Call super class method automatically - java

Consider the following class
class A{
public void init(){
//do this first;
}
public void atEnd(){
//do this after init of base class ends
}
}
class B1 extends A{
#Override
public void init()
{
super.init();
//do new stuff.
//I do not want to call atEnd() method here...
}
}
I have several B1, B2,... Bn child classes which are already developed. All of them extend class A. If I want to add a new functionality in all of them, the best place to do so is define that in a method within class A. But the condition is that the method should always get called automatically just before the init() method of child class ends.
One basic way to do so is to again add atEnd() method call at end of init() method of child classes. But is there any other way to do this smartly ??

One way to do this is by making init() final and delegating its operation to a second, overridable, method:
abstract class A {
public final void init() {
// insert prologue here
initImpl();
// insert epilogue here
}
protected abstract void initImpl();
}
class B extends A {
protected void initImpl() {
// ...
}
}
Whenever anyone calls init(), the prologue and epilogue are executed automatically, and the derived classes don't have to do a thing.

Another thought would be to weave in an aspect. Add before and after advice to a pointcut.

Make init() final, and provide a separate method for people to override that init() calls in the middle:
class A{
public final void init(){
//do this first;
}
protected void initCore() { }
public void atEnd(){
//do this after init of base class ends
}
}
class B1 extends A{
#Override
protected void initCore()
{
//do new stuff.
}
}

The other answers are reasonable workarounds but to address the exact question: no, there is no way to do this automatically. You must explicitly call super.method().

Related

load method calls another method at the end in Java

I have an abstract class Task with two methods execute() and finish() as the following:
abstract class Task {
abstract void execute();
private void finish() {
// Do something...
}
}
How can I ensure that the overloaded method execute() in subclasses of Task implicitly calls finish() as the last statement?
I don't believe there is any way of 'forcing' sub-classes to invoke a method but you could try some sort of template method approach:
abstract class Foo {
protected abstract void bar(); // <--- Note protected so only visible to this and sub-classes
private void qux() {
// Do something...
}
// This is the `public` template API, you might want this to be final
public final void method() {
bar();
qux();
}
}
The public method is the entry-point and invokes the abstract bar and then the private qux method, this means that any sub-classes follow the template pattern. However it's no panacea of course - a sub-class could simply ignore the public method.
You can create a ExecutorCloseable class that implements the [AutoCloseable] interface, such as:
public class ExecutorCloseable extends Foo implements AutoCloseable
{
#Override
public void execute()
{
// ...
}
#Override //this one comes from AutoCloseable
public void close() //<--will be called after execute is finished
{
super.finish();
}
}
You could call it this way (silly main() example):
public static void main(String[] args)
{
try (ExecutorCloseable ec = new ExecutorCloseable ())
{
ec.execute();
} catch(Exception e){
//...
} finally {
//...
}
}
Hope it makes sense, I can't really know how you call these methods nor how you create the classes. But hey, it's a try : )
For this to work, the finish() method on Foo should be protected or public (first one recommended), though.

Why does calling a method from base class calls the child method?

I'm a student, learning Java. I know, protected means access from children or the same package. Here we inherit and override a protected method. And after such an action, whenever the base class wants to call its own method it calls the new overridden one from the subclass. I've been debugging this for a while and marked the execution order with comments. But I can't understand why doesn't it call the base method when I clearly call that from inside the base class constructor?
public class Solution {
public static void main(String[] args) {
new B(); // first
}
public static class A {
public A() {
initialize(); // third
}
protected void initialize() {
System.out.println("class A"); // we never go here
}
}
public static class B extends A {
public B() {
super(); // second
initialize(); // fifth
}
protected void initialize() {
System.out.println("class B"); // fourth, sixth
}
}
}
That's a task from one website, so basically the solution is to change access modifier of the initialize method from protected to private. But I still fail to understand why is the problem happening.
What you're trying to do is defeat the purpose of polymorphism. You can, but you have to make the call specifically. Add a Boolean to your method and call the super.initialize(Boolean). Again, this defeats polymorphism and the extending class HAS to know about the super class. NOT VERY ELEGANT.
public class Solution {
public static void main(String[] args) {
new B(); // first
}
public static class A {
public static boolean USE_SUPER = true;
public A() {
initialize(USE_SUPER);
}
protected void initialize(boolean unusedHere) {
System.out.println("class A");
}
}
public static class B extends A {
public static boolean USE_EXTENDED = false;
public B() {
super();
initialize(USE_EXTENDED);
}
protected void initialize(boolean useSuper) {
if (useSuper)
super.initialize(useSuper);
else
System.out.println("class B");
}
}
}
As Dakoda answered, the root cause is polymorphism. That means we may create child objects, but refer to them as their parent type and when we call the methods of the parent layer we actually refer to the child's methods.
In my case, I create a child object (marked //first) B, which has its own body of the initialize method. One nuance of the inheritance is that it doesn't include constructors, so I can call the parent's constructor (marked //second). Inside the parent's constructor, I call the initialize method - that is the polymorphism because I call the method of the child from its parent abstraction layer.
Here is the answer to the question - this happens, because we only allocated memory for a B instance, that means, we took A as our base and started to extend it (while we can overwrite anything inside). The only two things we did are:
We created a constructor (it wasn't included in the base, as mentioned above)
We overwrote the initialize method code. The code for this method that is inside the base is now lost for this object.
This concept of polymorphism is designed that way and there is no way for us to access the base method unless we specifically create an object that is either A itself or a child that doesn't overwrite this method.

Overriding a base class method in a derived class

I have a base class A, having a method "say" that calls from constructor of A. All the heritable classes uses the method "say" like it is. But one of the classes need to redefine this method. How is it possible?
For sure, I can denote base method "say" as abstract, but in that way, i have to copy the same method "say" in all the heritable classes.
If i just redefine method without denoting base one as abstract, it is not gonna be called.
public abstract class A(){
public A(){
say(); // <- wanna call this method from heritable class, if its redefined.
}
protected void say(){};
}
public class B extends A(){
public B(){
super();
}
private void say(){};
}
refactoring 1
public abstract class A(){
public A(){
// constructor methods
}
protected void say(){};
protected void executeSay(){
say();
}
}
public class B extends A(){
public B(){
super();
executeSay();
}
#Override
protected void say(){};
}
First of all one must be made clear: calling an overridable method from a constructor is a well-known antipattern. It will almost certainly break your code because the subclass method will be invoked before the subclass constructor is done and so will observe an uninitialized object. Thus I should better refrain from giving you detailed advice on Java technicalities involved in achieving this antipattern.
The only safe way to acomplish your requirement is to let the construction finish and only afterwards call an initialize-kind of method. If you want to ensure initialize is always invoked, make the constructors non-public and provide a factory method instead.
Unfortunately, Java requires quite a bit of work on your part to make this work properly.
You cannot instantiate a abstract class. That saying you have to link the abstract class reference to the concrete inherited class.
eg. A a = new B();
If that's the case, and B have redefined the say() method, then the say method in B will be called.
public class TestPad {
public static void main(String[] args) {
A a = new B();
}
}
abstract class A {
public A() {
say();
}
public void say(){
System.out.println("A");
};
}
class B extends A {
public B() {
super();
}
public void say() {
System.out.println("B");
}
}
The output will be B
public class B extends A {
public B() {
super();
}
#Override
protected void say() {
// your diffent say code
};
}
I'm not sure if you are allowed to reduce visibility to private.
Because of polymorphic method invocation, in your case the B.say() will be invoked if you override it.
But as #sanbhat commented, you need to change visibility of say() to protected.

How to call overriden function from child in java?

I want to make an interface and from user point of view i want it to look clean and they can write their code with this syntax.
public class child extends parent {
#Override
public void run() {
}
}
Main is in the parent but how can one call a overriden function in parent.
Also i don't want the name "child" to be mandatory so i can't call it directly.
PS:this is the run function i want to override.
public class parent{
public static void main(String[] args) {
run();
}
}
Make Parent and run abstract. Abstract for a class means that this class cannot be directly instantiated, but can be instantiated if there is a subclass. Abstract for a method means that the method is defined in the abstract class, but is not implemented in the abstract class. Instead subclasses must provide an implementation of the abstract method or declare themselves to be abstract.
public abstract class Super {
public static void main(String[] args) {
Super s = new Sub();
s.main();
}
public abstract void run();
public void main() {
System.out.println("Calling sub class's implementation of run");
// The super class does not know the implementation of run
// but it does know that there must be an implementation to use.
run();
System.out.println("Done!");
}
}
class Sub extends Super {
#Override
public void run() {
System.out.println("sub class implementation of run");
}
}
to call overridden function of perent class use..
super.run();
EX:
public class child extends parent {
#Override
public void run() {
super.run();
}
}
what i get from you is ..u want to call child function from parent class..
For that is seams like a normal class function coz there is only relationship b/w parent-to-child no relation in child-to-parent
So u just make object of child and then call function of child class...
So your main of parent class may be look like this..
public static void main(String[] args) {
new child().run();
}
To call an overwritten function in the parent user something like one of these:
super.run();
((parent) this).run();
Do you mean you want to call the run() function defined in the parent?
public class child extends parent
{
#Override
public void run()
{
super.run(); // call parent's run() function
this.doStuff(); // call child's additional functionality
}
}
You can call super(Parent) class methods using 'super' keyword. Like this.
public class child extends parent {
#Override
public void run() {
super.run();
}
}
I suppose you are confusing between main() function and some random Main class that you are referring to. In general when it comes to inheritance you cannot call a derived class's overridden function from a base class. In that case what you do is create a base class pointer and make it point to derived class object. In that case when you use the base class pointer to invoke the function the overriden derived classs' function gets called.
I am not sure if I answered you entirely..
This might help you.. -> http://www.oodesign.com/dependency-inversion-principle.html
Not sure if i understand correctly. But parent can't know if, where and how it's protected/public methods will be overriden so it cant call the overridden implementations.
If you have to do it, you probably got your class hierarchy design wrong.
You probably need something like this.
public Parent
{
public final void run()
{
this.runChild
}
protected abstract void runChild();
}
public class Child extends Parent
{
public static void main(String[] args)
{
run();
}
protected void runChild()
{
....
}
}
I am not sure whether I am answering your question right. From what I understood is you are trying to do some thing like calling child's run from Parent. If that is the case below is the code snippet to do it.
public abstract class Parent{
public abstract void run();
public void mainMethod(){
//This automatically calls run from child
run();
}
}
And your child implementation is like as shown below.
public class child extends parent {
#Override
public void run() {
//Do the stuff you want to
}
}
public class MainClass{
public static void main(String args[]){
Parent obj = new Child();
// This inturn takes care of the rest.
obj.mainMethod();
//Some other child
obj = new Child2();
obj.mainMethod();
}
}
Hope this helps you.

Calling super super class method

Let's say I have three classes A, B and C.
B extends A
C extends B
All have a public void foo() method defined.
Now from C's foo() method I want to invoke A's foo() method (NOT its parent B's method but the super super class A's method).
I tried super.super.foo();, but it's invalid syntax.
How can I achieve this?
You can't even use reflection. Something like
Class superSuperClass = this.getClass().getSuperclass().getSuperclass();
superSuperClass.getMethod("foo").invoke(this);
would lead to an InvocationTargetException, because even if you call the foo-Method on the superSuperClass, it will still use C.foo() when you specify "this" in invoke. This is a consequence from the fact that all Java methods are virtual methods.
It seems you need help from the B class (e.g. by defining a superFoo(){ super.foo(); } method).
That said, it looks like a design problem if you try something like this, so it would be helpful to give us some background: Why you need to do this?
You can't - because it would break encapsulation.
You're able to call your superclass's method because it's assumed that you know what breaks encapsulation in your own class, and avoid that... but you don't know what rules your superclass is enforcing - so you can't just bypass an implementation there.
You can't do it in a simple manner.
This is what I think you can do:
Have a bool in your class B. Now you must call B's foo from C like [super foo] but before doing this set the bool to true. Now in B's foo check if the bool is true then do not execute any steps in that and just call A's foo.
Hope this helps.
To quote a previous answer "You can't - because it would break encapsulation." to which I would like to add that:
However there is a corner case where you can,namely if the method is static (public or protected). You can not overwrite the static method.
Having a public static method is trivial to prove that you can indeed do this.
For protected however, you need from inside one of your methods to perform a cast to any superclass in the inheritance path and that superclass method would be called.
This is the corner case I am exploring in my answer:
public class A {
static protected callMe(){
System.out.println("A");
}
}
public class B extends A {
static protected callMe(){
System.out.println("B");
}
}
public class C extends B {
static protected callMe(){
System.out.println("C");
C.callMe();
}
public void accessMyParents(){
A a = (A) this;
a.callMe(); //calling beyond super class
}
}
The answer remains still No, but just wanted to show a case where you can, although it probably wouldn't make any sense and is just an exercise.
Yes you can do it. This is a hack. Try not to design your program like this.
class A
{
public void method()
{ /* Code specific to A */ }
}
class B extends A
{
#Override
public void method()
{
//compares if the calling object is of type C, if yes push the call to the A's method.
if(this.getClass().getName().compareTo("C")==0)
{
super.method();
}
else{ /*Code specific to B*/ }
}
}
class C extends B
{
#Override
public void method()
{
/* I want to use the code specific to A without using B */
super.method();
}
}
There is a workaround that solved my similar problem:
Using the class A, B, and C scenario, there is a method that will not break encapsulation nor does it require to declare class C inside of class B. The workaround is to move class B's methods into a separate but protected method.
Then, if those class B's methods are not required simply override that method but don't use 'super' within that method. Overriding and doing nothing effectively neutralises that class B method.
public class A {
protected void callMe() {
System.out.println("callMe for A");
}
}
public class B extends A {
protected void callMe() {
super.callMe();
methodsForB(); // Class B methods moved out and into it's own method
}
protected void methodsForB() {
System.out.println("methods for B");
}
}
public class C extends B {
public static void main(String[] args) {
new C().callMe();
}
protected void callMe() {
super.callMe();
System.out.println("callMe for C");
}
protected void methodsForB() {
// Do nothing thereby neutralising class B methods
}
}
The result will be:
callMe for A
callMe for C
It's not possible, we're limited to call the superclass implementations only.
I smell something fishy here.
Are you sure you are not just pushing the envelope too far "just because you should be able to do it"? Are you sure this is the best design pattern you can get? Have you tried refactoring it?
I had a problem where a superclass would call an top class method that was overridden.
This was my workaround...
//THIS WOULD FAIL CALLING SUPERCLASS METHODS AS a1() would invoke top class METHOD
class foo1{
public void a1(){
a2();
}
public void a2(){}
}
class foo2 extends foo1{
{
public void a1(){
//some other stuff
super.a1();
}
public void a2(){
//some other stuff
super.a2();
}
//THIS ENSURES THE RIGHT SUPERCLASS METHODS ARE CALLED
//the public methods only call private methods so all public methods can be overridden without effecting the superclass's functionality.
class foo1{
public void a1(){
a3();}
public void a2(){
a3();}
private void a3(){
//super class routine
}
class foo2 extends foo1{
{
public void a1(){
//some other stuff
super.a1();
}
public void a2(){
//some other stuff
super.a2();
}
I hope this helps.
:)
Before using reflection API think about the cost of it.
It is simply easy to do. For instance:
C subclass of B and B subclass of A. Both of three have method methodName() for example.
public abstract class A {
public void methodName() {
System.out.println("Class A");
}
}
public class B extends A {
public void methodName() {
super.methodName();
System.out.println("Class B");
}
// Will call the super methodName
public void hackSuper() {
super.methodName();
}
}
public class C extends B {
public static void main(String[] args) {
A a = new C();
a.methodName();
}
#Override
public void methodName() {
/*super.methodName();*/
hackSuper();
System.out.println("Class C");
}
}
Run class C Output will be:
Class A
Class C
Instead of output:
Class A
Class B
Class C
In my simple case I had to inherit B and C from abstract class, that incapsulates equal methods of B and C. So that
A
|
Abstr
/ \
B C
While it doesn't solve the problem, it can be used in simple cases, when C is similar to B. For instance, when C is initialized, but doesn't want to use initializers of B. Then it simply calls Abstr methods.
This is a common part of B and C:
public abstract class Abstr extends AppCompatActivity {
public void showProgress() {
}
public void hideProgress() {
}
}
This is B, that has it's own method onCreate(), which exists in AppCompatActivity:
public class B extends Abstr {
#Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState); // Call from AppCompatActivity.
setContentView(R.layout.activity_B); // B shows "activity_B" resource.
showProgress();
}
}
C shows its own layout:
public class C extends Abstr {
#Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState); // Call from AppCompatActivity.
setContentView(R.layout.activity_C); // C shows "activity_C" resource.
showProgress();
}
}
This is not something that you should do normally but, in special cases where you have to workaround some bug from a third party library (if it allow to do so), you can achieve calling a super super class method that has already been overwritten using the delegation pattern and an inner class that extends the super super class to use as a bridge:
class A() {
public void foo() {
System.out.println("calling A");
}
}
class B extends A() {
#Overwrite
public void foo() {
System.out.println("calling B");
}
}
class C extends B() {
private final a;
public C() {
this.a = new AExtension();
}
#Overwrite
public void foo() {
a.foo();
}
private class AExtension extends A {
}
}
This way you will be able to not only call the super super method but also combine calls to other super super class methods with calls to methods of the super class or the class itself by using `C.super` or `C.this`.

Categories

Resources