Null pointer exception in server - java

This is a client-server programm.
For each client server has a method, which checks if there are some messages to this client.
Code:
while (bool) {
for(int j = 0;j<Start.bases.size();j++){
if(Start.bases.get(j).getId() == id){
if(!Start.bases.get(j).ifEmpty()){
String output = Start.bases.get(j).getMessage();
os.println(output);
System.out.println(output +" *FOT* "+ addr.getHostName());
}
}
}
Each thread has an id.
So everything seems to be OK, but I get strange null pointer Exception at this line
if(Start.bases.get(j).getId() == id){
id - integer.
It is really strange, because I have run in debug this part and checked that "bases" and "id" are not null and bases have apropriate fields.
bases is not empty.
By the way bases is static(because every thread can use it) and bases is declared before this method is used.
This line doesn't cause problems
for(int j = 0;j<Start.bases.size();j++){
May it is because of method getId() ?
public int getId(){
return id;
}
What is the problem?
Edited.
static ArrayList<Base> bases;
bases = new ArrayList<Base>();
Class Base:
public class Base {
private ServerThread st;
private int id;
private String name;
private ArrayList<String> messages;
public Base(String n, ServerThread s_t, int i_d){
messages = new ArrayList<String>();
st = s_t;
name = n;
id = i_d;
}
public String getName(){
return name;
}
public int getId(){
return id;
}
public ServerThread getThr(){
return st;
}
public String getMessage(){
String ret = "";
if(!messages.isEmpty()){
ret = messages.get(0);
messages.remove(messages.get(0));
}
return ret;
}
public void addMessage(String m){
messages.add(m);
}
public boolean ifEmpty(){
return messages.isEmpty();
}
}
Thanks.

In this line of code:
(Start.bases.get(j).getId() == id
you may have such exception in such cases:
1) bases is null - you said its wrong
2) bases.get(j) - it may occur only if you collection size was reduced during iteration(as mentioned Gray)
3) Start.bases.get(j).getId() is null. But as you mentioned getId() method return primitive int, so its not the case as in this situation you receive null ponter while casting - in line " return id;".
So you should check second case.

Given this:
"I have run in debug this part and checked that "bases" and "id" are not null and bases have apropriate fields"
and this:
bases is static(because every thread can use it)
I think it's pretty likely that you have a race condition. In a race condition, there are two threads simultaneously accessing the same data structure (in this case, Start.bases). Most of the time, one thread's code completes faster, and everything goes the way you expect them to, but occasionally the other thread gets a head-start or goes a little faster than usual and things go "boom".
When you introduce a debugger with a break point, you pretty much guarantee that the code with the break point will execute last, because you've stopped it mid-execution while all your other threads are still going.
I'd suggest that the size of your list is probably changing as you execute. When a user leaves, is their entry removed from the "base" list? Is there some other circumstance where the list can be changed from another thread during execution?
The first thing I'll suggest is that you switch your code to use iterators rather than straight "for" loops. It won't make the problem go away (it might actually make it more visible), but it will make what's happening a lot clearer. You'll get a ConcurrentModificationException at the point where the modification happens, rather than the less helpful NullPointerException only when a certain combination of changes happens.):
for(Base currentBase : Start.bases)
{
if(currentBase.getId() == id && !currentBase.ifEmpty())
{
String output = currentBase.getMessage();
os.println(output);
System.out.println(output +" *FOT* "+ addr.getHostName());
}
}
If you do get a concurrent modification exception with the above code, then you're definitely dealing with a race condition. That means that you'll have to synchronize your code.
There are a couple of ways to do this, depending on how your application is structured.
Assuming that the race is only between this bit of code and one other (the part doing the removing-from-the-list), you can probably solve this scenario by wrapping both chunks of code in
synchronized(Start.bases)
{
[your for-loop/item removal code goes here]
}
This will acquire a lock on the list itself, so that those two pieces of code will not attempt to update the same list at the same time in different threads. (Note that it won't stop concurrent modification to the Base objects themselves, but I doubt that's the problem in this case).
All of that said, any time you have a variable which is read/write accessed by multiple threads it really should be synchronized. That's a fairly complicated job. It's better to keep the synchronization inside the object you're managing if you can. That way you can see all the synchronization code in one place, making you less likely to accidentally create deadlocks. (In your code above, you'd need to make the "for" loop a method inside your Start class, along with anything else which uses that list, then make "bases" private so that the rest of the application must use those methods).
Without seeing all the other places in your code where this list is accessed, I can't say exactly what changes you should make, but hopefully that's enough to get you started. Remember that multi-threading in Java requires a very delicate hand!

Related

Getter on nested objects without having NullPointerException [duplicate]

A web service returns a huge XML and I need to access deeply nested fields of it. For example:
return wsObject.getFoo().getBar().getBaz().getInt()
The problem is that getFoo(), getBar(), getBaz() may all return null.
However, if I check for null in all cases, the code becomes very verbose and hard to read. Moreover, I may miss the checks for some of the fields.
if (wsObject.getFoo() == null) return -1;
if (wsObject.getFoo().getBar() == null) return -1;
// maybe also do something with wsObject.getFoo().getBar()
if (wsObject.getFoo().getBar().getBaz() == null) return -1;
return wsObject.getFoo().getBar().getBaz().getInt();
Is it acceptable to write
try {
return wsObject.getFoo().getBar().getBaz().getInt();
} catch (NullPointerException ignored) {
return -1;
}
or would that be considered an antipattern?
Catching NullPointerException is a really problematic thing to do since they can happen almost anywhere. It's very easy to get one from a bug, catch it by accident and continue as if everything is normal, thus hiding a real problem. It's so tricky to deal with so it's best to avoid altogether. (For example, think about auto-unboxing of a null Integer.)
I suggest that you use the Optional class instead. This is often the best approach when you want to work with values that are either present or absent.
Using that you could write your code like this:
public Optional<Integer> m(Ws wsObject) {
return Optional.ofNullable(wsObject.getFoo()) // Here you get Optional.empty() if the Foo is null
.map(f -> f.getBar()) // Here you transform the optional or get empty if the Bar is null
.map(b -> b.getBaz())
.map(b -> b.getInt());
// Add this if you want to return null instead of an empty optional if any is null
// .orElse(null);
// Or this if you want to throw an exception instead
// .orElseThrow(SomeApplicationException::new);
}
Why optional?
Using Optionals instead of null for values that might be absent makes that fact very visible and clear to readers, and the type system will make sure you don't accidentally forget about it.
You also get access to methods for working with such values more conveniently, like map and orElse.
Is absence valid or error?
But also think about if it is a valid result for the intermediate methods to return null or if that is a sign of an error. If it is always an error then it's probably better throw an exception than to return a special value, or for the intermediate methods themselves to throw an exception.
Maybe more optionals?
If on the other hand absent values from the intermediate methods are valid, maybe you can switch to Optionals for them also?
Then you could use them like this:
public Optional<Integer> mo(Ws wsObject) {
return wsObject.getFoo()
.flatMap(f -> f.getBar())
.flatMap(b -> b.getBaz())
.flatMap(b -> b.getInt());
}
Why not optional?
The only reason I can think of for not using Optional is if this is in a really performance critical part of the code, and if garbage collection overhead turns out to be a problem. This is because a few Optional objects are allocated each time the code is executed, and the VM might not be able to optimize those away. In that case your original if-tests might be better.
I suggest considering Objects.requireNonNull(T obj, String message). You might build chains with a detailed message for each exception, like
requireNonNull(requireNonNull(requireNonNull(
wsObject, "wsObject is null")
.getFoo(), "getFoo() is null")
.getBar(), "getBar() is null");
I would suggest you not to use special return-values, like -1. That's not a Java style. Java has designed the mechanism of exceptions to avoid this old-fashioned way which came from the C language.
Throwing NullPointerException is not the best option too. You could provide your own exception (making it checked to guarantee that it will be handled by a user or unchecked to process it in an easier way) or use a specific exception from XML parser you are using.
Assuming the class structure is indeed out of our control, as seems to be the case, I think catching the NPE as suggested in the question is indeed a reasonable solution, unless performance is a major concern. One small improvement might be to wrap the throw/catch logic to avoid clutter:
static <T> T get(Supplier<T> supplier, T defaultValue) {
try {
return supplier.get();
} catch (NullPointerException e) {
return defaultValue;
}
}
Now you can simply do:
return get(() -> wsObject.getFoo().getBar().getBaz().getInt(), -1);
As already pointed out by Tom in the comment,
Following statement disobeys the Law of Demeter,
wsObject.getFoo().getBar().getBaz().getInt()
What you want is int and you can get it from Foo. Law of Demeter says, never talk to the strangers. For your case you can hide the actual implementation under the hood of Foo and Bar.
Now, you can create method in Foo to fetch int from Baz. Ultimately, Foo will have Bar and in Bar we can access Int without exposing Baz directly to Foo. So, null checks are probably divided to different classes and only required attributes will be shared among the classes.
My answer goes almost in the same line as #janki, but I would like to modify the code snippet slightly as below:
if (wsObject.getFoo() != null && wsObject.getFoo().getBar() != null && wsObject.getFoo().getBar().getBaz() != null)
return wsObject.getFoo().getBar().getBaz().getInt();
else
return something or throw exception;
You can add a null check for wsObject as well, if there's any chance of that object being null.
You say that some methods "may return null" but do not say in what circumstances they return null. You say you catch the NullPointerException but you do not say why you catch it. This lack of information suggests you do not have a clear understanding of what exceptions are for and why they are superior to the alternative.
Consider a class method that is meant to perform an action, but the method can not guarantee it will perform the action, because of circumstances beyond its control (which is in fact the case for all methods in Java). We call that method and it returns. The code that calls that method needs to know whether it was successful. How can it know? How can it be structured to cope with the two possibilities, of success or failure?
Using exceptions, we can write methods that have success as a post condition. If the method returns, it was successful. If it throws an exception, it had failed. This is a big win for clarity. We can write code that clearly processes the normal, success case, and move all the error handling code into catch clauses. It often transpires that the details of how or why a method was unsuccessful are not important to the caller, so the same catch clause can be used for handling several types of failure. And it often happens that a method does not need to catch exceptions at all, but can just allow them to propagate to its caller. Exceptions due to program bugs are in that latter class; few methods can react appropriately when there is a bug.
So, those methods that return null.
Does a null value indicate a bug in your code? If it does, you should not be catching the exception at all. And your code should not be trying to second guess itself. Just write what is clear and concise on the assumption that it will work. Is a chain of method calls clear and concise? Then just use them.
Does a null value indicate invalid input to your program? If it does, a NullPointerException is not an appropriate exception to throw, because conventionally it is reserved for indicating bugs. You probably want to throw a custom exception derived from IllegalArgumentException (if you want an unchecked exception) or IOException (if you want a checked exception). Is your program required to provide detailed syntax error messages when there is invalid input? If so, checking each method for a null return value then throwing an appropriate diagnostic exception is the only thing you can do. If your program need not provide detailed diagnostics, chaining the method calls together, catching any NullPointerException and then throwing your custom exception is clearest and most concise.
One of the answers claims that the chained method calls violate the Law of Demeter and thus are bad. That claim is mistaken.
When it comes to program design, there are not really any absolute rules about what is good and what is bad. There are only heuristics: rules that are right much (even almost all) of the time. Part of the skill of programming is knowing when it is OK to break those kinds of rules. So a terse assertion that "this is against rule X" is not really an answer at all. Is this one of the situations where the rule should be broken?
The Law of Demeter is really a rule about API or class interface design. When designing classes, it is useful to have a hierarchy of abstractions. You have low level classes that uses the language primitives to directly perform operations and represent objects in an abstraction that is higher level than the language primitives. You have medium level classes that delegate to the low level classes, and implement operations and representations at a higher level than the low level classes. You have high level classes that delegate to the medium level classes, and implement still higher level operations and abstractions. (I've talked about just three levels of abstraction here, but more are possible). This allows your code to express itself in terms of appropriate abstractions at each level, thereby hiding complexity. The rationale for the Law of Demeter is that if you have a chain of method calls, that suggests you have a high level class reaching in through a medium level class to deal directly with low level details, and therefore that your medium level class has not provided a medium-level abstract operation that the high level class needs. But it seems that is not the situation you have here: you did not design the classes in the chain of method calls, they are the result of some auto-generated XML serialization code (right?), and the chain of calls is not descending through an abstraction hierarchy because the des-serialized XML is all at the same level of the abstraction hierarchy (right?)?
As others have said, respecting the Law of Demeter is definitely part of the solution. Another part, wherever possible, is to change those chained methods so they cannot return null. You can avoid returning null by instead returning an empty String, an empty Collection, or some other dummy object that means or does whatever the caller would do with null.
To improve readability, you may want to use multiple variables, like
Foo theFoo;
Bar theBar;
Baz theBaz;
theFoo = wsObject.getFoo();
if ( theFoo == null ) {
// Exit.
}
theBar = theFoo.getBar();
if ( theBar == null ) {
// Exit.
}
theBaz = theBar.getBaz();
if ( theBaz == null ) {
// Exit.
}
return theBaz.getInt();
Don't catch NullPointerException. You don't know where it is coming from (I know it is not probable in your case but maybe something else threw it) and it is slow.
You want to access the specified field and for this every other field has to be not null. This is a perfect valid reason to check every field. I would probably check it in one if and then create a method for readability. As others pointed out already returning -1 is very oldschool but I don't know if you have a reason for it or not (e.g. talking to another system).
public int callService() {
...
if(isValid(wsObject)){
return wsObject.getFoo().getBar().getBaz().getInt();
}
return -1;
}
public boolean isValid(WsObject wsObject) {
if(wsObject.getFoo() != null &&
wsObject.getFoo().getBar() != null &&
wsObject.getFoo().getBar().getBaz() != null) {
return true;
}
return false;
}
Edit: It is debatable if it's disobeyes the Law Of Demeter since the WsObject is probably only a data structure (check https://stackoverflow.com/a/26021695/1528880).
If you don't want to refactor the code and you can use Java 8, it is possible to use Method references.
A simple demo first (excuse the static inner classes)
public class JavaApplication14
{
static class Baz
{
private final int _int;
public Baz(int value){ _int = value; }
public int getInt(){ return _int; }
}
static class Bar
{
private final Baz _baz;
public Bar(Baz baz){ _baz = baz; }
public Baz getBar(){ return _baz; }
}
static class Foo
{
private final Bar _bar;
public Foo(Bar bar){ _bar = bar; }
public Bar getBar(){ return _bar; }
}
static class WSObject
{
private final Foo _foo;
public WSObject(Foo foo){ _foo = foo; }
public Foo getFoo(){ return _foo; }
}
interface Getter<T, R>
{
R get(T value);
}
static class GetterResult<R>
{
public R result;
public int lastIndex;
}
/**
* #param args the command line arguments
*/
public static void main(String[] args)
{
WSObject wsObject = new WSObject(new Foo(new Bar(new Baz(241))));
WSObject wsObjectNull = new WSObject(new Foo(null));
GetterResult<Integer> intResult
= getterChain(wsObject, WSObject::getFoo, Foo::getBar, Bar::getBar, Baz::getInt);
GetterResult<Integer> intResult2
= getterChain(wsObjectNull, WSObject::getFoo, Foo::getBar, Bar::getBar, Baz::getInt);
System.out.println(intResult.result);
System.out.println(intResult.lastIndex);
System.out.println();
System.out.println(intResult2.result);
System.out.println(intResult2.lastIndex);
// TODO code application logic here
}
public static <R, V1, V2, V3, V4> GetterResult<R>
getterChain(V1 value, Getter<V1, V2> g1, Getter<V2, V3> g2, Getter<V3, V4> g3, Getter<V4, R> g4)
{
GetterResult result = new GetterResult<>();
Object tmp = value;
if (tmp == null)
return result;
tmp = g1.get((V1)tmp);
result.lastIndex++;
if (tmp == null)
return result;
tmp = g2.get((V2)tmp);
result.lastIndex++;
if (tmp == null)
return result;
tmp = g3.get((V3)tmp);
result.lastIndex++;
if (tmp == null)
return result;
tmp = g4.get((V4)tmp);
result.lastIndex++;
result.result = (R)tmp;
return result;
}
}
Output
241
4
null
2
The interface Getter is just a functional interface, you may use any equivalent.
GetterResult class, accessors stripped out for clarity, hold the result of the getter chain, if any, or the index of the last getter called.
The method getterChain is a simple, boilerplate piece of code, that can be generated automatically (or manually when needed).
I structured the code so that the repeating block is self evident.
This is not a perfect solution as you still need to define one overload of getterChain per number of getters.
I would refactor the code instead, but if can't and you find your self using long getter chains often you may consider building a class with the overloads that take from 2 to, say, 10, getters.
I'd like to add an answer which focus on the meaning of the error. Null exception in itself doesn't provide any meaning full error. So I'd advise to avoid dealing with them directly.
There is a thousands cases where your code can go wrong: cannot connect to database, IO Exception, Network error... If you deal with them one by one (like the null check here), it would be too much of a hassle.
In the code:
wsObject.getFoo().getBar().getBaz().getInt();
Even when you know which field is null, you have no idea about what goes wrong. Maybe Bar is null, but is it expected? Or is it a data error? Think about people who read your code
Like in xenteros's answer, I'd propose using custom unchecked exception. For example, in this situation: Foo can be null (valid data), but Bar and Baz should never be null (invalid data)
The code can be re-written:
void myFunction()
{
try
{
if (wsObject.getFoo() == null)
{
throw new FooNotExistException();
}
return wsObject.getFoo().getBar().getBaz().getInt();
}
catch (Exception ex)
{
log.error(ex.Message, ex); // Write log to track whatever exception happening
throw new OperationFailedException("The requested operation failed")
}
}
void Main()
{
try
{
myFunction();
}
catch(FooNotExistException)
{
// Show error: "Your foo does not exist, please check"
}
catch(OperationFailedException)
{
// Show error: "Operation failed, please contact our support"
}
}
NullPointerException is a run-time exception, so generally speaking is not recommended to catch it, but to avoid it.
You will have to catch the exception wherever you want to call the method (or it will propagate up the stack). Nevertheless, if in your case you can keep working with that result with value -1 and you are sure that it won't propagate because you are not using any of the "pieces" that may be null, then it seems right to me to catch it
Edit:
I agree with the later answer from #xenteros, it wil be better to launch your own exception instead returning -1 you can call it InvalidXMLException for instance.
Have been following this post since yesterday.
I have been commenting/voting the comments which says, catching NPE is bad. Here is why I have been doing that.
package com.todelete;
public class Test {
public static void main(String[] args) {
Address address = new Address();
address.setSomeCrap(null);
Person person = new Person();
person.setAddress(address);
long startTime = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++) {
try {
System.out.println(person.getAddress().getSomeCrap().getCrap());
} catch (NullPointerException npe) {
}
}
long endTime = System.currentTimeMillis();
System.out.println((endTime - startTime) / 1000F);
long startTime1 = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++) {
if (person != null) {
Address address1 = person.getAddress();
if (address1 != null) {
SomeCrap someCrap2 = address1.getSomeCrap();
if (someCrap2 != null) {
System.out.println(someCrap2.getCrap());
}
}
}
}
long endTime1 = System.currentTimeMillis();
System.out.println((endTime1 - startTime1) / 1000F);
}
}
public class Person {
private Address address;
public Address getAddress() {
return address;
}
public void setAddress(Address address) {
this.address = address;
}
}
package com.todelete;
public class Address {
private SomeCrap someCrap;
public SomeCrap getSomeCrap() {
return someCrap;
}
public void setSomeCrap(SomeCrap someCrap) {
this.someCrap = someCrap;
}
}
package com.todelete;
public class SomeCrap {
private String crap;
public String getCrap() {
return crap;
}
public void setCrap(String crap) {
this.crap = crap;
}
}
Output
3.216
0.002
I see a clear winner here. Having if checks is way too less expensive than catch an exception. I have seen that Java-8 way of doing. Considering that 70% of the current applications still run on Java-7 I am adding this answer.
Bottom Line For any mission critical applications, handling NPE is costly.
If efficiency is an issue then the 'catch' option should be considered.
If 'catch' cannot be used because it would propagate (as mentioned by 'SCouto') then use local variables to avoid multiple calls to methods getFoo(), getBar() and getBaz().
It's worth considering to create your own Exception. Let's call it MyOperationFailedException. You can throw it instead returning a value. The result will be the same - you'll quit the function, but you won't return hard-coded value -1 which is Java anti-pattern. In Java we use Exceptions.
try {
return wsObject.getFoo().getBar().getBaz().getInt();
} catch (NullPointerException ignored) {
throw new MyOperationFailedException();
}
EDIT:
According to the discussion in comments let me add something to my previous thoughts. In this code there are two possibilities. One is that you accept null and the other one is, that it is an error.
If it's an error and it occurs, You can debug your code using other structures for debugging purposes when breakpoints aren't enough.
If it's acceptable, you don't care about where this null appeared. If you do, you definitely shouldn't chain those requests.
The method you have is lengthy, but very readable. If I were a new developer coming to your code base I could see what you were doing fairly quickly. Most of the other answers (including catching the exception) don't seem to be making things more readable and some are making it less readable in my opinion.
Given that you likely don't have control over the generated source and assuming you truly just need to access a few deeply nested fields here and there then I would recommend wrapping each deeply nested access with a method.
private int getFooBarBazInt() {
if (wsObject.getFoo() == null) return -1;
if (wsObject.getFoo().getBar() == null) return -1;
if (wsObject.getFoo().getBar().getBaz() == null) return -1;
return wsObject.getFoo().getBar().getBaz().getInt();
}
If you find yourself writing a lot of these methods or if you find yourself tempted to make these public static methods then I would create a separate object model, nested how you would like, with only the fields you care about, and convert from the web services object model to your object model.
When you are communicating with a remote web service it is very typical to have a "remote domain" and an "application domain" and switch between the two. The remote domain is often limited by the web protocol (for example, you can't send helper methods back and forth in a pure RESTful service and deeply nested object models are common to avoid multiple API calls) and so not ideal for direct use in your client.
For example:
public static class MyFoo {
private int barBazInt;
public MyFoo(Foo foo) {
this.barBazInt = parseBarBazInt();
}
public int getBarBazInt() {
return barBazInt;
}
private int parseFooBarBazInt(Foo foo) {
if (foo() == null) return -1;
if (foo().getBar() == null) return -1;
if (foo().getBar().getBaz() == null) return -1;
return foo().getBar().getBaz().getInt();
}
}
return wsObject.getFooBarBazInt();
by applying the the Law of Demeter,
class WsObject
{
FooObject foo;
..
Integer getFooBarBazInt()
{
if(foo != null) return foo.getBarBazInt();
else return null;
}
}
class FooObject
{
BarObject bar;
..
Integer getBarBazInt()
{
if(bar != null) return bar.getBazInt();
else return null;
}
}
class BarObject
{
BazObject baz;
..
Integer getBazInt()
{
if(baz != null) return baz.getInt();
else return null;
}
}
class BazObject
{
Integer myInt;
..
Integer getInt()
{
return myInt;
}
}
Giving answer which seems different from all others.
I recommend you to check for NULL in ifs.
Reason :
We should not leave a single chance for our program to be crashed.
NullPointer is generated by system. The behaviour of System
generated exceptions can not be predicted. You should not leave your
program in the hands of System when you already have a way of handling
it by your own. And put the Exception handling mechanism for the extra safety.!!
For making your code easy to read try this for checking the conditions :
if (wsObject.getFoo() == null || wsObject.getFoo().getBar() == null || wsObject.getFoo().getBar().getBaz() == null)
return -1;
else
return wsObject.getFoo().getBar().getBaz().getInt();
EDIT :
Here you need to store these values wsObject.getFoo(),
wsObject.getFoo().getBar(), wsObject.getFoo().getBar().getBaz() in
some variables. I am not doing it because i don't know the return
types of that functions.
Any suggestions will be appreciated..!!
I wrote a class called Snag which lets you define a path to navigate through a tree of objects. Here is an example of its use:
Snag<Car, String> ENGINE_NAME = Snag.createForAndReturn(Car.class, String.class).toGet("engine.name").andReturnNullIfMissing();
Meaning that the instance ENGINE_NAME would effectively call Car?.getEngine()?.getName() on the instance passed to it, and return null if any reference returned null:
final String name = ENGINE_NAME.get(firstCar);
It's not published on Maven but if anyone finds this useful it's here (with no warranty of course!)
It's a bit basic but it seems to do the job. Obviously it's more obsolete with more recent versions of Java and other JVM languages that support safe navigation or Optional.

Moving all statements from one method to another

So I have a Method
public modifiers Foo foo(Bar bar){
blah;
blah;
veryInterestingStmt;
moreBlah();
return XYZ;
}
I now want to split this method s.t. everything in its body is extracted into a separate method (programmatically).
I.e.
public modifiers Foo foo(Bar bar){
return trulyFoo(bar);
}
public modifiers Foo trulyFoo(Bar bar){
blah;
blah;
veryInterestingStmt;
moreBlah();
return XYZ;
}
How do I do that, though?
The naive
private void fracture(SootMethod sm) {
SootClass sc = sm.getDeclaringClass();
String auxMethodName = sm.getName() + FRACTURE_SUFFIX;
Type auxReturnType = sm.getReturnType();
List<Type>auxParamTypes = new LinkedList<>(sm.getParameterTypes());
int auxModifiers = sm.getModifiers();
SootMethod auxMethod = sc.addMethod(new SootMethod(auxMethodName,auxParamTypes,auxReturnType,auxModifiers));
Body body = sm.getActiveBody();
Body auxBody = Jimple.v().newBody(auxMethod);
auxMethod.setActiveBody(auxBody);
for(Local l : body.getLocals()){
auxBody.getLocals().add(l);
}
PatchingChain<Unit> units = body.getUnits();
PatchingChain<Unit> auxUnits = auxBody.getUnits();
Iterator<Unit> it = body.getUnits().snapshotIterator();
boolean passedFirstNonidentity = false;
while(it.hasNext()){
Stmt stmt = (Stmt) it.next();
if(!passedFirstNonidentity && !(stmt instanceof IdentityStmt)) {
passedFirstNonidentity = true;
//TODO: if added more parameters than original method had, add their identity stmts here
}
auxUnits.add(stmt);
// if(passedFirstNonidentity) units.remove(stmt); //TODO: uncomment this and later add call to {#code auxMethod}
}
}
}
Doesn't work. If I run, say
DirectedGraph dg = new ExceptionalUnitGraph(auxMethod.getActiveBody());
I get a
java.lang.RuntimeException: Unit graph contains jump to non-existing target
at soot.toolkits.graph.UnitGraph.buildUnexceptionalEdges(UnitGraph.java:128)
at soot.toolkits.graph.ExceptionalUnitGraph.initialize(ExceptionalUnitGraph.java:258)
at soot.toolkits.graph.ExceptionalUnitGraph.<init>(ExceptionalUnitGraph.java:159)
at soot.toolkits.graph.ExceptionalUnitGraph.<init>(ExceptionalUnitGraph.java:192)
The technique of moving code without altering the behavior of the code is called Refactoring and is nicely covered in a book by Martin Fowler.
In your case, I would take the following multi-step approach:
Stand up a "do nothing" function in the function you wish to split, just above the lines of code you wish to move.
Move one or two of those lines of code from the surrounding function int the "do nothing" function, splitting the function, but having the split be a nested call.
Move the split function up (or down) to the edge of the block in the surronding function.
Move teh slpit function out of the block, placing new calls to it either prior to every call of the original function, or after every call of the original function. Note that you may have to rework the handling of return parameters, depending on the details.
It is strongly suggested that you write a set of tests to validate some, if not most, of the overall functionality of this block first. Then, after each change run your tests to verify that you didn't change behavior.
What you are seeing now is a change in behavior which came about by modifying the text of the code in such a manner that it did change behavior. The set of safe transformations of source code is likely smaller than you previously believed, or maybe you just made a simple error. However, the work you are attempting requires more knowledge than can be expressed in a StackOverflow style, question / answer, format. That's why I made the book reference.
If you can narrow the scope, you might get a better response in a future resubmission.
It seems that moving stmts just doesn't work. In contrast, completely replacing the body
Body originalBody = sm.getActiveBody();
originalBody.setMethod(auxMethod);
auxMethod.setActiveBody(originalBody);
Body newBody = Jimple.v().newBody(sm);
sm.setActiveBody(newBody);
and then regenerating the locals, identity stmts (and other stmts you may need) in the newBody looks like a sensible way to go.

when return value from a method,assign that value to a variable first and return that variable is better than return value directly?

When we return value from a method,assign the return value to a variable is better than return value directly without assign to any variable?in the following examples:
public int getCustomerId(){
return CustomerService.getCustomerById();
}
and another example:
public int getCustomerId(){
int id = CustomerService.getCustomberById();
return id;
}
which one is more better and why?I saw one of my friend's code,he assign value to variable first and then return that variable to his service method.
Both the approach are right, it's all depend how much code we are writing in our functions or how much readable our code is.
If it is one-two liner code, i would go for the first approach.
As simple as this, readability is fine.
public int getCustomerId(){
return CustomerService.getCustomerById();
}
This makes code little less readable, because just a service call, i need to go through two steps. Extra debugging.
public int getCustomerId(){
int id = CustomerService.getCustomberById();
return id;
}
If i have some complex logic written, maybe at business layer, multiple if-else, try-catch etc, then 2nd approach looks fine.
Just an example, and it makes sense
f(){
Object obj = null;
try{
if(condition){
obj = // call service1
}else {
obj = // call service2
}
}catch(Exception e){
}
return obj;
}
I agree using extra variable (though local to function), then
assignment, might add little overhead to JVM, but code readability
should also be considered while coding. JVM is again smart enough to optimize your code as highlighted above.
Refer these links for something more. Not exactly related but can help.

How to refactor to avoid passing "special values" into a Java method?

I'm sure there must be a standard way to do this, but my attempts to search Stackoverflow have failed.
I have a method like:
public void processSomeWidgetsForUser(int userItemId) {
Iterator<Widgets> iter = allWidgets.values().iterator();
while(iter.hasNext()) {
Widget thisWidget = iter.next();
if (userItemId == -1 || thisWidget.getUsersItemId() == userItemId) {
widget.process();
}
}
}
As you can see -1 is a "special value" meaning process all. Doing this saves repeating the loop code in another method called processSomeWidgetsForAllUsers.
But I dislike special values like this because they are easy to misuse or misunderstand, which is exactly the situation what I'm having to fix now (where someone thought -1 meant something else).
I can only think of two ways to improve this.
have a constant, containing -1 called something like
Widget.ALLWIDGETS which at least is self-documenting, but doesn't
stop code from using a -1 (if someone integrates old code in, for
example)
change the method to take a list of all user ids to
process, which can be empty, but that doesn't seem great
performance-wise (would need to retrieve all user ids first and then loop through
removing. Also what happens if the number of widgets in the list changes between
retreiving the ids and removing
Is there a better way? I'm sure I'm missing something obvious.
The above code has been changed slightly, so may not compile, but you should get the gist.
Although somewhat redundant, a fairly neat self-documenting approach could be to have 3 methods rather than one;
Make your original method private, and make one small change which would be to add your static final int EXECUTE_ALL = -1 and use that in your original method, then add the two new methods;
public void processWidget(int wID) throws IllegalArgumentException {
if(wID == EXECUTE_ALL) throw new IllegalArgumentException();
originalMethod(wID);
}
public void processAllWidgets() {
originalMethod(EXECUTE_ALL);
}
It makes your class a little more cluttered, but as far as the exposed methods go, it is clearer and hopefully foolproof. You could alter it not to throw an exception and just ignore any invalid ids, that just depends on your situation.
This approach of course has the major downside that it changes how the class appears to other classes, breaking everything that currently uses the, now private, originalMethod().
Number 1 would work very nicely. Be sure to document what the variable is though, so future coders (possibly yourself) know what it means.
/**This is the explanation for the below variable*/
public final static int ALL_WIDGETS = -1;
Have an external method like so:
static boolean idRepresentsAll(int id) {
return id == -1;
}
In this case, if you decide to replace it with a different mechanism, you only replace your magic number one place in your code.
At the very least, you would want to do something like this:
public static final int ID_REPRESENTING_ALL = -1;
You can change the method signature to accept a boolean for when you want to process them all.
public void processSomeWidgets(boolean doAll, int userItemId) {
Iterator<Widgets> iter = allWidgets.values().iterator();
while(iter.hasNext()) {
Widget thisWidget = iter.next();
if (doAll || thisWidget.getUsersItemId() == userItemId) {
widget.process();
}
}
}
This makes it more explicit, and easier to read in my opinion as there are no special values.

ArrayList creation: (some object) cannot be stored in an array of type java.lang.Object[]

Usually, the code block works perfect. On very rare occasions though, the "new ArrayList" throws an Exeption my.namespace.CacheEntry cannot be stored in an array of type java.lang.Object[].
Checking Google, someone else seemed to get this exception on an Acer A500 with 3.1 (which is the device I got it, too). I don't see any hit for this in generic Java or whatever, so may be some very very Honeycomb special case or even a VM bug?
private long expireCache(HashMap<String, CacheEntry> map) {
long count = 0;
// next line will sometimes throw the exception:
ArrayList<CacheEntry> entries = new ArrayList<CacheEntry>(map.values());
Collections.sort(entries);
The CacheEntry class is quite regular, too:
final class CacheEntry implements Comparable<CacheEntry> {
public File file;
public Long time;
CacheEntry(File cacheFile) {
// retreive the lastModified only once, don't do heavy I/O for sorting,
// keep it desynced from filesystem so nothing bad happens when the
// file gets changed while sorting:
file = cacheFile;
time = cacheFile.lastModified();
}
// "touch" the cached last modified time
public void touch() {
time = System.currentTimeMillis();
}
// return the long comparable of last modified time
public int compareTo(CacheEntry c) {
return time.compareTo(c.time);
}
}
I don't see anything wrong with this code. Anyone?
may be some very very Honeycomb special case or even a VM bug?
Yes, looks like it, because according to Java semantics, there isn't anything that "cannot be stored in an array of type java.lang.Object[]" - except primitives, but those can't be values in a HashMap

Categories

Resources