synchronized method while using wait() - java

I ran the following code:
class Counter extends Thread {
static int i=0;
//method where the thread execution will start
public void run(){
//logic to execute in a thread
while (true) {
increment();
}
}
public synchronized void increment() {
try {
System.out.println(this.getName() + " " + i++);
wait(1000);
notify();
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
//let’s see how to start the threads
public static void main(String[] args){
Counter c1 = new Counter();
Counter c2 = new Counter();
c1.setName("Thread1");
c2.setName("Thread2");
c1.start();
c2.start();
}
}
The result of this code was (added line numbers):
1: Thread1 0
2: Thread2 1
3: Thread2 2
4: Thread1 3
5: Thread2 4
6: Thread1 4
7: Thread1 5
8: Thread2 6
stopping...
Since increment method is synchronized and since it contains wait(1000) I didnt expect:
1. Thread2 to print 2 consecutive prints: lines 2,3
I expected the threads to interleave their prints
2. on lines 5,6 the i remains 4.
could anyone give me an explanation for this?

Synchronized instance methods like this:
public synchronized void foo() {
...
}
are roughly equivalent to:
public void foo() {
synchronized(this) {
...
}
}
Do you see the problem here? The synchronization is done on the current instance.
Since you are creating two separate Thread objects each increment method will synchronize on a different object, thus rendering the lock useless.
You should either make your increment method static (thus the locking is done on the class itself) or use a static lock object:
private static final Object locker = new Object();
public void foo() {
synchronized(locker) {
...
}
}
And one final advice: the preferred way to create a thread in java is by implementing Runnable, not extending Thread.

You are only synchronizing at the instance level. To synchronize across all Counter instances you need the increment method to be static as well as synchronized.
As it stands all your threads run freely, concurrent with each other, because they share no synchronization mechanism.

This is probably the code you are looking for
class Counter implements Runnable {
static int i = 0;
private Lock lock;
private Condition condition;
public Counter(Lock lock, Condition condition) {
this.lock = lock;
this.condition = condition;
}
public void run() {
while (true) {
lock.lock();
try {
condition.await(1, TimeUnit.SECONDS);
System.out.append(Thread.currentThread().getName()).append(" ").println(i++);
condition.signalAll();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
public static void main(String[] args) {
Lock lock = new ReentrantLock(true);
Condition condition = lock.newCondition();
Executor e = Executors.newFixedThreadPool(2);
e.execute(new Counter(lock, condition));
e.execute(new Counter(lock, condition));
}
}

Related

java thread synchronized & lock no effect?

so much confused why I get a random result while doing 'i++' in a synchronized or a locked method?
public class aaa implements Runnable {
static int count = 0;
public static void main(String[] args) {
aaa aaa = new aaa();
aaa.create();
}
public void create() {
ExecutorService executor = Executors.newFixedThreadPool(100);
for (int i = 0; i < 1000; i++) {
aaa thread = new aaa();
executor.execute(thread);
}
executor.shutdown();
while (true){
if(executor.isTerminated()){
System.out.println("a " + count);
break;
}
}
}
#Override
public void run() {
this.test();
}
public void test() {
Lock lock = new ReentrantLock();
try {
lock.lock();
count++;
System.out.println(count);
} finally {
lock.unlock();
}
}
}
OR:
public synchronized void test() {
count++;
System.out.println(count);
}
the result is a random number sometimes 1000 sometimes 998, 999 ...etc and the print from inside the 'test' method is not in a sequence, it is like :
867
836
825
824
821
820
819
817
816
a 999
However, if it is in a synchronized block, everything looks good:
public void test() {
synchronized (aaa.class) {
count++;
System.out.println(count);
}
}
the result:
993
994
995
996
997
998
999
1000
a 1000
I think all of the methods above should give me the same result 1000, and the self increment should be in a sequence, but only the last method works.What is wrong with the code? Please help!!!
You are creating multiple instances of aaa, each instance creates its own ReentrantLock, and every thread in execution smoothly acquires a lock from its own instance.
public void test() {
Lock lock = new ReentrantLock();
try {
lock.lock();
count++;
System.out.println(count);
} finally {
lock.unlock();
}
}
Since there are multiple instances of aaa, each thread is running on its own instance and the synchronized method uses current object of aaa.class
public synchronized void test() {
count++;
System.out.println(count);
}
The reason for getting a proper result in this approach is, you are using the aaa.class as an object to the synchronization
public void test() {
synchronized (aaa.class) {
count++;
System.out.println(count);
}
}
The solution is, reuse the same lock(ReentrantLock) across all the threads. Defining the lock in the same level as the variable count would solve the issue.
You must create a single mutex, i.e.
static Lock lock = new ReentrantLock();
Your synchronized method does not work since you are creating N aaa instances then, every (non static) method is different (with their own mutex).
Your synchronized (aaa.class) works since aaa.class is the same Object for all aaa instances and methods.
Then, if you need synchronize the method be sure it is the same for all threads, e.g. if test is static will be the same for all
#Override
public void run() {
test();
}
public static synchronized void test() {
count++;
}
but you can inject a "counter class", e.g.
class Counter {
int count = 0;
// non static but synchronized for all (since they use the same `counter` object)
synchronized void inc() {
count++;
}
}
to be used for all threads
...
SyncTest thread = new SyncTest(counter); // <== the same
...
(full code)
public class SyncTest implements Runnable {
private final Counter c;
public SyncTest(Counter c) {
this.c = c;
}
static class Counter {
int count = 0;
// non static but synchronized for all (since they use the same `counter` object)
synchronized void inc() {
count++;
}
}
#Override
public void run() {
test();
}
public void test() {
this.c.inc();
}
public static void main(String[] args) {
// one counter for all
Counter counter = new Counter();
ExecutorService executor = Executors.newFixedThreadPool(100);
for (int i = 0; i < 10000; i++) {
SyncTest thread = new SyncTest(counter);
executor.execute(thread);
}
executor.shutdown();
while (true) {
if (executor.isTerminated()) {
System.out.println("a " + counter.count);
break;
}
}
}
}
Rule of thumb: Declare your lock variable on the next line after the variable(s) that you want to protect with it, and declare it with the same keywords. E.g.,
public class aaa implements Runnable {
static int count = 0;
static Lock countLock = new ReentrantLock();
...
If you read deeply enough into any of the other answers here, then you will see why this helps.

Solving Counter Problem in Java Thread With synchronized method and block

I just wrote code for counter problem in a thread. When I add synchronized on Method its working fine but when I use synchronized block inside a method it does not work, why? Something I am missing, I guess.
public class CounterProblem {
class Counter implements Runnable {
private Integer count = 0;
#Override
public void run() {
for(int i = 0; i < 10000; i++) {
increment();
}
}
// THIS GIVES 20000 which is correct every time.
public synchronized void increment() {
count++;
}
// THIS GIVES wrong every time. WHY ?
// public void increment() {
// synchronized(count) {
// count++;
// }
// }
}
public static void main(String[] args) throws InterruptedException {
CounterProblem counterProblem = new CounterProblem();
Counter counter = counterProblem.new Counter();
Thread thread1 = new Thread(counter);
Thread thread2 = new Thread(counter);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
System.out.println(counter.count);
}
}
java.lang.Integer's aren't mutable. When you increment an Integer, you unbox it to a primitive int, increment it, and then autobox the result to a different Integer instance. This means your synchronized block synchronizes on a different object every time, making it pointless - as you've seen yourself.

Java Multithreading - Threadsafe Counter

I'm starting off with a very simple example in multithreading. I'm trying to make a threadsafe counter. I want to create two threads that increment the counter intermittently to reach 1000. Code below:
public class ThreadsExample implements Runnable {
static int counter = 1; // a global counter
public ThreadsExample() {
}
static synchronized void incrementCounter() {
System.out.println(Thread.currentThread().getName() + ": " + counter);
counter++;
}
#Override
public void run() {
while(counter<1000){
incrementCounter();
}
}
public static void main(String[] args) {
ThreadsExample te = new ThreadsExample();
Thread thread1 = new Thread(te);
Thread thread2 = new Thread(te);
thread1.start();
thread2.start();
}
}
From what I can tell, the while loop right now means that only the first thread has access to the counter until it reaches 1000. Output:
Thread-0: 1
.
.
.
Thread-0: 999
Thread-1: 1000
How do I fix that? How can I get the threads to share the counter?
You could use the AtomicInteger. It is a class that can be incremented atomically, so two seperate threads calling its increment method do not interleave.
public class ThreadsExample implements Runnable {
static AtomicInteger counter = new AtomicInteger(1); // a global counter
public ThreadsExample() {
}
static void incrementCounter() {
System.out.println(Thread.currentThread().getName() + ": " + counter.getAndIncrement());
}
#Override
public void run() {
while(counter.get() < 1000){
incrementCounter();
}
}
public static void main(String[] args) {
ThreadsExample te = new ThreadsExample();
Thread thread1 = new Thread(te);
Thread thread2 = new Thread(te);
thread1.start();
thread2.start();
}
}
Both threads have access to your variable.
The phenomenon you are seeing is called thread starvation. Upon entering the guarded portion of your code (sorry I missed this earlier), other threads will need to block until the thread holding the monitor is done (i.e. when the monitor is released). Whilst one may expect the current thread pass the monitor to the next thread waiting in line, for synchronized blocks, java does not guarantee any fairness or ordering policy to which thread next recieves the monitor. It is entirely possible (and even likely) for a thread that releases and attempts to reacquire the monitor to get hold of it over another thread that has been waiting for a while.
From Oracle:
Starvation describes a situation where a thread is unable to gain regular access to shared resources and is unable to make progress. This happens when shared resources are made unavailable for long periods by "greedy" threads. For example, suppose an object provides a synchronized method that often takes a long time to return. If one thread invokes this method frequently, other threads that also need frequent synchronized access to the same object will often be blocked.
Whilst both of your threads are examples of "greedy" threads (since they repeatedly release and reacquire the monitor), thread-0 is technically started first, thus starving thread-1.
The solution is to use a concurrent synchronization method that supports fairness (e.g. ReentrantLock) as shown below:
public class ThreadsExample implements Runnable {
static int counter = 1; // a global counter
static ReentrantLock counterLock = new ReentrantLock(true); // enable fairness policy
static void incrementCounter(){
counterLock.lock();
// Always good practice to enclose locks in a try-finally block
try{
System.out.println(Thread.currentThread().getName() + ": " + counter);
counter++;
}finally{
counterLock.unlock();
}
}
#Override
public void run() {
while(counter<1000){
incrementCounter();
}
}
public static void main(String[] args) {
ThreadsExample te = new ThreadsExample();
Thread thread1 = new Thread(te);
Thread thread2 = new Thread(te);
thread1.start();
thread2.start();
}
}
note the removal of the synchronized keyword in favor of the ReentrantLock within the method. Such a system, with a fairness policy, allows long waiting threads a chance to execute, removing the starvation.
Well, with your code I don't know how to get "exactly" intermittently, but if you use Thread.yield() after call incrementCounter() you will have a better distribution.
public void run() {
while(counter<1000){
incrementCounter();
Thread.yield();
}
}
Otherwise, to get what you propose, you can create two different thread class (ThreadsExample1 and ThreadsExample2 if you want), and another class to be a shared variable.
public class SharedVariable {
private int value;
private boolean turn; //false = ThreadsExample1 --> true = ThreadsExample2
public SharedVariable (){
this.value = 0;
this.turn = false;
}
public void set (int v){
this.value = v;
}
public int get (){
return this.value;
}
public void inc (){
this.value++;
}
public void shiftTurn(){
if (this.turn){
this.turn=false;
}else{
this.turn=true;
}
}
public boolean getTurn(){
return this.turn;
}
}
Now, the main can be:
public static void main(String[] args) {
SharedVariable vCom = new SharedVariable();
ThreadsExample1 hThread1 = new ThreadsExample1 (vCom);
ThreadsExample2 hThread2 = new ThreadsExample2 (vCom);
hThread1.start();
hThread2.start();
try {
hThread1.join();
hThread2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
And you have to change your line static int counter = 1; // a global counter
for private SharedVariable counter;
And the new run is:
public void run() {
for (int i = 0; i < 20; i++) {
while (!counter.getTurno()){
Thread.yield();
}
System.out.println(this.counter.get());
this.counter.cambioTurno();
}
}
}
Yes, it is another code, but I think it can help you a little bit.

java synchronization holding on to an object for specified interval of time

In java can a thread hold on to an object for some specified interval of time ? For example, Suppose i have the following code:
package test;
class Thread1 implements Runnable {
private int balance;
#Override
public void run() {
// TODO Auto-generated method stub
for(int i=0;i<50;i++)
{
increment();
System.out.println("The bal by "+Thread.currentThread().getName()+" "+balance);
}
}
public synchronized void increment()
{
int i=balance;
balance =i+1;
}
}
Main class:
package test;
public class MainC {
public static void main(String args[])
{
Thread1 job=new Thread1();
Thread a =new Thread(job);
Thread b=new Thread(job);
a.setName("Thread a");
b.setName("Thread b");
a.start();
b.start();
}
}
Now, i want thread 1 to hold the lock on to the increment method till i==10 and don't want thread 2 to access the increment method! Is it possible!??
In addition to being a method modifier, synchronized can be used on any standalone block of code. For instance:
synchronized (this) {
doStuff();
doMoreStuff();
}
In your case, you can split up your loop into two loops, and place the first loop inside a synchronized block.

IlleagalMonitorStateException when I am trying to run this program

public class ThreadTest
{
public static Integer i = new Integer(0);
public static void main(String[] args) throws InterruptedException
{
ThreadTest threadTest = new ThreadTest();
Runnable odd = threadTest.new Numbers(1, "thread1");
Runnable even = threadTest.new Numbers(0, "thread2");
((Thread) odd).start();
((Thread) even).start();
}
class Numbers extends Thread
{
int reminder;
String threadName;
Numbers(int reminder, String threadName)
{
this.reminder = reminder;
this.threadName = threadName;
}
#Override
public void run()
{
while (i < 20)
{
synchronized (i)
{
if (i % 2 == reminder)
{
System.out.println(threadName + " : " + i);
i++;
i.notify();
}
else
{
try
{
i.wait();
}
catch (InterruptedException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
}
}
}
}
You can't synchronize on i because it changes during execution of your program.
Since Integer in Java is immutable, after executing i++ i will contain a reference to another object, not the object you have synchronized on. So, you can't call wait()/notify() on this new object, because these methods may be only called on the object you are synchronized on, otherwise you get IllegalMonitorStateException.
You need to synchronize on some other object that doesn't change during execution. For example, you may create a separate object for this purpose:
public class ThreadTest {
public static Integer i = new Integer(0);
public static Object lock = new Object();
...
class Numbers extends Thread {
...
#Override
public void run() {
...
synchronized (lock) {
...
lock.notify();
...
lock.wait();
...
}
}
}
}
This line:
i++;
is equivalent to:
i = i + 1;
which (due to autoboxing) becomes something like:
i = new Integer(i.intValue() + 1);
So, when you call i.notify() you are synchronized on the old i, not the new one.
I'd suggest changing i into an ordinary int variable, and create a separate object to synchronize on:
static int i = 0;
static Object iMonitor = new Object();
As documentation states the exception is thrown when
the current thread is not the owner of the object's monitor
It also states that
This method should only be called by a thread that is the owner of this object's monitor.
And this condition can be obtained by
By executing a synchronized instance method of that object.
By executing the body of a synchronized statement that synchronizes on the object.
For objects of type Class, by executing a synchronized static method of that class.
You could try calling the wait method from inside the class that uses i. This could be done by extending the class and writing two new methods for notify and wait..
You cannot put wait() and notify() in the same synchronized block because that will just cause a deadlock. Make sure only the wait and notify functions are wrapped with a synchronized block like this:
synchronized (i) {
i.wait(); // or i.notify();
}

Categories

Resources