I have this method for rotating points in 3D using quaternions, but it seems not to work properly:
public static ArrayList<Float> rotation3D(ArrayList<Float> points, double angle, int xi, int yi, int zi)
{
ArrayList<Float> newPoints = new ArrayList<>();
for (int i=0;i<points.size();i+=3)
{
float x_old = points.get(i);
float y_old = points.get(i+1);
float z_old = points.get(i+2);
double w = Math.cos(angle/2.0);
double x = xi*Math.sin(angle/2.0);
double y = yi*Math.sin(angle/2.0);
double z = zi*Math.sin(angle/2.0);
float x_new = (float) ((1 - 2*y*y -2*z*z)*x_old + (2*x*y + 2*w*z)*y_old + (2*x*z-2*w*y)*z_old);
float y_new = (float) ((2*x*y - 2*w*z)*x_old + (1 - 2*x*x - 2*z*z)*y_old + (2*y*z + 2*w*x)*z_old);
float z_new = (float) ((2*x*z + 2*w*y)*x_old + (2*y*z - 2*w*x)*y_old + (1 - 2*x*x - 2*y*y)*z_old);
newPoints.add(x_new);
newPoints.add(y_new);
newPoints.add(z_new);
}
return newPoints;
}
If i make this call rotation3D(list, Math.toRadians(90), 0, 1, 0); where points is (0,0,10), the output is (-10.0, 0.0, 2.220446E-15), but it should be (-10,0,0), right? Could someone take a look at my code and tell me if is there somethig wrong?
Here are 4 screens that represent the initial position of my object, and 3 rotations with -90 degrees (the object is not properly painted, that's a GL issue, that i will work on later):
I haven't studied the code but what you get from it is correct: Assuming a left-handed coordinate system, when you rotate the point (0,0,10) 90 degrees around the y-axis (i.e. (0,1,0)) you end up with (-10,0,0).
If your coordinate system is right-handed I think you have to reverse the sign of the angle.
Related
I'm making a 2D topdown view shooter game with Java Swing. I want to calculate what angle the mouse pointer is compared to the center of the screen so some of my Sprites can look toward the pointer and so that I can create projectiles described by an angle and a speed. Additionally If the pointer is straight above the middle of the screen, I want my angle to be 0°, if straight to its right, 90°, if straight below 180°, and straight left 270°.
I have made a function to calculate this:
public static float calculateMouseToPlayerAngle(float x, float y){
float mouseX = (float) MouseInfo.getPointerInfo().getLocation().getX();
float mouseY = (float)MouseInfo.getPointerInfo().getLocation().getY();
float hypotenuse = (float) Point2D.distance(mouseX, mouseY, x, y);
return (float)(Math.acos(Math.abs(mouseY-y)/hypotenuse)*(180/Math.PI));
}
The idea behind it is that I calculate the length of the hypotenuse then the length of the side opposite of the angle in question. The fraction of the 2 should be a cos of my angle, so taking that result's arc cos then multiplying that by 180/Pi should give me the angle in degrees. This does work for above and to the right, but straight below returns 0 and straight left returns 90. That means that I currently have 2 problems where the domain of my output is only [0,90] instead of [0,360) and that it's mirrored through the y (height) axis. Where did I screw up?
You can do it like this.
For a window size of 500x500, top left being at point 0,0 and bottom right being at 500,500.
The tangent is the change in Y over the change in X of two points. Also known as the slope it is the ratio of the sin to cos of a specific angle. To find that angle, the arctan (Math.atan or Math.atan2) can be used. The second method takes two arguments and is used below.
BiFunction<Point2D, Point2D, Double> angle = (c,
m) -> (Math.toDegrees(Math.atan2(c.getY() - m.getY(),
c.getX() - m.getX())) + 270)%360;
BiFunction<Point2D, Point2D, Double> distance = (c,
m) -> Math.hypot(c.getY() - m.getY(),
c.getX() - m.getX());
int screenWidth = 500;
int screenHeight = 500;
int ctrY = screenHeight/2;
int ctrX = screenWidth/2;
Point2D center = new Point2D.Double(ctrX,ctrY );
Point2D mouse = new Point2D.Double(ctrX, ctrY-100);
double straightAbove = angle.apply(center, mouse);
System.out.println("StraightAbove: " + straightAbove);
mouse = new Point2D.Double(ctrX+100, ctrY);
double straightRight = angle.apply(center, mouse);
System.out.println("StraightRight: " + straightRight);
mouse = new Point2D.Double(ctrX, ctrY+100);
double straightBelow = angle.apply(center, mouse);
System.out.println("StraightBelow: " + straightBelow);
mouse = new Point2D.Double(ctrX-100, ctrY);
double straightLeft = angle.apply(center, mouse);
System.out.println("Straightleft: " + straightLeft);
prints
StraightAbove: 0.0
StraightRight: 90.0
StraightBelow: 180.0
Straightleft: 270.0
I converted the radian output from Math.atan2 to degrees. For your application it may be more convenient to leave them in radians.
Here is a similar Function to find the distance using Math.hypot
BiFunction<Point2D, Point2D, Double> distance = (c,m) ->
Math.hypot(c.getY() - m.getY(),
c.getX() - m.getX());
I wrote a code that should turn a point around another point counterclockwise. But it does not work correctly.
public boolean contains(double x, double y) {
double ox = this.x.get() + (this.width.get()/2);
double oy = this.y.get() + (this.height.get()/2);
double theta = rotate.get() - (rotate.get() * 2);
double px1 = Math.cos(theta) * (x-ox) - Math.sin(theta) * (y-oy) + ox;
double py1 = Math.sin(theta) * (x-ox) + Math.cos(theta) * (y-oy) + oy;
return shape.contains(px1, py1);
}
x, y - are the coordinates of the point to be rotated.
ox,oy - is the coordinates of the point around which you want to rotate.
rotate.get() - angle to rotate
Update: Changes in the code that solved the problem, who can come in handy:
double px1 = Math.cos(Math.toRadians(theta)) * (x-ox) - Math.sin(Math.toRadians(theta)) * (y-oy) + ox;
double py1 = Math.sin(Math.toRadians(theta)) * (x-ox) + Math.cos(Math.toRadians(theta)) * (y-oy) + oy;
Please check, if your rotate.get() will give you a degrees value (e.g. 45°) or a radians value (e.g. 0.5*pi). Math.sin() and Math.cos() will only accept radians.
To convert them you could use something like angle = Math.toRadians(45)
Although this is answered, another simple way to get this done is using the built-in method of Rotate class. This way you dont need to worry about the Math stuff ;)
Rotate r = new Rotate();
r.setPivotX(ox);
r.setPivotY(oy);
r.setAngle(angleInDegrees);
Point2D point = r.transform(new Point2D(x, y));
I'm writing a program that will rotate a rectangular prism around a point. It handles the rotations via 3 rotation methods that each manage a rotation around a single axis (X, Y, and Z). Here's the code
public void spinZ(Spin spin) {
if (x == 0 && y == 0) {
return;
}
double mag = Math.sqrt(x * x + y * y);
double pxr = Math.atan(y / x);
x = Math.cos(spin.zr + pxr) * mag;
y = Math.sin(spin.zr + pxr) * mag;
}
public void spinY(Spin spin) {
if (z == 0 && x == 0) {
return;
}
double mag = Math.sqrt(x * x + z * z);
double pxr = Math.atan(z / x);
x = Math.cos(spin.yr + pxr) * mag;
z = Math.sin(spin.yr + pxr) * mag;
}
public void spinX(Spin spin) {
if (z == 0 && y == 0) {
return;
}
double mag = Math.sqrt(y * y + z * z);
double pxr = Math.atan(z / y);
y = Math.cos(spin.xr + pxr) * mag;
z = Math.sin(spin.xr + pxr) * mag;
}
public void addSpin(Spin spin) {
spinY(spin);
spinX(spin);
spinZ(spin);
}
Spin is a useless class that stores three doubles (which are rotations). These methods basically convert the rotations into 2D vectors (how I store the points) and rotate them as such. The first if statement makes sure the 2D vectors don't a magnitude of 0. They are allowed to, but in that case it's not necessary to carry out the rotation calculations. The other part just handles the trig. The bottom method just ties everything together and allows me to quickly change the order of the rotations (because order should and does affect the final rotation).
The problem isn't with the individual rotations but when they all come together. I can easily get a single rotation around a single axis to work without distorting the rectangular prism. When I put them all together, like if you were to call addSpin().
When spinY is called first, the prism is distorted when the rotations include a Y rotation (if the y component of the rotation is zero, and no rotation around the y-axis should occur, then no distortion occurs). In fact, if spinY() is called anytime but last a distortion of the cube will occur.
The same is the case with spinZ(). If spinZ() is called last, the cube won't get warped. However spinX() can go anywhere and not cause a distortion.
So the question is: Is there a problem with how I'm going about the rotations? The other question is while all rotations cannot be encompassed by rotations along just the X and Y axes or any other pair of distinct axes (like X and Z, or Y and Z), can those three sets collectively make all rotations? To clarify, can the rotations, which cannot be reached by a set of rotations around the X and Y axes, be reached by a set of rotations around the X and Z axes or the Y and Z axes?
I trust the medium I'm using to display the prisms. It's a ray-tracer I made that works well with rectangular prisms. This is a more math-based question, but it has a fairly comprehensive programming component.
These are some parallel calculations that still yield in distortions.
public void spinZ(Spin spin) {
double c = Math.cos(spin.yr);
double s = Math.sin(spin.yr);
double xp = x*c - y*s;
double yp = y*s + x*c;
x = xp;
y = yp;
}
public void spinY(Spin spin) {
double c = Math.cos(spin.yr);
double s = Math.sin(spin.yr);
double zp = z*c - x*s;
double xp = z*s + x*c;
x = xp;
z = zp;
}
public void spinX(Spin spin) {
double c = Math.cos(spin.yr);
double s = Math.sin(spin.yr);
double yp = y*c - z*s;
double zp = z*c + y*s;
y = yp;
z = zp;
}
Your checks for things like
x == 0
are unnecessary and dangerous as a double almost never will have the precise value 0. The atan when you have a division can lead to catastrophic loss of precision as well.
Why are they unnecessary? Because the following performs your rotation in a cleaner (numerically stable) fashion:
double c = Math.cos(spin.yr);
double s = Math.cos(spin.yr);
double zp = z*c - x*s;
double xp = z*s + x*c;
x = xp;
z = zp;
Of course, my example assumes you treat the y rotation with a right handed orientation, but from your sample code you seem to be treating it as left handed. Anyways, the wikipedia article on the Rotation matrix explains the math.
I know there are lots of questions and answers about this topic or related but i've beenn trying for 2 hours and still haven't benn able to figure it.
I would like to get a function that looks like this:
public static Vector rotateVector(Vector v, Vector axis, double angle){
}
Where the axis is a unit vector that defines the plane of rotation (the vector v rotates towards the vector axis if angle is positive)
I have already taken a look at rotation matrices but haven't been able to implement those to the above function
Rotating (x, y, z) counter clockwise around unit vector (u, v, w) by angle theta produces a vector (xPrime, yPrime, zPrime):
double xPrime = u*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ x*Math.cos(theta)
+ (-w*y + v*z)*Math.sin(theta);
double yPrime = v*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ y*Math.cos(theta)
+ (w*x - u*z)*Math.sin(theta);
double zPrime = w*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ z*Math.cos(theta)
+ (-v*x + u*y)*Math.sin(theta);
Source here.
Got it, thanks #Chris K. Here is the java function:
public static Vector rotateVectorCC(Vector vec, Vector axis, double theta){
double x, y, z;
double u, v, w;
x=vec.getX();y=vec.getY();z=vec.getZ();
u=axis.getX();v=axis.getY();w=axis.getZ();
double xPrime = u*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ x*Math.cos(theta)
+ (-w*y + v*z)*Math.sin(theta);
double yPrime = v*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ y*Math.cos(theta)
+ (w*x - u*z)*Math.sin(theta);
double zPrime = w*(u*x + v*y + w*z)*(1d - Math.cos(theta))
+ z*Math.cos(theta)
+ (-v*x + u*y)*Math.sin(theta);
return new Vector(xPrime, yPrime, zPrime);
}
However, I will keep the check on Chris' answer.
This is the correct way to rotate a vector.
private Vector rotateZ(Vector vector,double angle) { // angle in radians
//normalize(vector); // No need to normalize, vector is already ok...
float x1 = (float)(vector.x * Math.cos(angle) - vector.y * Math.sin(angle));
float y1 = (float)(vector.x * Math.sin(angle) + vector.y * Math.cos(angle)) ;
return new Vector(x1, y1);
}
If you want the rotation for x,y and z axis then you should use rotation matrices all at once.
NewVector = [Rotation_X][Rotation_Y][Rotation_Z]*OldVector
Here Rotation_X,Rotation_Y and Rotation_Z are 3x3 matrices. (You can see http://mathworld.wolfram.com/RotationMatrix.html)
The order of multiplication depends on the problem but i guess you want only one-axis rotation (i.e. the other 2 matrices become identity matrices)
So just putting an if-block you can set the correct matrix, and leave the rest as identity matrices.
Hope this helps.
I'm programming a software renderer in Java, and am trying to use Z-buffering for the depth calculation of each pixel. However, it appears to work inconsistently. For example, with the Utah teapot example model, the handle will draw perhaps half depending on how I rotate it.
My z-buffer algorithm:
for(int i = 0; i < m_triangles.size(); i++)
{
if(triangleIsBackfacing(m_triangles.get(i))) continue; //Backface culling
for(int y = minY(m_triangles.get(i)); y < maxY(m_triangles.get(i)); y++)
{
if((y + getHeight()/2 < 0) || (y + getHeight()/2 >= getHeight())) continue; //getHeight/2 and getWidth/2 is for moving the model to the centre of the screen
for(int x = minX(m_triangles.get(i)); x < maxX(m_triangles.get(i)); x++)
{
if((x + getWidth()/2 < 0) || (x + getWidth()/2 >= getWidth())) continue;
rayOrigin = new Point2D(x, y);
if(pointWithinTriangle(m_triangles.get(i), rayOrigin))
{
zDepth = zValueOfPoint(m_triangles.get(i), rayOrigin);
if(zDepth > zbuffer[x + getWidth()/2][y + getHeight()/2])
{
zbuffer[x + getWidth()/2][y + getHeight()/2] = zDepth;
colour[x + getWidth()/2][y + getHeight()/2] = m_triangles.get(i).getColour();
g2.setColor(m_triangles.get(i).getColour());
drawDot(g2, rayOrigin);
}
}
}
}
}
Method for calculating the z value of a point, given a triangle and the ray origin:
private double zValueOfPoint(Triangle triangle, Point2D rayOrigin)
{
Vector3D surfaceNormal = getNormal(triangle);
double A = surfaceNormal.x;
double B = surfaceNormal.y;
double C = surfaceNormal.z;
double d = -(A * triangle.getV1().x + B * triangle.getV1().y + C * triangle.getV1().z);
double rayZ = -(A * rayOrigin.x + B * rayOrigin.y + d) / C;
return rayZ;
}
Method for calculating if the ray origin is within a projected triangle:
private boolean pointWithinTriangle(Triangle triangle, Point2D rayOrigin)
{
Vector2D v0 = new Vector2D(triangle.getV3().projectPoint(modelViewer), triangle.getV1().projectPoint(modelViewer));
Vector2D v1 = new Vector2D(triangle.getV2().projectPoint(modelViewer), triangle.getV1().projectPoint(modelViewer));
Vector2D v2 = new Vector2D(rayOrigin, triangle.getV1().projectPoint(modelViewer));
double d00 = v0.dotProduct(v0);
double d01 = v0.dotProduct(v1);
double d02 = v0.dotProduct(v2);
double d11 = v1.dotProduct(v1);
double d12 = v1.dotProduct(v2);
double invDenom = 1.0 / (d00 * d11 - d01 * d01);
double u = (d11 * d02 - d01 * d12) * invDenom;
double v = (d00 * d12 - d01 * d02) * invDenom;
// Check if point is in triangle
if((u >= 0) && (v >= 0) && ((u + v) <= 1))
{
return true;
}
return false;
}
Method for calculating surface normal of a triangle:
private Vector3D getNormal(Triangle triangle)
{
Vector3D v1 = new Vector3D(triangle.getV1(), triangle.getV2());
Vector3D v2 = new Vector3D(triangle.getV3(), triangle.getV2());
return v1.crossProduct(v2);
}
Example of the incorrectly drawn teapot:
What am I doing wrong? I feel like it must be some small thing. Given that the triangles draw at all, I doubt it's the pointWithinTriangle method. Backface culling also appears to work correctly, so I doubt it's that. The most likely culprit to me is the zValueOfPoint method, but I don't know enough to know what's wrong with it.
My zValueOfPoint method was not working correctly. I'm unsure why :( however, I changed to a slightly different method of calculating the value of a point in a plane, found here: http://forum.devmaster.net/t/interpolation-on-a-3d-triangle-using-normals/20610/5
To make the answer here complete, we have the equation of a plane:
A * x + B * y + C * z + D = 0
Where A, B, and C are the surface normal x/y/z values, and D is -(Ax0 + By0 + Cz0).
x0, y0, and z0 are taken from one of the vertices of the triangle. x, y, and z are the coordinates of the point where the ray intersects the plane. x and y are known values (rayOrigin.x, rayOrigin.y) but z is the depth which we need to calculate. From the above equation we derive:
z = -A / C * x - B / C * y - D
Then, copied from the above link, we do:
"Note that for every step in the x-direction, z increments by -A / C, and likewise it increments by -B / C for every step in the y-direction.
So these are the gradients we're looking for to perform linear interpolation. In the plane equation (A, B, C) is the normal vector of the plane.
It can easily be computed with a cross product.
Now that we have the gradients, let's call them dz/dx (which is -A / C) and dz/dy (which is -B / C), we can easily compute z everywhere on the triangle.
We know the z value in all three vertex positions.
Let's call the one of the first vertex z0, and it's position coordinates (x0, y0). Then a generic z value of a point (x, y) can be computed as:"
z = z0 + dz/dx * (x - x0) + dz/dy * (y - y0)
This found the Z value correctly and fixed my code. The new zValueOfPoint method is:
private double zValueOfPoint(Triangle triangle, Point2D rayOrigin)
{
Vector3D surfaceNormal = getNormal(triangle);
double A = surfaceNormal.x;
double B = surfaceNormal.y;
double C = surfaceNormal.z;
double dzdx = -A / C;
double dzdy = -B / C;
double rayZ = triangle.getV1().z * modelViewer.getModelScale() + dzdx * (rayOrigin.x - triangle.getV1().projectPoint(modelViewer).x) + dzdy * (rayOrigin.y - triangle.getV1().projectPoint(modelViewer).y);
return rayZ;
}
We can optimize this by only calculating most of it once, and then adding dz/dx to get the z value for the next pixel, or dz/dy for the pixel below (with the y-axis going down). This means that we cut down on calculations per polygon significantly.
this must be really slow
so much redundant computations per iteration/pixel just to iterate its coordinates. You should compute the 3 projected vertexes and iterate between them instead look here:
triangle/convex polygon rasterization
I dislike your zValueOfPoint function
can not find any use of x,y coordinates from the main loops in it so how it can compute the Z value correctly ?
Or it just computes the average Z value per whole triangle ? or am I missing something? (not a JAVA coder myself) in anyway it seems that this is your main problem.
if you Z-value is wrongly computed then Z-Buffer can not work properly. To test that look at the depth buffer as image after rendering if it is not shaded teapot but some incoherent or constant mess instead then it is clear ...
Z buffer implementation
That looks OK
[Hints]
You have too much times terms like x + getWidth()/2 why not compute them just once to some variable? I know modern compilers should do it anyway but the code would be also more readable and shorter... at least for me