I know this question was answered many times, but I'm struggling to understand how it works.
So in my application the user must be able to select items which will be added to a queue (displayed in a ListView using an ObservableList<Task>) and each item needs to be processed sequentially by an ExecutorService.
Also that queue should be editable (change the order and remove items from the list).
private void handleItemClicked(MouseEvent event) {
if (event.getClickCount() == 2) {
File item = listView.getSelectionModel().getSelectedItem();
Task<Void> task = createTask(item);
facade.getTaskQueueList().add(task); // this list is bound to a ListView, where it can be edited
Future result = executor.submit(task);
// where executor is an ExecutorService of which type?
try {
result.get();
} catch (Exception e) {
// ...
}
}
}
Tried it with executor = Executors.newFixedThreadPool(1) but I don't have control over the queue.
I read about ThreadPoolExecutor and queues, but I'm struggling to understand it as I'm quite new to Concurrency.
I need to run that method handleItemClicked in a background thread, so that the UI does not freeze, how can I do that the best way?
Summed up: How can I implement a queue of tasks, which is editable and sequentially processed by a background thread?
Please help me figure it out
EDIT
Using the SerialTaskQueue class from vanOekel helped me, now I want to bind the List of tasks to my ListView.
ListProperty<Runnable> listProperty = new SimpleListProperty<>();
listProperty.set(taskQueue.getTaskList()); // getTaskList() returns the LinkedList from SerialTaskQueue
queueListView.itemsProperty().bind(listProperty);
Obviously this doesn't work as it's expecting an ObservableList. There is an elegant way to do it?
The simplest solution I can think of is to maintain the task-list outside of the executor and use a callback to feed the executor the next task if it is available. Unfortunately, it involves synchronization on the task-list and an AtomicBoolean to indicate a task executing.
The callback is simply a Runnable that wraps the original task to run and then "calls back" to see if there is another task to execute, and if so, executes it using the (background) executor.
The synchronization is needed to keep the task-list in order and at a known state. The task-list can be modified by two threads at the same time: via the callback running in the executor's (background) thread and via handleItemClicked method executed via the UI foreground thread. This in turn means that it is never exactly known when the task-list is empty for example. To keep the task-list in order and at a known fixed state, synchronization of the task-list is needed.
This still leaves an ambiguous moment to decide when a task is ready for execution. This is where the AtomicBoolean comes in: a value set is always immediatly availabe and read by any other thread and the compareAndSet method will always ensure only one thread gets an "OK".
Combining the synchronization and the use of the AtomicBoolean allows the creation of one method with a "critical section" that can be called by both foreground- and background-threads at the same time to trigger the execution of a new task if possible. The code below is designed and setup in such a way that one such method (runNextTask) can exist. It is good practice to make the "critical section" in concurrent code as simple and explicit as possible (which, in turn, generally leads to an efficient "critical section").
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicBoolean;
public class SerialTaskQueue {
public static void main(String[] args) {
ExecutorService executor = Executors.newSingleThreadExecutor();
// all operations on this list must be synchronized on the list itself.
SerialTaskQueue tq = new SerialTaskQueue(executor);
try {
// test running the tasks one by one
tq.add(new SleepSome(10L));
Thread.sleep(5L);
tq.add(new SleepSome(20L));
tq.add(new SleepSome(30L));
Thread.sleep(100L);
System.out.println("Queue size: " + tq.size()); // should be empty
tq.add(new SleepSome(10L));
Thread.sleep(100L);
} catch (Exception e) {
e.printStackTrace();
} finally {
executor.shutdownNow();
}
}
// all lookups and modifications to the list must be synchronized on the list.
private final List<Runnable> tasks = new LinkedList<Runnable>();
// atomic boolean used to ensure only 1 task is executed at any given time
private final AtomicBoolean executeNextTask = new AtomicBoolean(true);
private final Executor executor;
public SerialTaskQueue(Executor executor) {
this.executor = executor;
}
public void add(Runnable task) {
synchronized(tasks) { tasks.add(task); }
runNextTask();
}
private void runNextTask() {
// critical section that ensures one task is executed.
synchronized(tasks) {
if (!tasks.isEmpty()
&& executeNextTask.compareAndSet(true, false)) {
executor.execute(wrapTask(tasks.remove(0)));
}
}
}
private CallbackTask wrapTask(Runnable task) {
return new CallbackTask(task, new Runnable() {
#Override public void run() {
if (!executeNextTask.compareAndSet(false, true)) {
System.out.println("ERROR: programming error, the callback should always run in execute state.");
}
runNextTask();
}
});
}
public int size() {
synchronized(tasks) { return tasks.size(); }
}
public Runnable get(int index) {
synchronized(tasks) { return tasks.get(index); }
}
public Runnable remove(int index) {
synchronized(tasks) { return tasks.remove(index); }
}
// general callback-task, see https://stackoverflow.com/a/826283/3080094
static class CallbackTask implements Runnable {
private final Runnable task, callback;
public CallbackTask(Runnable task, Runnable callback) {
this.task = task;
this.callback = callback;
}
#Override public void run() {
try {
task.run();
} catch (Exception e) {
e.printStackTrace();
} finally {
try {
callback.run();
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
// task that just sleeps for a while
static class SleepSome implements Runnable {
static long startTime = System.currentTimeMillis();
private final long sleepTimeMs;
public SleepSome(long sleepTimeMs) {
this.sleepTimeMs = sleepTimeMs;
}
#Override public void run() {
try {
System.out.println(tdelta() + "Sleeping for " + sleepTimeMs + " ms.");
Thread.sleep(sleepTimeMs);
System.out.println(tdelta() + "Slept for " + sleepTimeMs + " ms.");
} catch (Exception e) {
e.printStackTrace();
}
}
private String tdelta() { return String.format("% 4d ", (System.currentTimeMillis() - startTime)); }
}
}
Update: if groups of tasks need to be executed serial, have a look at the adapted implementation here.
I'm using a 3rd party function (say runThird()) that has a tendency to loop indefinitely and has no timeout facility built in. However, I can kill it (killThird()). Is there a proper way to do this (i.e. some concurrency construct)?
Here's my attempt at this:
java.lang.Thread thread = new Thread(new Runnable(){
#Override
public void run(){
try {
Thread.sleep(TIMEOUT);
} catch (java.lang.InterruptedException e){
return;
}
killThird();
}
});
thread.start();
RunThirdResult rtr = runThird();
if (thread != null){
thread.interrupt();
}
But I'm not sure I like the overhead of creating a thread, using sleep and the contrivance of interrupting the thread if runThird() returns.
Let's assume runThird() retuns Integer ...
// ... in your class ...
private ExecutorService executor = Executors.newCachedThreadPool();
//... then somewhere, where you want to call runThird()
Future<Integer> handle = executor.submit( new Callable<Integer>(){
#Override Integer call(){
return runThird(); // Assume you made it available here ...
}
}
Integer result;
try{
result = handle.get(TIMEOUT,UNIT); // TIMEOUT and UNIT declared somewhere above ...
}
catch(TimeoutException ex) {
killThird();
// HANDLE result not being set!
}
// ... use result.
I would use a ScheduledExecutorService for this. Schedule it to be killed.
volatile RunThirdResult rtr;
ScheduledExecutorService service = Executors.newScheduledThreadPool(1);
service.schedule(new Runnable(){
public void run(){
if(rtr == null) killThird();
}
}, TIMEOUT_IN_MILLIS, TimeUnit.MILLISECONDS);
RunThirdResult rtr = runThird();
Something like that? The most interesting part is StoppableWrapper#stop(), cause graceful cancellation is a hard thing and there's no common approach for all cases. One time you need to clear filesystem, other time to close network connection, etc. In your sample, you just call interrupt(), so I assumed runThird() honors being interrupted and will take care to clean things behind itself.
class Sample {
final ExecutorService tasksExecutor = Executors.newCachedThreadPool();
class StoppableWrapper implements Runnable {
private final Runnable task;
private final CountDownLatch executed;
StoppableWrapper(Runnable task, CountDownLatch executed) {
this.task = task;
this.executed = executed;
}
void stop() {
// e.g. Thread.currentThread().interrupt()
}
#Override
public void run() {
task.run();
executed.countDown();
}
}
public void scheduleTimingOutTaskExecution(final long timeout) {
final CountDownLatch executed = new CountDownLatch(1);
final StoppableWrapper command = new StoppableWrapper(new RunThirdInstance(), executed);
tasksExecutor.execute(command);
tasksExecutor.execute(new Runnable() {
#Override
public void run() {
try {
if (!executed.await(timeout, TimeUnit.MILLISECONDS)) {
command.stop();
// additionally, you can make stop() return boolean after time-out as well and handle failure
}
} catch (InterruptedException e) {
// handle stopper exception here
}
}
});
}
}
I want to run a thread for some fixed amount of time. If it is not completed within that time, I want to either kill it, throw some exception, or handle it in some way. How can it be done?
One way of doing it as I figured out from this thread
is to use a TimerTask inside the run() method of the Thread.
Are there any better solutions for this?
EDIT: Adding a bounty as I needed a clearer answer. The ExecutorService code given below does not address my problem. Why should I sleep() after executing (some code - I have no handle over this piece of code)? If the code is completed and the sleep() is interrupted, how can that be a timeOut?
The task that needs to be executed is not in my control. It can be any piece of code. The problem is this piece of code might run into an infinite loop. I don't want that to happen. So, I just want to run that task in a separate thread. The parent thread has to wait till that thread finishes and needs to know the status of the task (i.e whether it timed out or some exception occured or if its a success). If the task goes into an infinite loop, my parent thread keeps on waiting indefinitely, which is not an ideal situation.
Indeed rather use ExecutorService instead of Timer, here's an SSCCE:
package com.stackoverflow.q2275443;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class Test {
public static void main(String[] args) throws Exception {
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<String> future = executor.submit(new Task());
try {
System.out.println("Started..");
System.out.println(future.get(3, TimeUnit.SECONDS));
System.out.println("Finished!");
} catch (TimeoutException e) {
future.cancel(true);
System.out.println("Terminated!");
}
executor.shutdownNow();
}
}
class Task implements Callable<String> {
#Override
public String call() throws Exception {
Thread.sleep(4000); // Just to demo a long running task of 4 seconds.
return "Ready!";
}
}
Play a bit with the timeout argument in Future#get() method, e.g. increase it to 5 and you'll see that the thread finishes. You can intercept the timeout in the catch (TimeoutException e) block.
Update: to clarify a conceptual misunderstanding, the sleep() is not required. It is just used for SSCCE/demonstration purposes. Just do your long running task right there in place of sleep(). Inside your long running task, you should be checking if the thread is not interrupted as follows:
while (!Thread.interrupted()) {
// Do your long running task here.
}
There isn't a 100% reliable way to do this for any old task. The task has to be written with this ability in mind.
Core Java libraries like ExecutorService cancel asynchronous tasks with interrupt() calls on the worker thread. So, for example, if the task contains some sort of loop, you should be checking its interrupt status on each iteration. If the task is doing I/O operations, they should be interruptible too—and setting that up can be tricky. In any case, keep in mind that code has to actively check for interrupts; setting an interrupt doesn't necessarily do anything.
Of course, if your task is some simple loop, you can just check the current time at each iteration and give up when a specified timeout has elapsed. A worker thread isn't needed in that case.
Consider using an instance of ExecutorService. Both invokeAll() and invokeAny() methods are available with a timeout parameter.
The current thread will block until the method completes (not sure if this is desirable) either because the task(s) completed normally or the timeout was reached. You can inspect the returned Future(s) to determine what happened.
Assuming the thread code is out of your control:
From the Java documentation mentioned above:
What if a thread doesn't respond to Thread.interrupt?
In some cases, you can use application specific tricks. For example,
if a thread is waiting on a known socket, you can close the socket to
cause the thread to return immediately. Unfortunately, there really
isn't any technique that works in general. It should be noted that in
all situations where a waiting thread doesn't respond to
Thread.interrupt, it wouldn't respond to Thread.stop either. Such
cases include deliberate denial-of-service attacks, and I/O operations
for which thread.stop and thread.interrupt do not work properly.
Bottom Line:
Make sure all threads can be interrupted, or else you need specific knowledge of the thread - like having a flag to set. Maybe you can require that the task be given to you along with the code needed to stop it - define an interface with a stop() method. You can also warn when you failed to stop a task.
BalusC said:
Update: to clarify a conceptual misunderstanding, the sleep() is not required. It is just used for SSCCE/demonstration purposes. Just do your long running task right there in place of sleep().
But if you replace Thread.sleep(4000); with for (int i = 0; i < 5E8; i++) {} then it doesn't compile, because the empty loop doesn't throw an InterruptedException.
And for the thread to be interruptible, it needs to throw an InterruptedException.
This seems like a serious problem to me. I can't see how to adapt this answer to work with a general long-running task.
Edited to add: I reasked this as a new question: [ interrupting a thread after fixed time, does it have to throw InterruptedException? ]
I created a helper class just for this some time ago. Works great:
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
/**
* TimeOut class - used for stopping a thread that is taking too long
* #author Peter Goransson
*
*/
public class TimeOut {
Thread interrupter;
Thread target;
long timeout;
boolean success;
boolean forceStop;
CyclicBarrier barrier;
/**
*
* #param target The Runnable target to be executed
* #param timeout The time in milliseconds before target will be interrupted or stopped
* #param forceStop If true, will Thread.stop() this target instead of just interrupt()
*/
public TimeOut(Runnable target, long timeout, boolean forceStop) {
this.timeout = timeout;
this.forceStop = forceStop;
this.target = new Thread(target);
this.interrupter = new Thread(new Interrupter());
barrier = new CyclicBarrier(2); // There will always be just 2 threads waiting on this barrier
}
public boolean execute() throws InterruptedException {
// Start target and interrupter
target.start();
interrupter.start();
// Wait for target to finish or be interrupted by interrupter
target.join();
interrupter.interrupt(); // stop the interrupter
try {
barrier.await(); // Need to wait on this barrier to make sure status is set
} catch (BrokenBarrierException e) {
// Something horrible happened, assume we failed
success = false;
}
return success; // status is set in the Interrupter inner class
}
private class Interrupter implements Runnable {
Interrupter() {}
public void run() {
try {
Thread.sleep(timeout); // Wait for timeout period and then kill this target
if (forceStop) {
target.stop(); // Need to use stop instead of interrupt since we're trying to kill this thread
}
else {
target.interrupt(); // Gracefully interrupt the waiting thread
}
System.out.println("done");
success = false;
} catch (InterruptedException e) {
success = true;
}
try {
barrier.await(); // Need to wait on this barrier
} catch (InterruptedException e) {
// If the Child and Interrupter finish at the exact same millisecond we'll get here
// In this weird case assume it failed
success = false;
}
catch (BrokenBarrierException e) {
// Something horrible happened, assume we failed
success = false;
}
}
}
}
It is called like this:
long timeout = 10000; // number of milliseconds before timeout
TimeOut t = new TimeOut(new PhotoProcessor(filePath, params), timeout, true);
try {
boolean sucess = t.execute(); // Will return false if this times out
if (!sucess) {
// This thread timed out
}
else {
// This thread ran completely and did not timeout
}
} catch (InterruptedException e) {}
I think you should take a look at proper concurrency handling mechanisms (threads running into infinite loops doesn't sound good per se, btw). Make sure you read a little about the "killing" or "stopping" Threads topic.
What you are describing,sound very much like a "rendezvous", so you may want to take a look at the CyclicBarrier.
There may be other constructs (like using CountDownLatch for example) that can resolve your problem (one thread waiting with a timeout for the latch, the other should count down the latch if it has done it's work, which would release your first thread either after a timeout or when the latch countdown is invoked).
I usually recommend two books in this area: Concurrent Programming in Java and Java Concurrency in Practice.
In the solution given by BalusC, the main thread will stay blocked for the timeout period. If you have a thread pool with more than one thread, you will need the same number of additional thread that will be using Future.get(long timeout,TimeUnit unit) blocking call to wait and close the thread if it exceeds the timeout period.
A generic solution to this problem is to create a ThreadPoolExecutor Decorator that can add the timeout functionality. This Decorator class should create as many threads as ThreadPoolExecutor has, and all these threads should be used only to wait and close the ThreadPoolExecutor.
The generic class should be implemented like below:
import java.util.List;
import java.util.concurrent.*;
public class TimeoutThreadPoolDecorator extends ThreadPoolExecutor {
private final ThreadPoolExecutor commandThreadpool;
private final long timeout;
private final TimeUnit unit;
public TimeoutThreadPoolDecorator(ThreadPoolExecutor threadpool,
long timeout,
TimeUnit unit ){
super( threadpool.getCorePoolSize(),
threadpool.getMaximumPoolSize(),
threadpool.getKeepAliveTime(TimeUnit.MILLISECONDS),
TimeUnit.MILLISECONDS,
threadpool.getQueue());
this.commandThreadpool = threadpool;
this.timeout=timeout;
this.unit=unit;
}
#Override
public void execute(Runnable command) {
super.execute(() -> {
Future<?> future = commandThreadpool.submit(command);
try {
future.get(timeout, unit);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} catch (ExecutionException | TimeoutException e) {
throw new RejectedExecutionException(e);
} finally {
future.cancel(true);
}
});
}
#Override
public void setCorePoolSize(int corePoolSize) {
super.setCorePoolSize(corePoolSize);
commandThreadpool.setCorePoolSize(corePoolSize);
}
#Override
public void setThreadFactory(ThreadFactory threadFactory) {
super.setThreadFactory(threadFactory);
commandThreadpool.setThreadFactory(threadFactory);
}
#Override
public void setMaximumPoolSize(int maximumPoolSize) {
super.setMaximumPoolSize(maximumPoolSize);
commandThreadpool.setMaximumPoolSize(maximumPoolSize);
}
#Override
public void setKeepAliveTime(long time, TimeUnit unit) {
super.setKeepAliveTime(time, unit);
commandThreadpool.setKeepAliveTime(time, unit);
}
#Override
public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
super.setRejectedExecutionHandler(handler);
commandThreadpool.setRejectedExecutionHandler(handler);
}
#Override
public List<Runnable> shutdownNow() {
List<Runnable> taskList = super.shutdownNow();
taskList.addAll(commandThreadpool.shutdownNow());
return taskList;
}
#Override
public void shutdown() {
super.shutdown();
commandThreadpool.shutdown();
}
}
The above decorator can be used as below:
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class Main {
public static void main(String[] args){
long timeout = 2000;
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(3, 10, 0, TimeUnit.MILLISECONDS, new SynchronousQueue<>(true));
threadPool = new TimeoutThreadPoolDecorator( threadPool ,
timeout,
TimeUnit.MILLISECONDS);
threadPool.execute(command(1000));
threadPool.execute(command(1500));
threadPool.execute(command(2100));
threadPool.execute(command(2001));
while(threadPool.getActiveCount()>0);
threadPool.shutdown();
}
private static Runnable command(int i) {
return () -> {
System.out.println("Running Thread:"+Thread.currentThread().getName());
System.out.println("Starting command with sleep:"+i);
try {
Thread.sleep(i);
} catch (InterruptedException e) {
System.out.println("Thread "+Thread.currentThread().getName()+" with sleep of "+i+" is Interrupted!!!");
return;
}
System.out.println("Completing Thread "+Thread.currentThread().getName()+" after sleep of "+i);
};
}
}
I post you a piece of code which show a way how to solve the problem.
As exemple I'm reading a file.
You could use this method for another operation, but you need to implements the kill() method so that the main operation will be interrupted.
hope it helps
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
/**
* Main class
*
* #author el
*
*/
public class Main {
/**
* Thread which perform the task which should be timed out.
*
* #author el
*
*/
public static class MainThread extends Thread {
/**
* For example reading a file. File to read.
*/
final private File fileToRead;
/**
* InputStream from the file.
*/
final private InputStream myInputStream;
/**
* Thread for timeout.
*/
final private TimeOutThread timeOutThread;
/**
* true if the thread has not ended.
*/
boolean isRunning = true;
/**
* true if all tasks where done.
*/
boolean everythingDone = false;
/**
* if every thing could not be done, an {#link Exception} may have
* Happens.
*/
Throwable endedWithException = null;
/**
* Constructor.
*
* #param file
* #throws FileNotFoundException
*/
MainThread(File file) throws FileNotFoundException {
setDaemon(false);
fileToRead = file;
// open the file stream.
myInputStream = new FileInputStream(fileToRead);
// Instantiate the timeout thread.
timeOutThread = new TimeOutThread(10000, this);
}
/**
* Used by the {#link TimeOutThread}.
*/
public void kill() {
if (isRunning) {
isRunning = false;
if (myInputStream != null) {
try {
// close the stream, it may be the problem.
myInputStream.close();
} catch (IOException e) {
// Not interesting
System.out.println(e.toString());
}
}
synchronized (this) {
notify();
}
}
}
/**
* The task which should be timed out.
*/
#Override
public void run() {
timeOutThread.start();
int bytes = 0;
try {
// do something
while (myInputStream.read() >= 0) {
// may block the thread.
myInputStream.read();
bytes++;
// simulate a slow stream.
synchronized (this) {
wait(10);
}
}
everythingDone = true;
} catch (IOException e) {
endedWithException = e;
} catch (InterruptedException e) {
endedWithException = e;
} finally {
timeOutThread.kill();
System.out.println("-->read " + bytes + " bytes.");
isRunning = false;
synchronized (this) {
notifyAll();
}
}
}
}
/**
* Timeout Thread. Kill the main task if necessary.
*
* #author el
*
*/
public static class TimeOutThread extends Thread {
final long timeout;
final MainThread controlledObj;
TimeOutThread(long timeout, MainThread controlledObj) {
setDaemon(true);
this.timeout = timeout;
this.controlledObj = controlledObj;
}
boolean isRunning = true;
/**
* If we done need the {#link TimeOutThread} thread, we may kill it.
*/
public void kill() {
isRunning = false;
synchronized (this) {
notify();
}
}
/**
*
*/
#Override
public void run() {
long deltaT = 0l;
try {
long start = System.currentTimeMillis();
while (isRunning && deltaT < timeout) {
synchronized (this) {
wait(Math.max(100, timeout - deltaT));
}
deltaT = System.currentTimeMillis() - start;
}
} catch (InterruptedException e) {
// If the thread is interrupted,
// you may not want to kill the main thread,
// but probably yes.
} finally {
isRunning = false;
}
controlledObj.kill();
}
}
/**
* Start the main task and wait for the end.
*
* #param args
* #throws FileNotFoundException
*/
public static void main(String[] args) throws FileNotFoundException {
long start = System.currentTimeMillis();
MainThread main = new MainThread(new File(args[0]));
main.start();
try {
while (main.isRunning) {
synchronized (main) {
main.wait(1000);
}
}
long stop = System.currentTimeMillis();
if (main.everythingDone)
System.out.println("all done in " + (stop - start) + " ms.");
else {
System.out.println("could not do everything in "
+ (stop - start) + " ms.");
if (main.endedWithException != null)
main.endedWithException.printStackTrace();
}
} catch (InterruptedException e) {
System.out.println("You've killed me!");
}
}
}
Regards
Here is my really simple to use helper class to run or call piece of Java code :-)
This is based on the excellent answer from BalusC
package com.mycompany.util.concurrent;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
/**
* Calling {#link Callable#call()} or Running {#link Runnable#run()} code
* with a timeout based on {#link Future#get(long, TimeUnit))}
* #author pascaldalfarra
*
*/
public class CallableHelper
{
private CallableHelper()
{
}
public static final void run(final Runnable runnable, int timeoutInSeconds)
{
run(runnable, null, timeoutInSeconds);
}
public static final void run(final Runnable runnable, Runnable timeoutCallback, int timeoutInSeconds)
{
call(new Callable<Void>()
{
#Override
public Void call() throws Exception
{
runnable.run();
return null;
}
}, timeoutCallback, timeoutInSeconds);
}
public static final <T> T call(final Callable<T> callable, int timeoutInSeconds)
{
return call(callable, null, timeoutInSeconds);
}
public static final <T> T call(final Callable<T> callable, Runnable timeoutCallback, int timeoutInSeconds)
{
ExecutorService executor = Executors.newSingleThreadExecutor();
try
{
Future<T> future = executor.submit(callable);
T result = future.get(timeoutInSeconds, TimeUnit.SECONDS);
System.out.println("CallableHelper - Finished!");
return result;
}
catch (TimeoutException e)
{
System.out.println("CallableHelper - TimeoutException!");
if(timeoutCallback != null)
{
timeoutCallback.run();
}
}
catch (InterruptedException e)
{
e.printStackTrace();
}
catch (ExecutionException e)
{
e.printStackTrace();
}
finally
{
executor.shutdownNow();
executor = null;
}
return null;
}
}
The following snippet will start an operation in a separate thread, then wait for up to 10 seconds for the operation to complete. If the operation does not complete in time, the code will attempt to cancel the operation, then continue on its merry way. Even if the operation cannot be cancelled easily, the parent thread will not wait for the child thread to terminate.
ExecutorService executorService = getExecutorService();
Future<SomeClass> future = executorService.submit(new Callable<SomeClass>() {
public SomeClass call() {
// Perform long-running task, return result. The code should check
// interrupt status regularly, to facilitate cancellation.
}
});
try {
// Real life code should define the timeout as a constant or
// retrieve it from configuration
SomeClass result = future.get(10, TimeUnit.SECONDS);
// Do something with the result
} catch (TimeoutException e) {
future.cancel(true);
// Perform other error handling, e.g. logging, throwing an exception
}
The getExecutorService() method can be implemented in a number of ways. If you do not have any particular requirements, you can simply call Executors.newCachedThreadPool() for thread pooling with no upper limit on the number of threads.
One thing that I've not seen mentioned is that killing threads is generally a Bad Idea. There are techniques for making threaded methods cleanly abortable, but that's different to just killing a thread after a timeout.
The risk with what you're suggesting is that you probably don't know what state the thread will be in when you kill it - so you risk introducing instability. A better solution is to make sure your threaded code either doesn't hang itself, or will respond nicely to an abort request.
Great answer by BalusC's:
but Just to add that the timeout itself does not interrupt the thread itself. even if you are checking with while(!Thread.interrupted()) in your task. if you want to make sure thread is stopped you should also make sure future.cancel() is invoked when timeout exception is catch.
package com.stackoverflow.q2275443;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class Test {
public static void main(String[] args) throws Exception {
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<String> future = executor.submit(new Task());
try {
System.out.println("Started..");
System.out.println(future.get(3, TimeUnit.SECONDS));
System.out.println("Finished!");
} catch (TimeoutException e) {
//Without the below cancel the thread will continue to live
// even though the timeout exception thrown.
future.cancel();
System.out.println("Terminated!");
}
executor.shutdownNow();
}
}
class Task implements Callable<String> {
#Override
public String call() throws Exception {
while(!Thread.currentThread.isInterrupted()){
System.out.println("Im still running baby!!");
}
}
}
I think the answer mainly depends on the task itself.
Is it doing one task over and over again?
Is it necessary that the timeout interrupts a currently running task immediately after it expires?
If the first answer is yes and the second is no, you could keep it as simple as this:
public class Main {
private static final class TimeoutTask extends Thread {
private final long _timeoutMs;
private Runnable _runnable;
private TimeoutTask(long timeoutMs, Runnable runnable) {
_timeoutMs = timeoutMs;
_runnable = runnable;
}
#Override
public void run() {
long start = System.currentTimeMillis();
while (System.currentTimeMillis() < (start + _timeoutMs)) {
_runnable.run();
}
System.out.println("execution took " + (System.currentTimeMillis() - start) +" ms");
}
}
public static void main(String[] args) throws Exception {
new TimeoutTask(2000L, new Runnable() {
#Override
public void run() {
System.out.println("doing something ...");
try {
// pretend it's taking somewhat longer than it really does
Thread.sleep(100);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}).start();
}
}
If this isn't an option, please narrow your requirements - or show some code.
I was looking for an ExecutorService that can interrupt all timed out Runnables executed by it, but found none. After a few hours I created one as below. This class can be modified to enhance robustness.
public class TimedExecutorService extends ThreadPoolExecutor {
long timeout;
public TimedExecutorService(int numThreads, long timeout, TimeUnit unit) {
super(numThreads, numThreads, 0L, TimeUnit.MILLISECONDS, new ArrayBlockingQueue<Runnable>(numThreads + 1));
this.timeout = unit.toMillis(timeout);
}
#Override
protected void beforeExecute(Thread thread, Runnable runnable) {
Thread interruptionThread = new Thread(new Runnable() {
#Override
public void run() {
try {
// Wait until timeout and interrupt this thread
Thread.sleep(timeout);
System.out.println("The runnable times out.");
thread.interrupt();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
interruptionThread.start();
}
}
Usage:
public static void main(String[] args) {
Runnable abcdRunnable = new Runnable() {
#Override
public void run() {
System.out.println("abcdRunnable started");
try {
Thread.sleep(20000);
} catch (InterruptedException e) {
// logger.info("The runnable times out.");
}
System.out.println("abcdRunnable ended");
}
};
Runnable xyzwRunnable = new Runnable() {
#Override
public void run() {
System.out.println("xyzwRunnable started");
try {
Thread.sleep(20000);
} catch (InterruptedException e) {
// logger.info("The runnable times out.");
}
System.out.println("xyzwRunnable ended");
}
};
int numThreads = 2, timeout = 5;
ExecutorService timedExecutor = new TimedExecutorService(numThreads, timeout, TimeUnit.SECONDS);
timedExecutor.execute(abcdRunnable);
timedExecutor.execute(xyzwRunnable);
timedExecutor.shutdown();
}
Now , l meet a issue like this. It happens to decode picture. The process of decode takes too much time that the screen keep black. l add a time controler: when the time is too long, then pop up from the current Thread.
The following is the diff:
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<Bitmap> future = executor.submit(new Callable<Bitmap>() {
#Override
public Bitmap call() throws Exception {
Bitmap bitmap = decodeAndScaleBitmapFromStream(context, inputUri);// do some time consuming operation
return null;
}
});
try {
Bitmap result = future.get(1, TimeUnit.SECONDS);
} catch (TimeoutException e){
future.cancel(true);
}
executor.shutdown();
return (bitmap!= null);
I had the same problem. So i came up with a simple solution like this.
public class TimeoutBlock {
private final long timeoutMilliSeconds;
private long timeoutInteval=100;
public TimeoutBlock(long timeoutMilliSeconds){
this.timeoutMilliSeconds=timeoutMilliSeconds;
}
public void addBlock(Runnable runnable) throws Throwable{
long collectIntervals=0;
Thread timeoutWorker=new Thread(runnable);
timeoutWorker.start();
do{
if(collectIntervals>=this.timeoutMilliSeconds){
timeoutWorker.stop();
throw new Exception("<<<<<<<<<<****>>>>>>>>>>> Timeout Block Execution Time Exceeded In "+timeoutMilliSeconds+" Milli Seconds. Thread Block Terminated.");
}
collectIntervals+=timeoutInteval;
Thread.sleep(timeoutInteval);
}while(timeoutWorker.isAlive());
System.out.println("<<<<<<<<<<####>>>>>>>>>>> Timeout Block Executed Within "+collectIntervals+" Milli Seconds.");
}
/**
* #return the timeoutInteval
*/
public long getTimeoutInteval() {
return timeoutInteval;
}
/**
* #param timeoutInteval the timeoutInteval to set
*/
public void setTimeoutInteval(long timeoutInteval) {
this.timeoutInteval = timeoutInteval;
}
}
Guarantees that if block didn't execute within the time limit. the process will terminate and throws an exception.
example :
try {
TimeoutBlock timeoutBlock = new TimeoutBlock(10 * 60 * 1000);//set timeout in milliseconds
Runnable block=new Runnable() {
#Override
public void run() {
//TO DO write block of code
}
};
timeoutBlock.addBlock(block);// execute the runnable block
} catch (Throwable e) {
//catch the exception here . Which is block didn't execute within the time limit
}
I have few asynchronous tasks running and I need to wait until at least one of them is finished (in the future probably I'll need to wait util M out of N tasks are finished).
Currently they are presented as Future, so I need something like
/**
* Blocks current thread until one of specified futures is done and returns it.
*/
public static <T> Future<T> waitForAny(Collection<Future<T>> futures)
throws AllFuturesFailedException
Is there anything like this? Or anything similar, not necessary for Future. Currently I loop through collection of futures, check if one is finished, then sleep for some time and check again. This looks like not the best solution, because if I sleep for long period then unwanted delay is added, if I sleep for short period then it can affect performance.
I could try using
new CountDownLatch(1)
and decrease countdown when task is complete and do
countdown.await()
, but I found it possible only if I control Future creation. It is possible, but requires system redesign, because currently logic of tasks creation (sending Callable to ExecutorService) is separated from decision to wait for which Future. I could also override
<T> RunnableFuture<T> AbstractExecutorService.newTaskFor(Callable<T> callable)
and create custom implementation of RunnableFuture with ability to attach listener to be notified when task is finished, then attach such listener to needed tasks and use CountDownLatch, but that means I have to override newTaskFor for every ExecutorService I use - and potentially there will be implementation which do not extend AbstractExecutorService. I could also try wrapping given ExecutorService for same purpose, but then I have to decorate all methods producing Futures.
All these solutions may work but seem very unnatural. It looks like I'm missing something simple, like
WaitHandle.WaitAny(WaitHandle[] waitHandles)
in c#. Are there any well known solutions for such kind of problem?
UPDATE:
Originally I did not have access to Future creation at all, so there were no elegant solution. After redesigning system I got access to Future creation and was able to add countDownLatch.countdown() to execution process, then I can countDownLatch.await() and everything works fine.
Thanks for other answers, I did not know about ExecutorCompletionService and it indeed can be helpful in similar tasks, but in this particular case it could not be used because some Futures are created without any executor - actual task is sent to another server via network, completes remotely and completion notification is received.
simple, check out ExecutorCompletionService.
ExecutorService.invokeAny
Why not just create a results queue and wait on the queue? Or more simply, use a CompletionService since that's what it is: an ExecutorService + result queue.
This is actually pretty easy with wait() and notifyAll().
First, define a lock object. (You can use any class for this, but I like to be explicit):
package com.javadude.sample;
public class Lock {}
Next, define your worker thread. He must notify that lock object when he's finished with his processing. Note that the notify must be in a synchronized block locking on the lock object.
package com.javadude.sample;
public class Worker extends Thread {
private Lock lock_;
private long timeToSleep_;
private String name_;
public Worker(Lock lock, String name, long timeToSleep) {
lock_ = lock;
timeToSleep_ = timeToSleep;
name_ = name;
}
#Override
public void run() {
// do real work -- using a sleep here to simulate work
try {
sleep(timeToSleep_);
} catch (InterruptedException e) {
interrupt();
}
System.out.println(name_ + " is done... notifying");
// notify whoever is waiting, in this case, the client
synchronized (lock_) {
lock_.notify();
}
}
}
Finally, you can write your client:
package com.javadude.sample;
public class Client {
public static void main(String[] args) {
Lock lock = new Lock();
Worker worker1 = new Worker(lock, "worker1", 15000);
Worker worker2 = new Worker(lock, "worker2", 10000);
Worker worker3 = new Worker(lock, "worker3", 5000);
Worker worker4 = new Worker(lock, "worker4", 20000);
boolean started = false;
int numNotifies = 0;
while (true) {
synchronized (lock) {
try {
if (!started) {
// need to do the start here so we grab the lock, just
// in case one of the threads is fast -- if we had done the
// starts outside the synchronized block, a fast thread could
// get to its notification *before* the client is waiting for it
worker1.start();
worker2.start();
worker3.start();
worker4.start();
started = true;
}
lock.wait();
} catch (InterruptedException e) {
break;
}
numNotifies++;
if (numNotifies == 4) {
break;
}
System.out.println("Notified!");
}
}
System.out.println("Everyone has notified me... I'm done");
}
}
As far as I know, Java has no analogous structure to the WaitHandle.WaitAny method.
It seems to me that this could be achieved through a "WaitableFuture" decorator:
public WaitableFuture<T>
extends Future<T>
{
private CountDownLatch countDownLatch;
WaitableFuture(CountDownLatch countDownLatch)
{
super();
this.countDownLatch = countDownLatch;
}
void doTask()
{
super.doTask();
this.countDownLatch.countDown();
}
}
Though this would only work if it can be inserted before the execution code, since otherwise the execution code would not have the new doTask() method. But I really see no way of doing this without polling if you cannot somehow gain control of the Future object before execution.
Or if the future always runs in its own thread, and you can somehow get that thread. Then you could spawn a new thread to join each other thread, then handle the waiting mechanism after the join returns... This would be really ugly and would induce a lot of overhead though. And if some Future objects don't finish, you could have a lot of blocked threads depending on dead threads. If you're not careful, this could leak memory and system resources.
/**
* Extremely ugly way of implementing WaitHandle.WaitAny for Thread.Join().
*/
public static joinAny(Collection<Thread> threads, int numberToWaitFor)
{
CountDownLatch countDownLatch = new CountDownLatch(numberToWaitFor);
foreach(Thread thread in threads)
{
(new Thread(new JoinThreadHelper(thread, countDownLatch))).start();
}
countDownLatch.await();
}
class JoinThreadHelper
implements Runnable
{
Thread thread;
CountDownLatch countDownLatch;
JoinThreadHelper(Thread thread, CountDownLatch countDownLatch)
{
this.thread = thread;
this.countDownLatch = countDownLatch;
}
void run()
{
this.thread.join();
this.countDownLatch.countDown();
}
}
If you can use CompletableFutures instead then there is CompletableFuture.anyOf that does what you want, just call join on the result:
CompletableFuture.anyOf(futures).join()
You can use CompletableFutures with executors by calling the CompletableFuture.supplyAsync or runAsync methods.
Since you don't care which one finishes, why not just have a single WaitHandle for all threads and wait on that? Whichever one finishes first can set the handle.
See this option:
public class WaitForAnyRedux {
private static final int POOL_SIZE = 10;
public static <T> T waitForAny(Collection<T> collection) throws InterruptedException, ExecutionException {
List<Callable<T>> callables = new ArrayList<Callable<T>>();
for (final T t : collection) {
Callable<T> callable = Executors.callable(new Thread() {
#Override
public void run() {
synchronized (t) {
try {
t.wait();
} catch (InterruptedException e) {
}
}
}
}, t);
callables.add(callable);
}
BlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(POOL_SIZE);
ExecutorService executorService = new ThreadPoolExecutor(POOL_SIZE, POOL_SIZE, 0, TimeUnit.SECONDS, queue);
return executorService.invokeAny(callables);
}
static public void main(String[] args) throws InterruptedException, ExecutionException {
final List<Integer> integers = new ArrayList<Integer>();
for (int i = 0; i < POOL_SIZE; i++) {
integers.add(i);
}
(new Thread() {
public void run() {
Integer notified = null;
try {
notified = waitForAny(integers);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
System.out.println("notified=" + notified);
}
}).start();
synchronized (integers) {
integers.wait(3000);
}
Integer randomInt = integers.get((new Random()).nextInt(POOL_SIZE));
System.out.println("Waking up " + randomInt);
synchronized (randomInt) {
randomInt.notify();
}
}
}