that, while a state is being processed, a database access causes an SQLException to be thrown. This would not happen during the normal operation of my application; it would only happen if there were something wrong with the database.
The method that access the database doesn't need to know what my procedure for handling semi-fatal errors like this is. That logic implemented at a higher level — in the method that processes the state — and it's essentially the same for any runtime error, whether it's literally a RuntimeException or not: spit out a nice-looking error message to the user telling them to contact tech support.
Imagine if I had to add a try/catch block performing this logic to every method that accessed the database and could possibly throw an SQLException. That's what's called a nightmare.
I have used expections to as part of transferring information between architectural layers of application.
For Example:
if the DAO (Database Access Layer) gets a SQLException it throws a customized DAOLayerException which is caught by the businesslayer which in turn throws an exception which is caught by the presentation layer.
This was for unchecked exceptions.
I usually follow the practice of throwing checked unchecked exceptions (not handling them) if the function is to be used by numerous caller or are unknown at the time of development of the function.
In web frameworks (like spring) you often let errors propagate and container will deal with them (by showing error page or message to the user, rolling back transaction, etc).
Also, there are lots of java errors you never catch, like OutOfMemoryError. You can catch them, but you can't deal with them properly.
You asked for an example, and here is a common one.
If you are writing code to read a particular file format, these normally declare IOException. The reason for this is that it might be used by a desktop app (which wants to put up a dialog box) or a text utility (which wants to write an error message) or a web app (which wants to return an error code). Exception handling allows you to do that.
Yes, I would declare it so it propagates up until a parent calling method which would actually handle it (display on UI, break there, ..)
For Instance, I may have some helper methods in a sendEmail method. If a helper method say checkEmailAddress() produced an exception, I would want sendEmail to know about it, which can further propagate it up or do an alert on UI "email is wrong"

Java - where and how should exceptions be used?

I was reading some things about exception handling in Java, to be able to write better code. OK, I admit, I am guilty; I've used too much try-catch{} blocks, I've used ex.printStackTrace() in the catch, not even using a proper logger (actually the System.out and System.err were redirected to a PrintWriter, so a log was generated). However, after a few hours of readings, I find myself in a strange place: the unknown. If the exceptions are designed to pass info about abnormal states of flow, how does one know WHERE is the proper level to do something with that info?
For instance, when a database error occurs, should one return a null value or an error code, or throw the exception? If thrown, WHERE should that exception be handled? I understand that is no use even to log an exception if you cant do anything about it. However, in GUI apps, that could easily kill your GUI (I am using SWT and I've seen this too often), even for the case of the menuShown() method (an ArrayIndexOutOfBounds exception will close the app, if not handled). The example could go on forever, but here's the summary of questions:
Does using try-catch() excessively have a negative impact on performance?
Is it better to use specific exception types? What if I missed catching one
of the possible X types of exceptions that could occur?
Frankly, I've heard of and use a mere 10% I think of the Java standard exceptions, in 2-3 years. Yes, someone said that if the caller don't know how to deal with the thrown exceptions, he SHOULD NOT HAVE THE RIGHT to call the throwing method. Is that right?
I've read this article of Anders
Hejlsberg, saying that checked exceptions are bad. Should that indicate that convenient exception swallowing is advised in some cases?
A picture is worth 1000 words; I guess some examples will help a lot
here.
I know the subject is eternal, but actually I am looking forward to review a middle-size project of 150 classes, using your advice. Many thanks.
The general rule of thumb for exception is, if you can do something about it, catch it and handle it, if you can't, re-throw it to the next method. To get into some of your specifics:
No, using excessive try/catch will not have a performance impact
Using the most specific type of exception you can. For example, you shouldn't generally throw Exception if you can avoid it. By throwing a specific type, you are letting the user know what can go wrong. However, you can rethrow it as something more generic so callers that are not concerned with the specific exception don't need to know about it (for example, a GUI won't care if it's an IOException vs an ArrayIndexOutOFBoundsException).
You will find people that like checked exceptions more and you will find people that like unchecked more. In general, I try to use unchecked exceptions because there is generally not a lot you can do about most checked exceptions, and you can still handle unchecked exceptions, you just don't have to. I frequently find myself rethrowing checked exceptions since I can't do much about them (another strategy is to catch a checked exception and rethrow it as an unchecked so classes higher in the chain don't need to catch it if they don't want).
I generally like to log exceptions at the point of where they are caught - even if I can't do anything about it, it helps to diagnose the problem. If you are not familiar with it, also look into the method Thread.setDefaultUncaughtExceptionHandler. This allows you to handle exceptions that are not caught by anyone and do something with it. This is particularly useful with a GUI app since the exception might otherwise not be seen.
To get into some examples:
try {
// some database operation
}
catch (IOException ex) {
// retry the database operation. then if an IO exception occurs rethrow it. this shows an example doing something other than just catch, logging and/or rethrowing.
}
I'll be happy to expand on any parts of this if you'd like.
Many good answers, let me just add a couple of points that haven't been mentioned.
Your exception types should be as specific as a caller is likely to distinguish them. By that I mean, if there are two possible errors, A and B, and any caller is likely to do exactly the same thing in both cases, then make a single exception class. If a caller is likely to do two different things, then make two exception classes.
For many, probably most, of the exceptions that I create, the only thing the program can realistically do is display an error message and give the user the opportunity to change his inputs and try again. Most validation errors -- invalid date format, non-digits in a numeric field, etc --fall into this category. For these I create a single exception type, which I usually call "BadInputException" or "ValidationException", and I use that same exception class throughout the system. When there's an error, I 'throw new BadInputException("Amount must contain only digits")' or some such, and then have the caller display it and let the user retry.
On the other hand, if the caller is reasonably likely to do different things in different cases, make them different exceptions.
Easy rule of thumb: If you have two or more exceptions that are ALWAYS handled with identical, duplicate code, combine them into a single exception. If your catch block is doing additional checking to figure out what kind of error this really is, it should have been two (or more) exception classes. I've seen code that does exception.getMessage and then looks for keywords in the message to figure out what the problem was. This is ugly. Make multiple exceptions and do it cleanly.
There are three good reasons to use exceptions rather than other ways of handling errors.
(a) It avoids the problem of "magic" return values, like non-null string is a real answer but null means there was an error. Or worse, "NF" means file not found, "NV" means invalid format, and anything else is the real answer. With exceptions, an exception is an exception and a return value is a return value.
(b) Exceptions neatly skip the main line of code. Usually when there's an error you want to skip a whole bunch of processing that does not make sense without valid data, and go right to displaying an error message and quitting, or retrying the operation, or whatever is appropriate. In the bad old dies we would write "GOTO panic-abort". GOTOs are dangerous for all the reasons that have been much discussed. Exceptions eliminate what was perhaps the last remaining good reason to use a GOTO.
(c) Perhaps a corrollary to (b), you can handle the problem at the appropriate level. Sometimes when an error happens you want to retry the exact same function -- like an I/O error might represent a transient communications glitch. At the other extreme, you could be ten levels deep in subroutines when you get an error that cannot be handled in any way but bombing out of the entire program and displaying a "sorry, armageddon has occurred, everybody in here is dead" message. With exceptions it's not only easy to choose the correct level, but you can make different choices in different modules.
Exception is there so the programmer of a Task does not have to deal with the problem by himself. (1): In case the problem is NOT LOGICAL to him to handle in the Task.
A task to read a String from a stream should not handle disk error isn't it. But it should be very logical to handle if data does not contain a String.
(2): He can't handle it by himself (not enough info)
A task to read a String from a file and file not found may ask user to select another file but how can the task now what folder the file might be what extension the file might be. Without knowing that, how can the task create a GUI to re-ask that.
(3): There is no logical (or manageable) way to distinguish between different return.
If a task can't read the file and return null. What about if the file in the wrong format, return null too? How can these two differ? Exceptions can be used to differ that. That why it is called an Exception :-D.
(4): There are many similar tasks that need similar handling and writing that in all tasks is hard to maintain.
Writing the handle code for all access can be a mess as you may require many duplications.
interface DBAccess {
public Result accessDB();
}
class DBOperation {
static public void DoOperation(DBAccess pAccess) {
try { return DBAccess.accessDB(); }
catch(InvalidDBPasswordException IPE) {
// Do anything about invalid password
}
catch(DBConnectionLostException DBCLE) {
// Do anything about database connection lost
}
// Catch all possible DB problem
}
}
...
private User[] ShowUserList_and_ReturnUsers() {
// Find the used.
// Show user list
if (Users.count() == 0)
return null;
else return Users;
// No need to handle DB connection problem here
}
private User[] GetUserProfile() {
// Find the used and return
// No need to handle DB connection problem here
}
...
/** An onClick event to show user list */ {
DBOperation.DoOperation(new DBAccess() {
public Result accessDB() {
return ShowUserList_and_ReturnUsers();
}
});
}
/** An onClick event to show a user profile */ {
DBOperation.DoOperation(new DBAccess() {
public Result accessDB() {
return GetUserProfile();
}
});
}
... Many more DB access
(5): Writing all the checking for error complicate or slow down the task.
The above problem should show how can it help reduce the complication. Here is how it help not to slow down.
for(int i = 0; i < Users.length; i++) {
User aUser = Users[i];
// Do something with user
}
Replaced with
try {
for(int i = 0; ; i++) {
User aUser = Users[i];
// Do something with user
}
}
catch(ArrayOutOfBoundException AOBE) {}
The replacement code will be better performance if the number of user is large.
When a database error occurs, should one return a null value, and error code or throw the exception?
Ans: Depending on what kind of error. Like if you can't find a user, that is not an error. But if the password is wrong or the connection is down, these are errors as trying to handle it in a normal way complicate the program.
(1). Using excessive try-catch() has a negative impact on performance?
Ans: According to "Effective Java", it has very very tiny effect (only not good in loop) as far as I remember (I don't have the book with me here now).
(2).
Using specific exception types is better?
Ans: User specific one is better to avoid solving the wrong problem.
What if i missed to catch one of the possible X types of exceptions that could occur? Frankly, I've heard and use a mere 10% i think of the Java standard exceptions, in 2-3 years.
Ans: Just like if you handle the error without exception, You can miss it too. You simply add it in when you find that out.
Yes, someone said that if the caller don't know how to deal with the trowed exceptions, he SHOULD NOT HAVE THE RIGHT to call the throwing method. Is that right?
Ans: No, if I don't know what to do with some exception, re-throw it.
(3). I've read this article of Anders Hejlsberg, saying that checked exceptions are bad. Should that indicate that convenient exception swallowing is advised in some cases?
Ans: I think he is talking about "Checking exception" as a feature for the compiler to ensure that some exception should be handle. The the idea of having exception.
(4). A picture is worth 1000 words..i guess some examples will help a lot here.
Ans: The code above.
I got the run now .... Sorry ... :-p (Be there in a minute, honey!!)
One thing that we have done on our team is to have custom exceptions for our errors. We are using the Hibernate Validator framework, but you can do this with any framework, or stock exceptions.
For example, we have a ValidationException to handle validation errors. We have a ApplicationException to handle system errors.
You DO want to minimize your try-catch-ing. In our case, we will have the validator collect ALL the validations in "InvalidValue" objects, and then throw a single ValidationException with the invalid value information bundled into it. Then you can report to the user which fields were in error, etc.
In the case you mentioned of a database error - you may not want to send the stacktrace to the UI (logging it is a good idea). This is a case where you can catch the database exception, then throw your own ApplicationException to your GUI. Your GUI won't have to know how to deal with an infinite number of server errors, but can be set to deal with the more generalized ApplicationException - possibly reporting that there is a problem with the server, and indicating that the user should contact your customer support department to report the problem.
Lastly, sometimes you can't help but use a lot of try/catch blocks because of the external APIs you rely on. This is fine. As mentioned before, catch the external exception, and format it into one which makes more sense to YOUR application. Then throw the custom exception.
While I don't have any numbers, I don't believe that try-catch has any significant impact on performance (not that I have seen). I think that if you don't run into many exceptions, the performance impact will be basically nothing. But in any case, it's best to care about implementing code correctly first and achieving good performance second -- a lot easier to do the second once the first is done.
I think the exception class should be specific as to what the exception really is. The problem I have with Java's SQLExceptions is that they give you no information about what really went wrong. Spring uses far a set of more descriptive database exceptions (deadlock exceptions, data integrity exceptions, etc.) That way you can tell what the problem really was.
Checked exceptions can be annoying, but I don't think they're always bad. For example, Spring uses unchecked exceptions for database errors, but I still check for them and either 1) handle them right there, if possible, or 2) wrap in a more general exception that the shows that the component failed.
Unfortunately, I can't think of any good specific exceptions. However, like I said, I've found Spring's exception rules to be helpful and yet not annoying, so maybe you could look at some Spring docs. The Spring database classes are a good example.
Using excessive try-catch() has a negative impact on performance?
This sounds like micro optimization and, if this really has a performance impact, you'll have to deal with a lot of bigger performance problems before to face this one.
Using specific exception types is better? What if i missed to catch one of the possible X types of exceptions that could occur? Frankly, I've heard and use a mere 10% i think of the Java standard exceptions, in 2-3 years. Yes, someone said that if the caller don't know how to deal with the trowed exceptions, he SHOULD NOT HAVE THE RIGHT to call the throwing method. Is that right?
I'm not sure I understood the question but I'd say: "If you don't know what to do with an exception, re-throw it".
I've read this article of Anders Hejlsberg, saying that checked exceptions are bad. Should that indicate that convenient exception swallowing is advised in some cases?
Hell no. This just means that unchecked exception should be preferred in some cases especially when the user won't know what to do with a checked exception (e.g. SQL exception), or if there is not possible recovery,...
A picture is worth 1000 words..i guess some examples will help a lot here.
Spring's DataAccessException is a very good example. Check chapter 10. DAO support.
se-radio made a podcast episode about that topic of error handling that explains some philosophy about how to use exceptions, which can be restated as "Where to absorb them".
The main thing I retained is that most functions should let them bubble up, and most exceptions details should end up in a log file. Then the functions pass only global messages saying that something happened.
In a sense, this leads to a sort of exception hierarchy : one for each layer of code.
As I think they said, it doesn't make sense to explain to the user that such DB cluster failed because the DNS was unavailable, or because the disk was full. At that level, something happend that couldn't allow the transaction to complete, that's all the user has to know.
Of course, the developpers/administrators will be happy to see more details, that's why at the DB layer, the specific exceptions should be logged.
Return value vs. throwing an exception
The fundamental difference between an exception and a return value is that the return value is delivered to your immediate caller, whereas an exception is delivered to a catch clause anywhere in the call stack. This allows to reuse the same exception handler for many different kinds of exceptions. I recommend that you favor exceptions over return codes if and only if you need that feature.
Performance impact.
Every instruction has a negative effect on performance, including those in catch-blocks. However, any modern CPU can throw and handle millions of exceptions per second, so unless you throw thousands of them you won't notice a thing.
Specific exceptions
For throwing, be specific to allow specific handling.
For handling, you can be generic, but you should be aware that arbitrary exceptions can be delivered to your handler, including unchecked ones not declared by your callees.
checked
The debate rages whether methods should use checked or unchecked exceptions.
Never just swallow an exception. Handle or rethrow it. It simplifies maintenance if you don't discard evidence about failures.
Example
An application I worked on recently receives commands over the network which it then executes. This usually involves further interaction with remote systems, which might fail for a host of reasons. The methods to carry out the command don't catch any exceptions, letting them bubble of the call stack to the central exception handler in the command listener, which does the following:
for (int retries = 0;; retries++) {
try {
commandService.execute(command);
return;
} catch (Exception e}
Log.error(e);
if (retries < 3) {
continue;
} else {
saveForAnalysis(command, e);
alertOperator();
return;
}
}
}
We intentionally did not catch & rethrow exceptions in the processing logic, as we felt this would have added no value.
Please, do not return null in case of non-fatal errors. Return a NullObject instead.
Otherwise you need a null check after each and every call to your code which is a pain, and if forgotten will cause the code to crash.

Categories

Resources