Is there an API that allows ordering event in clustered application? - java

Given the following facts, is there a existing open-source Java API (possibly as part of some greater product) that implements an algorithm enabling the reproducible ordering of events in a cluster environment:
1) There are N sources of events, each with a unique ID.
2) Each event produced has an ID/timestamp, which, together with
its source ID, makes it uniquely identifiable.
3) The ids can be used to sort the events.
4) There are M application servers receiving those events.
M is normally 3.
5) The events can arrive at any one or more of the application
servers, in no specific order.
6) The events are processed in batches.
7) The servers have to agree for each batch on the list of events
to process.
8) The event each have earliest and latest batch ID in which they
must be processed.
9) They must not be processed earlier, and are "failed" if they
cannot be processed before the deadline.
10) The batches are based on the real clock time. For example,
one batch per second.
11) The events of a batch are processed when 2 of the 3 servers
agree on the list of events to process for that batch (quorum).
12) The "third" server then has to wait until it possesses all the
required events before it can process that batch too.
13) Once an event was processed or failed, the source has to be
informed.
14) [EDIT] Events from one source must be processed (or failed) in
the order of their ID/timestamp, but there is no causality
between different sources.
Less formally, I have those servers that receive events. They start with the same initial state, and should keep in sync by agreeing on which event to process in which order. Luckily for me, the events are not to be processed ASAP, but "in a bit", so that I have some time to get the servers to agree before the deadline. But I'm not sure if that actually make any real difference to the algorithms. And if all servers agree on all batches, then they will always be in sync, therefore presenting a consistent view when queried.
While I would be most happy with a Java API, I would accept something else if I can call it from Java. And if there is no open-source API, but a clear algorithm, I would also take that as an answer and try to implement it myself.

Looking at the question and your follow-up there probably "wasn't" an API to satisfy your requirements. To day you could take a look at the Kafka (from LinkedIn)
Apache Kafka
And the general concept of "a log" entity, in what folks like to call 'big data':
The Log: What every software engineer should know about real-time data's unifying abstraction
Actually for your question, I'd begin with the blog about "the log". In my terms the way it works -- And Kafka isn't the only package out doing log handling -- Works as follows:
Instead of a queue based message-passing / publish-subscribe
Kafka uses a "log" of messages
Subscribers (or end-points) can consume the log
The log guarantees to be "in-order"; it handles giga-data, is fast
Double check on the guarantee, there's usually a trade-off for reliability
You just read the log, I think reads are destructive as the default.
If there's a subscriber group, everyone can 'read' before the log-entry dies.
The basic handling (compute) process for the log, is a Map-Reduce-Filter model so you read-everything really fast; keep only stuff you want; process it (reduce) produce outcome(s).
The downside seems to be you need clusters and stuff to make it really shine. Since different servers or sites was mentioned I think we are still on track. I found it a finicky to get up-and-running with the Apache downloads because the tend to assume non-Windows environments (ho hum).
The other 'fast' option would be
Apache Apollo
Which would need you to do the plumbing for connecting different servers. Since the requirements include ...
servers that receive events. They start with the same initial state, and should keep in sync by agreeing on which event to process in which order. Luckily for me, the events are not to be processed ASAP, but "in a bit", so that I have some time to get the servers to agree before the deadline
I suggest looking at a "Getting Started" example or tutorial with Kafka and then looking at similar ZooKeeper organised message/log software(s). Good luck and Enjoy!

So far I haven't got a clear answer, but I think it would be useful anyone interested to see what I found.
Here are some theoretical discussions related to the subject:
Dynamic Vector Clocks for Consistent Ordering of Events
Conflict-free Replicated Data Types
One way of making multiple concurent process wait for each other, which I could use to synchronize the "batches" is a distributed barrier. One Java implementation seems to be available on top of Hazelcast and another uses ZooKeeper
One simpler alternative I found is to use a DB. Every process inserts all events it receives into the DB. Depending on the DB design, this can be fully concurrent and lock-free, like in VoltDB, for example. Then at regular interval of one second, some "cron job" runs that selects and marks the events to be processed in the next batch. The job can run on every server. The first to run the job for one batches fixes the set of events, so that the others just get to use the list that the first one defined. Like that we have a guarantee that all batches contain the same set of event on all servers. And if we can use a complete order over the whole batch, which the cron job could specify itself, then the state of the servers will be kept in sync.

Related

Java simple Analytics/Event Stream Processing with front end

My application takes a lot of measurements of it's internal processes. For example I time certain methods, I time external webservice calls and I also have variables which have a changing value, and processes which have a 'state' (e.g. PAUSED, WAITING etc).
The application uses 100 to 200 threads, and each bit of data would be associated with a particular thread.
I am looking for some software that I can channel all this information into that would produce useful metrics and graphs of the data (ideally in real time or close to real time), let me set thresholds to trigger warnings, would allow me to filter the data by thread or thread group, etc etc.
The application is performing time critical tasks so the software/api would need to be very fast and never block.
The application is written in java, and ideally the software/api would be in java as well. I think what I'm looking for is called Event Stream Processing, but I'm really not sure what language to use to describe it.
All I've found so far are Esper and ERMA. Can anyone give me a recommendation? I'm the only one working on this project so I'm hoping for something that is pretty easy to set up and use, and has a workable front end.
In the end I found Graphite which was pretty close to being exactly what I wanted. Not the simplest to set up and configure however, but I got it working in the end.
http://graphite.wikidot.com/
In my case I send data directly from my application to Statsd (via UDP), which collects the data and does some pre processing before it ends up in the whisper back end, there is a simple example of a java interface here https://github.com/etsy/statsd/commit/2253223f3c19d2149d65ec5bc802198ff93da4cb
Alternatively you could send your data directly to graphite, example here http://neopatel.blogspot.co.uk/2011/04/logging-to-graphite-monitoring-tool.html

concurrent consumers yet ensure order

I have a JMS Queue that is populated at a very high rate ( > 100,000/sec ).
It can happen that there can be multiple messages pertaining to the same entity every second as well. ( several updates to entity , with each update as a different message. )
On the other end, I have one consumer that processes this message and sends it to other applications.
Now, the whole set up is slowing down since the consumer is not able to cope up the rate of incoming messages.
Since, there is an SLA on the rate at which consumer processes messages, I have been toying with the idea of having multiple consumers acting in parallel to speed up the process.
So, what Im thinking to do is
Multiple consumers acting independently on the queue.
Each consumer is free to grab any message.
After grabbing a message, make sure its the latest version of the entity. For this, part, I can check with the application that processes this entity.
if its not latest, bump the version up and try again.
I have been looking up the Integration patterns, JMS docs so far without success.
I would welcome ideas to tackle this problem in a more elegant way along with any known APIs, patterns in Java world.
ActiveMQ solves this problem with a concept called "Message Groups". While it's not part of the JMS standard, several JMS-related products work similarly. The basic idea is that you assign each message to a "group" which indicates messages that are related and have to be processed in order. Then you set it up so that each group is delivered only to one consumer. Thus you get load balancing between groups but guarantee in-order delivery within a group.
Most EIP frameworks and ESB's have customizable resequencers. If the amount of entities is not too large you can have a queue per entity and resequence at the beginning.
For those ones interested in a way to solve this:
Use Recipient List EAI pattern
As the question is about JMS, we can take a look into an example from Apache Camel website.
This approach is different from other patterns like CBR and Selective Consumer because the consumer is not aware of what message it should process.
Let me put this on a real world example:
We have an Order Management System (OMS) which sends off Orders to be processed by the ERP. The Order then goes through 6 steps, and each of those steps publishes an event on the Order_queue, informing the new Order's status. Nothing special here.
The OMS consumes the events from that queue, but MUST process the events of each Order in the very same sequence they were published. The rate of messages published per minute is much greater than the consumer's throughput, hence the delay increases over time.
The solution requirements:
Consume in parallel, including as many consumers as needed to keep queue size in a reasonable amount.
Guarantee that events for each Order are processed in the same publish order.
The implementation:
On the OMS side
The OMS process responsible for sending Orders to the ERP, determines the consumer that will process all events of a certain Order and sends the Recipient name along with the Order.
How this process know what should be the Recipient? Well, you can use different approaches, but we used a very simple one: Round Robin.
On ERP
As it keeps the Recipient's name for each Order, it simply setup the message to be delivered to the desired Recipient.
On OMS Consumer
We've deployed 4 instances, each one using a different Recipient name and concurrently processing messages.
One could say that we created another bottleneck: the database. But it is not true, since there is no concurrency on the order line.
One drawback is that the OMS process which sends the Orders to the ERP must keep knowledge about how many Recipients are working.

Is there a way to assure FIFO (first in, first out) behavior with Task Queues on GAE?

Is there a way to assure FIFO (first in, first out) behavior with Task Queues on GAE?
GAE Documentation says that FIFO is one of the factors that affect task execution order, but the same documentation says that “the system's scheduling may 'jump' new tasks to the head of the queue” and I have confirmed this behavior with a test. The effect: my events are being processed out of order.
Docs says:
https://developers.google.com/appengine/docs/java/taskqueue/overview-push
The order in which tasks are executed depends on several factors:
The position of the task in the queue. App Engine attempts to process tasks based on FIFO > (first in, first out) order. In general, tasks are inserted into the end of a queue, and
executed from the head of the queue.
The backlog of tasks in the queue. The system attempts to deliver the lowest latency
possible for any given task via specially optimized notifications to the scheduler.
Thus, in the case that a queue has a large backlog of tasks, the
system's scheduling may "jump" new tasks to the head of the queue.
The value of the task's etaMillis property. This property specifies the
earliest time that a task can execute. App Engine always waits until
after the specified ETA to process push tasks.
The value of the task's countdownMillis property. This property specifies the minimum
number of seconds to wait before executing a task. Countdown and eta
are mutually exclusive; if you specify one, do not specify the other.
What I need to do? In my use case, I'll process 1-2 million events/day coming from vehicles. These events can be sent at any interval (1 sec, 1 minute or 1 hour). The order of the event processing has to be assured. I need process by timestamp order, which is generated on a embedded device inside the vehicle.
What I have now?
A Rest servlet that is called by the consumer and creates a Task (Event data is on payload).
After this, a worker servlet get this Task and:
Deserialize Event data;
Put Event on Datastore;
Update Vehicle On Datastore.
So, again, is there any way to assure just FIFO behavior? Or how can I improve this solution to get this?
You need to approach this with three separate steps:
Implement a Sharding Counter to generate a monotonically
increasing ID. As much as I like to use the timestamp from
Google's server to indicate task ordering, it appears that timestamps
between GAE servers might vary more than what your requirement is.
Add your tasks to a Pull Queue instead of a Push Queue. When
constructing your TaskOption, add the ID obtained from Step #1 as a tag.
After adding the task, store the ID somewhere on your datastore.
Have your worker servlet lease Tasks by a certain tag from the Pull Queue.
Query the datastore to get the earliest ID that you need to fetch, and use the ID as
the lease tag. In this way, you can simulate FIFO behavior for your task queue.
After you finished your processing, delete the ID from your datastore, and don't forget to delete the Task from your Pull Queue too. Also, I would recommend you run your task consumptions on the Backend.
UPDATE:
As noted by Nick Johnson and mjaggard, sharding in step #1 doesn't seem to be viable to generate a monotonically increasing IDs, and other sources of IDs would then be needed. I seem to recall you were using timestamps generated by your vehicles, would it be possible to use this in lieu of a monotonically increasing ID?
Regardless of the way to generate the IDs, the basic idea is to use datastore's query mechanism to produce a FIFO ordering of Tasks, and use task Tag to pull specific task from the TaskQueue.
There is a caveat, though. Due to the eventual consistency read policy on high-replication datastores, if you choose HRD as your datastore (and you should, the M/S is deprecated as of April 4th, 2012), there might be some stale data returned by the query on step #2.
I think the simple answer is "no", however partly in order to help improve the situation, I am using a pull queue - pulling 1000 tasks at a time and then sorting them. If timing isn't important, you could sort them and put them into the datastore and then complete a batch at a time. You've still got to work out what to do with the tasks at the beginning and ends of the batch - because they might be out of order with interleaving tasks in other batches.
Ok. This is how I've done it.
1) Rest servlet that is called from the consumer:
If Event sequence doesn't match Vehicle sequence (from datastore)
Creates a task on a "wait" queue to call me again
else
State validation
Creates a task on the "regular" queue (Event data is on payload).
2) A worker servlet gets the task from the "regular" queue, and so on... (same pseudo code)
This way I can pause the "regular" queue in order to do a data maintenance without losing events.
Thank you for your answers. My solution is a mix of them.
You can put the work to be done in a row in the datastore with a create timestamp and then fetch work tasks by that timestamp, but if your tasks are being created too quickly you will run into latency issues.
Don't know the answer myself, but it may be possible that tasks enqueued using a deferred function might execute in order submitted. Likely you will need an engineer from G. to get an answer. Pull queues as suggested seem a good alternative, plus this would allow you to consider batching your put()s.
One note about sharded counters: they increase the probability of monotonically increasing ids, but do not guarantee them.
The best way to handle this, the distributed way or "App Engine way" is probably to modify your algorithm and data collection to work with just a timestamp, allowing arbitrary ordering of tasks.
Assuming this is not possible or too difficult, you could modify your algorithm as follow:
when creating the task don't put the data on payload but in the datastore, in a Kind with an ordering on timestamps and stored as a child entity of whatever entity you're trying to update (Vehicule?). The timestamps should come from the client, not the server, to guarantee the same ordering.
run a generic task that fetch the data for the first timestamp, process it, and then delete it, inside a transaction.
Following this thread, I am unclear as to whether the strict FIFO requirement is for all transactions received, or on a per-vehicle basis. Latter has more options vs. former.

How to remove messages from a topic

I am trying to write an Application that uses the JMS publish subscribe model. However I have run into a setback, I want to be able to have the publisher delete messages from the topic. The usecase is that I have durable subscribers, the active ones will get the messages (since it's more or less instantly) , but if there are inactive ones and the publisher decides the message is wrong, I want to have him able to delete the message so that the subscribers won't receive it anymore once they become active.
Problem is, I don't know how/if this can be done.
For a provider I settled on glassfish's implementation, but if other alternatives offer this functionality, I can switch.
Thank you.
JMS is a form of asynchronous messaging and as such the publishers and subscribers are decoupled by design. This means that there is no mechanism to do what you are asking. For subscribers who are active at time of publication, they will consume the message with no chance of receiving the delete message in time to act on it. If a subscriber is offline then they will but async messages are supposed to be atomic. If you proceed with design of other respondent's answer (create a delete message and require reconnecting consumers to read the entire queue looking for delete messages), then you will create a situation in which the behavior of the system differs based on whether or not a subscriber was online or not at the time a specific message/delete combination was was published. There is also a race condition in which the subscriber completes reading of the retained messages just before the publisher sends out the delete message. This means you must put significant logic into subscribers to reconcile these conditions and even more to reconcile the race condition.
The accepted method of doing this is what are called "compensating transactions." In any system where the producer and consumer do not share a single unit of work or share common state (such as using the same DB to store state) then backing out or correcting a previous transaction requires a second transaction that reverses the first. The consumer must of course be able to apply the compensating transaction correctly. When this pattern is used the result is that all subscribers exhibit the same behavior regardless of whether the messages are consumed in real time or in a batch after the consumer has restarted.
Note that a compensating transaction differs from a "delete message." The delete message as proposed in the other respondent's answer is a form of command and control that affects the message stream itself. On the other hand, compensating transactions affect the state of the system through transactional updates of the system state.
As a general rule, you never want to manage state of the system by manipulating the message stream with command and control functions. This is fragile, susceptible to attack and very hard to audit or debug. Instead, design the system to deliver every message subject to its quality of service constraints and to process all messages. Handle state changes (including reversing a prior action) entirely in the application.
As an example, in banking where transactions trigger secondary effects such as overdraft fees, a common procedure is to "memo post" the transactions during the day, then sort and apply them in a batch after the bank has closed. This allows a mistake to be reconciled before it causes overdraft fees. More recently, the transactions are applied in real time but the triggers are withheld until the day's books close and this achieves the same result.
JMS API does not allow removing messages from any destination (either queue or topic). Although I believe that specific JMX providers provide their own proprietary tools to manage their state for example using JMX. Try to check it out for your JMS provider but be careful: even if you find solution it will not be portable between different JMS providers.
One legal way to "remove" message is using its time-to-live:
publish(Topic topic, Message message, int deliveryMode, int priority, long timeToLive). Probably it is good enough for you.
If it is not applicable for your application, solve the problem on application level. For example attach unique ID to each message and publish special "delete" message with higher priority that will be a kind of command to delete "real" message with the same ID.
You have have the producer send a delete message and the consumer needs to read all messages before starting to process them.

Is MQ publish/subscribe domain-specific interface generally faster than point-to-point?

I'm working on the existing application that uses transport layer with point-to-point MQ communication.
For each of the given list of accounts we need to retrieve some information.
Currently we have something like this to communicate with MQ:
responseObject getInfo(requestObject){
code to send message to MQ
code to retrieve message from MQ
}
As you can see we wait until it finishes completely before proceeding to the next account.
Due to performance issues we need to rework it.
There are 2 possible scenarios that I can think off at the moment.
1) Within an application to create a bunch of threads that would execute transport adapter for each account. Then get data from each task. I prefer this method, but some of the team members argue that transport layer is a better place for such change and we should place extra load on MQ instead of our application.
2) Rework transport layer to use publish/subscribe model.
Ideally I want something like this:
void send (requestObject){
code to send message to MQ
}
responseObject receive()
{
code to retrieve message from MQ
}
Then I will just send requests in the loop, and later retrieve data in the loop. The idea is that while first request is being processed by the back end system we don't have to wait for the response, but instead send next request.
My question, is it going to be a lot faster than current sequential retrieval?
The question title frames this as a choice between P2P and pub/sub but the question body frames it as a choice between threaded and pipelined processing. These are two completely different things.
Either code snippet provided could just as easily use P2P or pub/sub to put and get messages. The decision should not be based on speed but rather whether the interface in question requires a single message to be delivered to multiple receivers. If the answer is no then you probably want to stick with point-to-point, regardless of your application's threading model.
And, incidentally, the answer to the question posed in the title is "no." When you use the point-to-point model your messages resolve immediately to a destination or transmit queue and WebSphere MQ routes them from there. With pub/sub your message is handed off to an internal broker process that resolves zero to many possible destinations. Only after this step does the published message get put on a queue where, for the remainder of it's journey, it then is handled like any other point-to-point message. Although pub/sub is not normally noticeably slower than point-to-point the code path is longer and therefore, all other things being equal, it will add a bit more latency.
The other part of the question is about parallelism. You proposed either spinning up many threads or breaking the app up so that requests and replies are handled separately. A third option is to have multiple application instances running. You can combine any or all of these in your design. For example, you can spin up multiple request threads and multiple reply threads and then have application instances processing against multiple queue managers.
The key to this question is whether the messages have affinity to each other, to order dependencies or to the application instance or thread which created them. For example, if I am responding to an HTTP request with a request/reply then the thread attached to the HTTP session probably needs to be the one to receive the reply. But if the reply is truly asynchronous and all I need to do is update a database with the response data then having separate request and reply threads is helpful.
In either case, the ability to dynamically spin up or down the number of instances is helpful in managing peak workloads. If this is accomplished with threading alone then your performance scalability is bound to the upper limit of a single server. If this is accomplished by spinning up new application instances on the same or different server/QMgr then you get both scalability and workload balancing.
Please see the following article for more thoughts on these subjects: Mission:Messaging: Migration, failover, and scaling in a WebSphere MQ cluster
Also, go to the WebSphere MQ SupportPacs page and look for the Performance SupportPac for your platform and WMQ version. These are the ones with names beginning with MP**. These will show you the performance characteristics as the number of connected application instances varies.
It doesn't sound like you're thinking about this the right way. Regardless of the model you use (point-to-point or publish/subscribe), if your performance is bounded by a slow back-end system, neither will help speed up the process. If, however, you could theoretically issue more than one request at a time against the back-end system and expect to see a speed up, then you still don't really care if you do point-to-point or publish/subscribe. What you really care about is synchronous vs. asynchronous.
Your current approach for retrieving the data is clearly synchronous: you send the request message, and wait for the corresponding response message. You could do your communication asynchronously if you simply sent all the request messages in a row (perhaps in a loop) in one method, and then had a separate method (preferably on a different thread) monitoring the incoming topic for responses. This would ensure that your code would no longer block on individual requests. (This roughly corresponds to option 2, though without pub/sub.)
I think option 1 could get pretty unwieldly, depending on how many requests you actually have to make, though it, too, could be implemented without switching to a pub/sub channel.
The reworked approach will use fewer threads. Whether that makes the application faster depends on whether the overhead of managing a lot of threads is currently slowing you down. If you have fewer than 1000 threads (this is a very, very rough order-of-magnitude estimate!), i would guess it probably isn't. If you have more than that, it might well be.

Categories

Resources