Making Callable Threads as Daemon - java

How can I make Callable thread as daemon thread?
Here is what I am trying. I am trying to execute a set of threads of which one of them does not complete and goes into infinite loop. What it does is the main thread of the program does not terminate even though all the code statements are executed. The main thread goes into suspended mode after that.
Here is the code snippet for the same.
public class MyThread implements Callable<String> {
private int value;
public MyThread(int value) {
this.value = value;
}
#Override
public String call() throws Exception {
//Thread.currentThread().setDaemon(true);
System.out.println("Executing - " + value);
if (value == 4) {
for (; ; );
}
return value + "";
}
}
Main Program
public class ExecutorMain {
public static String testing() {
ExecutorService executor = null;
List<Future<String>> result = null;
String parsedValue = null;
try {
executor = Executors.newSingleThreadExecutor();
List<MyThread> threads = new ArrayList<MyThread>();
for (int i = 1; i < 10; i++) {
MyThread obj = new MyThread(i);
threads.add(obj);
}
result = executor.invokeAll(threads, Long.valueOf("4000"), TimeUnit.MILLISECONDS);
//result = executor.invokeAll(threads);
for (Future<String> f : result) {
try {
parsedValue = f.get();
System.out.println("Return Value - " + parsedValue);
} catch (CancellationException e) {
System.out.println("Cancelled");
parsedValue = "";
f.cancel(true);
}
}
executor.shutdownNow();
} catch (Exception e) {
System.out.println("Exception while running threads");
e.printStackTrace();
} finally {
List executedThreads = executor.shutdownNow();
System.out.println(executedThreads);
for (Object o : executedThreads) {
System.out.println(o.getClass());
}
}
System.out.println("Exiting....");
//System.exit(1);
return "";
}
public static void main(String[] args) {
testing();
}
}
What I got to understand from my earlier question about Dangling threads in Java is that I have to make my threads as daemon threads.

How can I make Callable thread as daemon thread?
You need to use a new ThreadFactory that creates daemon threads. See this answer here: Executor and Daemon in Java
By default the executors create non-daemon threads whenever they build their pools. But you can inject your own ThreadFactory which creates the threads for the pool.
For example:
executor = ExecutorService.newSingleThreadExecutor(new MyThreadFactory());
The ThreadFactory implements the newThread method:
Thread newThread(Runnable r)
Copied from the answer I linked to above, you could implement it like:
class MyThreadFactory implements ThreadFactory {
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setDaemon(true);
return thread;
}
}
You mentioned in your question:
//Thread.currentThread().setDaemon(true);
Yeah, this won't work because you cannot set the daemon flag once the thread has been started.

It is not about making Callable to daemon. You actually want to make the execute threads become daemon. You can create the thread in this way to make it becomes daemon:
executor = Executors.newSingleThreadExecutor(new ThreadFactory(){
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
});

Just setting the Threads created by the ExecutorService to daemon won't help (though you do need to do this). You can set your ExecutorService Threads to daemon like so:
executor = Executors.newSingleThreadExecutor(new ThreadFactory() {
#Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
});
The real problem you are having is with this code block:
for (Future<String> f : result) {
try {
parsedValue = f.get();
System.out.println("Return Value - " + parsedValue);
} catch (CancellationException e) {
System.out.println("Cancelled");
parsedValue = "";
f.cancel(true);
}
}
executor.shutdownNow();
More specifically, this code will hang forever here:
parsedValue = f.get();
The reason for this is simple, the Future#get method "Waits if necessary for the computation to complete, and then retrieves its result.", but the computation will never complete because it is in an infinite loop. Not even an interrupt from ThreadPoolExecutor#shutdownNow or Future#cancel(true) will help you because your Callable code is not perofrming a blocking operation or otherwise checking for an interrupt.
From here, you have two options:
Use the form of Future#get that takes a long timeout argument.
Use Future#isDone to determine if the Future#get method has a value to return prior to actually calling Future#get.

Thanks Tim for the detailed explanation. However, your proposed solution did not solve the issue. The problem was that because the thread has gone to infinite loop, it does not check for any thread interruption and hence does not terminate.
For my scenario, infinite loop is not a good example, but what we were trying to accomplish is that we were executing a regular expression which was taking too long to execute and the check for interruption was after matcher.find() call. Because find() does not return in stipulated time and also the find() method does not check for thread interruptions, we were facing the dangling thread issue. Finally, implemented InterruptableCharSequence from this url and got it working.

Related

Thread won't die and two of them keep overlapping

I need a thread that will only run once at a time, for example if it's called for the first time it will run, if it is called a second time, the first should stop completely and be allowed to die and a new one should take it's place.
I was ran a small test to see what was actually happening between each execution, the results show that the thread doesnt die but instead two threads are being executed alongside:
public class Test {
Worker worker = new Worker();
#Override
public void valid() {
try {
if (worker.running) {
worker.running = false;
worker.join();
}
} catch (InterruptedException iex) {
worker.running = false;
}
worker = new Worker();
worker.start();
}
private final class Worker extends Thread {
private volatile boolean running = true;
#Override
public void run() {
while (running) {
System.out.println(Thread.currentThread().getName());
try {
Thread.sleep(2000);
} catch (InterruptedException iex) {
Thread.currentThread().interrupt();
}
}
}
}
}
The results are as follows:
//Upon first execution
Thread-4
Thread-4
Thread-4
Thread-4
//When I execute it again
Thread-7
Thread-4
Thread-7
Thread-4
Thread-7
Thread-4
I've tried using ExecutorService or using while(!Thread.currentThread.isInterrupted) instead of the boolean flag, and got the same results.
How can I properly stop "Thread-4" and have only one of them running?
The actual issue comes from a thread that will cycle through a list and update things on discord chat by request, what the thread does is listen to input and change as suggested by kidney I'm trying to use executor.submit() and Future
private ExecutorService executor = Executors.newSingleThreadExecutor();
private Future<Void> worker;
private void setupImageThread() {
if (!worker.isDone() && !worker.isCancelled()) {
worker.cancel(true);
}
this.worker = (Future<Void>)executor.submit(new Cycler(Listener.queue(), this.links, Cel.cMember()));
ScheduledExecutorService ses = Executors.newScheduledThreadPool(1);
Runnable timeout = () -> {
executor.shutdown();
};
ses.schedule(timeout, 100, TimeUnit.SECONDS);
}
How can I go about initializing the Future for the first time it is created?
Using single thread executor service, I would try something like this:
public class Test {
private static ExecutorService executor = Executors.newSingleThreadExecutor();
Future<Void> worker;
public Test() {
this.worker = executor.submit(new Worker());
}
#Override
public void valid() {
if (!worker.isDone() && !worker.isCancelled()) {
worker.cancel(true); // Depends on whether you want to interrupt or not
}
this.worker = executor.submit(new Worker());
}
}
And make Worker implement Runnable.
It seems that the method valid can be called several times simultaneously. That means, every of those calls will wait to end only for one thread (Worker), whereas, every of them creates its own Worker and you lose a pointer to it, so it impossible to stop bunch of new created workers.
You should make the valid method synchronized: synchronized void valid() it will prevent creating many workers:
#Override
synchronized public void valid() {
...
}
One more thing to say. You put the while loop outside the try-catch, which is wrong: if the tread gets interrupted, the interruption doesn't kill it, because next interation gets started, so it should be like that:
#Override
public void run() {
try {
while (running) {
System.out.println(Thread.currentThread().getName());
Thread.sleep(2000);
}
catch (InterruptedException iex) {
//you don't need here Thread.currentThread().interrupt() call, because the thread has alredy been interrupted.
// The return statement here is also obsolete, I just use it as an example, but you can use empty braces.
return;
}
}
}

Check for thread shutdown and execute a task once it shutdown

I am creating a fixed-size thread pool with 10 threads as follows:
ExecutorService executorService = Executors.newFixedThreadPool(10);
for (int i = 0; i < poolSize; ++i) {
executorService.execute(factory.get());
}
Now, after spawning 10 threads, a runnable is being executed by each of them. Runnable here is provided by factory.get()
Now, I wanted to do a thing that as soon as a thread gets shutdown, i.e. it has completed a task, it picks another runnable again and start running it. So, basically check for all 10 threads state and execute a runnable again if the thread is shutdown.
I know I can do something like, in which I can call the executorService shutdown() method as follows to do that:
while (!executorService.isShutdown()) {
try {
executorService.execute(factory.get());
} catch (RejectedExecutionException e) {
if (!executorService.isShutdown())
log.warn("task submission rejected");
}
}
But in this approach, issue is that I am keep on calling the execute function which would increase LinkedBlockingQueue and won't serve my purpose.
If I can somehow check the Threads state, that would be good because then, it would avoid the overhead of going back to get more work from the executor service.
Please suggest how can I do that in code.
You can use a bounded executor. The following is code by Brian Goetz from jcip
/**
* BoundedExecutor
* <p/>
* Using a Semaphore to throttle task submission
*
* #author Brian Goetz and Tim Peierls
*/
public class BoundedExecutor {
private final Executor exec;
private final Semaphore semaphore;
public BoundedExecutor(Executor exec, int bound) {
this.exec = exec;
this.semaphore = new Semaphore(bound);
}
public void submitTask(final Runnable command)
throws InterruptedException {
semaphore.acquire();
try {
exec.execute(new Runnable() {
public void run() {
try {
command.run();
} finally {
semaphore.release();
}
}
});
} catch (RejectedExecutionException e) {
semaphore.release();
}
}
}
Then just create and use it:
ExecutorService executorService = Executors.newFixedThreadPool(10);
BoundedExecutor boundedExecutor = new BoundedExecutor(executorService,10);
while (!executorService.isShutdown()) {
try {
boundedExecutor.submitTask(factory.get());
} catch (InterruptedException e) {
}
}
This way you will always have 10 threads running, new tasks will only be submitted after the old ones will complete and you can stop the execution by shutting down the executor.
Why use a thread pool if you're going to run 10 threads continually? Just start 10 threads yourself.
Why have a "controller" thread on top of the 10 worker threads? Just let each thread ask for the next task to execute.
The following assumes that factory.get() is thread-safe.
for (int i = 0; i < 10; i++) {
new Thread(() -> {
for (;;) {
Runnable r = factory.get(); // <-- must be thread-safe
if (r == null)
break; // stop thread if no more tasks to execute
try {
r.run();
} catch (Exception e) {
// log exception here
}
}
}).start();
}
If needed, save the 10 thread objects in an array.
If you want to be able to shutdown the threads without having factory.get() returning null, add a volatile boolean, and check it in the loop.

How to terminate all other running threads after any of one thread is finish

Problem: I have collection of threads start in a loop parallelly. After exiting anyone of thread first ,all other running threads must be terminated. This is what I tried but it doesn't work. Any help is appreciated.
public class ThreadsMain {
public static void main(String[] args) {
int SIZE = 3;
Thread t[] = new Thread[SIZE];
for (int i = 0; i < SIZE; i++) {
myThreads th = new myThreads();
t[i] = new Thread(th);
t[i].start();
}
}
}
Here is one way to do it, with a synchronizer implemented with intrinsic locks, and using interruption to cancel the unfinished tasks. The data structure makes a consumer thread block until a producer has submitted a result, then it cancels the other worker threads.
This is a toy example, see the link at the end for the real-world way to do this.
First, here's a threadsafe data structure that accepts results, it allows threads to register as listeners and interrupts them once it has a result submitted to it:
class MyQueue<T> {
private java.util.List<T> results = new java.util.ArrayList<T>();
private java.util.List<Thread> listeners = new java.util.ArrayList<Thread>();
public synchronized void put(T o) {
results.add(o);
notifyAll();
for (Thread listener : listeners) {
listener.interrupt();
}
}
public synchronized T take() throws InterruptedException {
while (results.size() == 0) {
wait();
}
return results.remove(0);
}
public synchronized void addListener(Thread t) {
listeners.add(t);
}
}
(I don't like having this class know so much about the listeners but I don't want to overthink a toy example either.)
The wait method releases the lock and makes the calling thread go dormant until a notification occurs (or it can just stop waiting arbitrarily). It uses the size property of the results list to know when a result has been submitted. It's not safe to assume that because a thread stopped waiting that you can infer something about the current state, once the thread reacquires the lock it needs to check what the current state actually is. For more about how wait works see this tutorial.
Here's a task that calculates a result (sleeping between iterations just so these threads can run for a while):
class FibTask implements Runnable {
private final MyQueue<BigInteger> queue;
private final int n;
private long sleepTime;
public FibTask(int n, long sleepTime, MyQueue<BigInteger> queue) {
this.n = n;
this.sleepTime = sleepTime;
this.queue = queue;
}
#Override public void run() {
BigInteger a = BigInteger.valueOf(0);
BigInteger b = BigInteger.valueOf(1);
int i = 0;
try {
while (!Thread.currentThread().isInterrupted() && i < n) {
i = i + 1;
BigInteger temp = a;
a = b;
b = a.add(temp);
Thread.sleep(sleepTime);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
if (!Thread.currentThread().isInterrupted()) {
queue.put(b);
}
}
}
Notice in the code above how the Runnable needs to be aware of attempts to interrupt it. Interruption is cooperative, the task is responsible for deciding when to detect interruption and for handling the termination process.
Also if a task involves IO then in some cases interruption doesn't work and you have to close the socket, see this article for more discussion of this.
Here's the main program that runs the threads and gets the result. The MyQueue class is already doing most of the work so this doesn't have to do much:
class Completion {
public static void main(String ... args) throws Exception {
MyQueue<BigInteger> queue = new MyQueue<BigInteger>();
Thread t1 = new Thread(new FibTask(10, 1000L, queue));
Thread t2 = new Thread(new FibTask(20, 10000L, queue));
Thread t3 = new Thread(new FibTask(25, 50000L, queue));
queue.addListener(t1);
queue.addListener(t2);
queue.addListener(t3);
t1.start();
t2.start();
t3.start();
System.out.println(queue.take());
}
}
Be aware this isn't a fair race because of how the threads' starts are staggered, later threads are at a disadvantage. Submitting tasks to an Executor that initializes a threadpool up front would make sure that the time to start a thread didn't cause a delay here.
For a better way that makes use of java.util.concurrent features like Executors and Futures, see the example given in the API documentation for ExecutorCompletionService.
A simple approach, use a synchronized class to handle the loop condition:
class ThreadHandler
{
static Object lock = new Object();
static boolean finished = false;
static void finishThreads()
{
synchronized(lock)
{
finished = true;
}
}
static boolean isFinished()
{
boolean result;
synchronized(lock)
{
result = finished;
}
return result;
}
}
And in your runnable
class myThreads implements Runnable
{
#Override
public void run()
{
while(!ThreadHandler.isFinished())
{
}
}
}

Regarding creating synchronization mechanism [duplicate]

This question already has an answer here:
Closed 10 years ago.
Possible Duplicate:
Testing a multithreaded Java class that runs the threads sequentially
Please don't treat this below question as a duplicate one..!
I have developed a class that lets multi-threads to run sequentially, one at a time and in order. All the application code between this class' claimAccess function and release Access function will be executed only in one thread at one time. All other threads will wait in the queue until the previous thread completed.Please advise I want to test my class by writing a piece of code in main() method itself .
import java.util.ArrayList;
import java.util.List;
public class AccessGate {
protected boolean shouldWait = false;
protected final List waitThreadQueue = new ArrayList();
/**
* For a thread to determine if it should wait. It it is, the thread will
* wait until notified.
*
*/
public void claimAccess() {
final Thread thread = getWaitThread();
if (thread != null) {
// let the thread wait untill notified
synchronized (thread) {
try {
thread.wait();
} catch (InterruptedException exp) {
}
}
}
}
/**
* For a thread to determine if it should wait. It it is, the thread will be
* put into the waitThreadQueue to wait.
*
*/
private synchronized Thread getWaitThread() {
Thread thread = null;
if (shouldWait || !waitThreadQueue.isEmpty()) {
thread = Thread.currentThread();
waitThreadQueue.add(thread);
}
shouldWait = true;
return thread;
}
/**
* Release the thread in the first position of the waitThreadQueue.
*
*/
public synchronized void releaseAccess() {
if (waitThreadQueue.isEmpty()) {
shouldWait = false;
} else {
shouldWait = true;
// give the claimAccess function a little time to complete
try {
Thread.sleep(10);
} catch (InterruptedException exp) {
}
// release the waiting thread
final Thread thread = (Thread) waitThreadQueue.remove(0);
synchronized (thread) {
thread.notifyAll();
}
}
}
}
Now my main method would be ..
public static void main (String args[])
{
}
please advise how I spawn thr threads in my my main method to test the above class..!!Please advise
This should get you started...
public static void main (String args[])
{
AccessGate gate = new AccessGate();
// create as many threads as you like
Thread t1 = new MyThread(gate);
Thread t2 = new MyThread(gate);
// start all the threads you created
t1.start();
t2.start();
}
class MyThread extends Thread {
AccessGate gate;
public MyThread(AccessGate g) {
gate = g;
}
public void run() {
gate.claimAccess();
// Do something or print something.
// Could output several statements.
// Why not do a sleep as well to see if other threads interrupt
// this code section.
gate.releaseAccess();
}
}
Consider using Executors.newSingleThreadExecutor(). This is a thread pool with only one thread executing tasks. Next task will start execution only after first task is finished:
Executor executor = Executors.newSingleThreadExecutor();
Future<String> future1 = executor.submit(new Callable<String>() {
#Override
String call() throws Exception {
// my first task
}
});
Future<String> future2 = executor.submit(new Callable<String>() {
#Override
String call() throws Exception {
// my second task
}
});
...
You can retrieve result of task execution via Future API, also it allows you to track status of each job.

Wait until any of Future<T> is done

I have few asynchronous tasks running and I need to wait until at least one of them is finished (in the future probably I'll need to wait util M out of N tasks are finished).
Currently they are presented as Future, so I need something like
/**
* Blocks current thread until one of specified futures is done and returns it.
*/
public static <T> Future<T> waitForAny(Collection<Future<T>> futures)
throws AllFuturesFailedException
Is there anything like this? Or anything similar, not necessary for Future. Currently I loop through collection of futures, check if one is finished, then sleep for some time and check again. This looks like not the best solution, because if I sleep for long period then unwanted delay is added, if I sleep for short period then it can affect performance.
I could try using
new CountDownLatch(1)
and decrease countdown when task is complete and do
countdown.await()
, but I found it possible only if I control Future creation. It is possible, but requires system redesign, because currently logic of tasks creation (sending Callable to ExecutorService) is separated from decision to wait for which Future. I could also override
<T> RunnableFuture<T> AbstractExecutorService.newTaskFor(Callable<T> callable)
and create custom implementation of RunnableFuture with ability to attach listener to be notified when task is finished, then attach such listener to needed tasks and use CountDownLatch, but that means I have to override newTaskFor for every ExecutorService I use - and potentially there will be implementation which do not extend AbstractExecutorService. I could also try wrapping given ExecutorService for same purpose, but then I have to decorate all methods producing Futures.
All these solutions may work but seem very unnatural. It looks like I'm missing something simple, like
WaitHandle.WaitAny(WaitHandle[] waitHandles)
in c#. Are there any well known solutions for such kind of problem?
UPDATE:
Originally I did not have access to Future creation at all, so there were no elegant solution. After redesigning system I got access to Future creation and was able to add countDownLatch.countdown() to execution process, then I can countDownLatch.await() and everything works fine.
Thanks for other answers, I did not know about ExecutorCompletionService and it indeed can be helpful in similar tasks, but in this particular case it could not be used because some Futures are created without any executor - actual task is sent to another server via network, completes remotely and completion notification is received.
simple, check out ExecutorCompletionService.
ExecutorService.invokeAny
Why not just create a results queue and wait on the queue? Or more simply, use a CompletionService since that's what it is: an ExecutorService + result queue.
This is actually pretty easy with wait() and notifyAll().
First, define a lock object. (You can use any class for this, but I like to be explicit):
package com.javadude.sample;
public class Lock {}
Next, define your worker thread. He must notify that lock object when he's finished with his processing. Note that the notify must be in a synchronized block locking on the lock object.
package com.javadude.sample;
public class Worker extends Thread {
private Lock lock_;
private long timeToSleep_;
private String name_;
public Worker(Lock lock, String name, long timeToSleep) {
lock_ = lock;
timeToSleep_ = timeToSleep;
name_ = name;
}
#Override
public void run() {
// do real work -- using a sleep here to simulate work
try {
sleep(timeToSleep_);
} catch (InterruptedException e) {
interrupt();
}
System.out.println(name_ + " is done... notifying");
// notify whoever is waiting, in this case, the client
synchronized (lock_) {
lock_.notify();
}
}
}
Finally, you can write your client:
package com.javadude.sample;
public class Client {
public static void main(String[] args) {
Lock lock = new Lock();
Worker worker1 = new Worker(lock, "worker1", 15000);
Worker worker2 = new Worker(lock, "worker2", 10000);
Worker worker3 = new Worker(lock, "worker3", 5000);
Worker worker4 = new Worker(lock, "worker4", 20000);
boolean started = false;
int numNotifies = 0;
while (true) {
synchronized (lock) {
try {
if (!started) {
// need to do the start here so we grab the lock, just
// in case one of the threads is fast -- if we had done the
// starts outside the synchronized block, a fast thread could
// get to its notification *before* the client is waiting for it
worker1.start();
worker2.start();
worker3.start();
worker4.start();
started = true;
}
lock.wait();
} catch (InterruptedException e) {
break;
}
numNotifies++;
if (numNotifies == 4) {
break;
}
System.out.println("Notified!");
}
}
System.out.println("Everyone has notified me... I'm done");
}
}
As far as I know, Java has no analogous structure to the WaitHandle.WaitAny method.
It seems to me that this could be achieved through a "WaitableFuture" decorator:
public WaitableFuture<T>
extends Future<T>
{
private CountDownLatch countDownLatch;
WaitableFuture(CountDownLatch countDownLatch)
{
super();
this.countDownLatch = countDownLatch;
}
void doTask()
{
super.doTask();
this.countDownLatch.countDown();
}
}
Though this would only work if it can be inserted before the execution code, since otherwise the execution code would not have the new doTask() method. But I really see no way of doing this without polling if you cannot somehow gain control of the Future object before execution.
Or if the future always runs in its own thread, and you can somehow get that thread. Then you could spawn a new thread to join each other thread, then handle the waiting mechanism after the join returns... This would be really ugly and would induce a lot of overhead though. And if some Future objects don't finish, you could have a lot of blocked threads depending on dead threads. If you're not careful, this could leak memory and system resources.
/**
* Extremely ugly way of implementing WaitHandle.WaitAny for Thread.Join().
*/
public static joinAny(Collection<Thread> threads, int numberToWaitFor)
{
CountDownLatch countDownLatch = new CountDownLatch(numberToWaitFor);
foreach(Thread thread in threads)
{
(new Thread(new JoinThreadHelper(thread, countDownLatch))).start();
}
countDownLatch.await();
}
class JoinThreadHelper
implements Runnable
{
Thread thread;
CountDownLatch countDownLatch;
JoinThreadHelper(Thread thread, CountDownLatch countDownLatch)
{
this.thread = thread;
this.countDownLatch = countDownLatch;
}
void run()
{
this.thread.join();
this.countDownLatch.countDown();
}
}
If you can use CompletableFutures instead then there is CompletableFuture.anyOf that does what you want, just call join on the result:
CompletableFuture.anyOf(futures).join()
You can use CompletableFutures with executors by calling the CompletableFuture.supplyAsync or runAsync methods.
Since you don't care which one finishes, why not just have a single WaitHandle for all threads and wait on that? Whichever one finishes first can set the handle.
See this option:
public class WaitForAnyRedux {
private static final int POOL_SIZE = 10;
public static <T> T waitForAny(Collection<T> collection) throws InterruptedException, ExecutionException {
List<Callable<T>> callables = new ArrayList<Callable<T>>();
for (final T t : collection) {
Callable<T> callable = Executors.callable(new Thread() {
#Override
public void run() {
synchronized (t) {
try {
t.wait();
} catch (InterruptedException e) {
}
}
}
}, t);
callables.add(callable);
}
BlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(POOL_SIZE);
ExecutorService executorService = new ThreadPoolExecutor(POOL_SIZE, POOL_SIZE, 0, TimeUnit.SECONDS, queue);
return executorService.invokeAny(callables);
}
static public void main(String[] args) throws InterruptedException, ExecutionException {
final List<Integer> integers = new ArrayList<Integer>();
for (int i = 0; i < POOL_SIZE; i++) {
integers.add(i);
}
(new Thread() {
public void run() {
Integer notified = null;
try {
notified = waitForAny(integers);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println("notified=" + notified);
}
}).start();
synchronized (integers) {
integers.wait(3000);
}
Integer randomInt = integers.get((new Random()).nextInt(POOL_SIZE));
System.out.println("Waking up " + randomInt);
synchronized (randomInt) {
randomInt.notify();
}
}
}

Categories

Resources