I have to handle two classes with identical methods but they don't implement the same interface, nor do they extend the same superclass. I'm not able / not allowed to change this classes and I don't construct instances of this classes I only get objects of this.
What is the best way to avoid lots of code duplication?
One of the class:
package faa;
public class SomethingA {
private String valueOne = null;
private String valueTwo = null;
public String getValueOne() { return valueOne; }
public void setValueOne(String valueOne) { this.valueOne = valueOne; }
public String getValueTwo() { return valueTwo; }
public void setValueTwo(String valueTwo) { this.valueTwo = valueTwo; }
}
And the other...
package foo;
public class SomethingB {
private String valueOne;
private String valueTwo;
public String getValueOne() { return valueOne; }
public void setValueOne(String valueOne) { this.valueOne = valueOne; }
public String getValueTwo() { return valueTwo; }
public void setValueTwo(String valueTwo) { this.valueTwo = valueTwo; }
}
(In reality these classes are larger)
My only idea is now to create a wrapper class in this was:
public class SomethingWrapper {
private SomethingA someA;
private SomethingB someB;
public SomethingWrapper(SomethingA someA) {
//null check..
this.someA = someA;
}
public SomethingWrapper(SomethingB someB) {
//null check..
this.someB = someB;
}
public String getValueOne() {
if (this.someA != null) {
return this.someA.getValueOne();
} else {
return this.someB.getValueOne();
}
}
public void setValueOne(String valueOne) {
if (this.someA != null) {
this.someA.setValueOne(valueOne);
} else {
this.someB.setValueOne(valueOne);
}
}
public String getValueTwo() {
if (this.someA != null) {
return this.someA.getValueTwo();
} else {
return this.someB.getValueTwo();
}
}
public void setValueTwo(String valueTwo) {
if (this.someA != null) {
this.someA.setValueTwo(valueTwo);
} else {
this.someB.setValueTwo(valueTwo);
}
}
}
But I'm not realy satisfied with this solution. Is there any better / more elegant way to solve this problem?
A better solution would be to create an interface to represent the unified interface to both classes, then to write two classes implementing the interface, one that wraps an A, and another that wraps a B:
public interface SomethingWrapper {
public String getValueOne();
public void setValueOne(String valueOne);
public String getValueTwo();
public void setValueTwo(String valueTwo);
};
public class SomethingAWrapper implements SomethingWrapper {
private SomethingA someA;
public SomethingWrapper(SomethingA someA) {
this.someA = someA;
}
public String getValueOne() {
return this.someA.getValueOne();
}
public void setValueOne(String valueOne) {
this.someA.setValueOne(valueOne);
}
public String getValueTwo() {
return this.someA.getValueTwo();
}
public void setValueTwo(String valueTwo) {
this.someA.setValueTwo(valueTwo);
}
};
and then another class just like it for SomethingBWrapper.
There, a duck-typed solution. This will accept any object with valueOne, valueTwo properties and is trivially extensible to further props.
public class Wrapper
{
private final Object wrapped;
private final Map<String, Method> methods = new HashMap<String, Method>();
public Wrapper(Object w) {
wrapped = w;
try {
final Class<?> c = w.getClass();
for (String propName : new String[] { "ValueOne", "ValueTwo" }) {
final String getter = "get" + propName, setter = "set" + propName;
methods.put(getter, c.getMethod(getter));
methods.put(setter, c.getMethod(setter, String.class));
}
} catch (Exception e) { throw new RuntimeException(e); }
}
public String getValueOne() {
try { return (String)methods.get("getValueOne").invoke(wrapped); }
catch (Exception e) { throw new RuntimeException(e); }
}
public void setValueOne(String v) {
try { methods.get("setValueOne").invoke(wrapped, v); }
catch (Exception e) { throw new RuntimeException(e); }
}
public String getValueTwo() {
try { return (String)methods.get("getValueTwo").invoke(wrapped); }
catch (Exception e) { throw new RuntimeException(e); }
}
public void setValueTwo(String v) {
try { methods.get("setValueTwo").invoke(wrapped, v); }
catch (Exception e) { throw new RuntimeException(e); }
}
}
You can use a dynamic proxy to create a "bridge" between an interface you define and the classes that conform but do not implement your interface.
It all starts with an interface:
interface Something {
public String getValueOne();
public void setValueOne(String valueOne);
public String getValueTwo();
public void setValueTwo(String valueTwo);
}
Now you need an InvocationHandler, that will just forward calls to the method that matches the interface method called:
class ForwardInvocationHandler implements InvocationHandler {
private final Object wrapped;
public ForwardInvocationHandler(Object wrapped) {
this.wrapped = wrapped;
}
#Override
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
Method match = wrapped.getClass().getMethod(method.getName(), method.getParameterTypes());
return match.invoke(wrapped, args);
}
}
Then you can create your proxy (put it in a factory for easier usage):
SomethingA a = new SomethingA();
a.setValueOne("Um");
Something s = (Something)Proxy.newProxyInstance(
Something.class.getClassLoader(),
new Class[] { Something.class },
new ForwardInvocationHandler(a));
System.out.println(s.getValueOne()); // prints: Um
Another option is simpler but requires you to subclass each class and implement the created interface, simply like this:
class SomethingAImpl extends SomethingA implements Something {}
class SomethingBImpl extends SomethingB implements Something {}
(Note: you also need to create any non-default constructors)
Now use the subclasses instead of the superclasses, and refer to them through the interface:
Something o = new SomethingAImpl(); // o can also refer to a SomethingBImpl
o.setValueOne("Uno");
System.out.println(o.getValueOne()); // prints: Uno
i think your original wrapper class is the most viable option...however it can be done using reflection, your real problem is that the application is a mess...and reflection is might not be the method you are looking for
i've another proposal, which might be help: create a wrapper class which has specific functions for every type of classes...it mostly copypaste, but it forces you to use the typed thing as a parameter
class X{
public int asd() {return 0;}
}
class Y{
public int asd() {return 1;}
}
class H{
public int asd(X a){
return a.asd();
}
public int asd(Y a){
return a.asd();
}
}
usage:
System.out.println("asd"+h.asd(x));
System.out.println("asd"+h.asd(y));
i would like to note that an interface can be implemented by the ancestor too, if you are creating these classes - but just can't modify it's source, then you can still overload them from outside:
public interface II{
public int asd();
}
class XI extends X implements II{
}
class YI extends Y implements II{
}
usage:
II a=new XI();
System.out.println("asd"+a.asd());
You probably can exploit a facade along with the reflection - In my opinion it streamlines the way you access the legacy and is scalable too !
class facade{
public static getSomething(Object AorB){
Class c = AorB.getClass();
Method m = c.getMethod("getValueOne");
m.invoke(AorB);
}
...
}
I wrote a class to encapsulate the logging framework API's. Unfortunately, it's too long to put in this box.
The program is part of the project at http://www.github.com/bradleyross/tutorials with the documentation at http://bradleyross.github.io/tutorials. The code for the class bradleyross.library.helpers.ExceptionHelper in the module tutorials-common is at https://github.com/BradleyRoss/tutorials/blob/master/tutorials-common/src/main/java/bradleyross/library/helpers/ExceptionHelper.java.
The idea is that I can have the additional code that I want to make the exception statements more useful and I won't have to repeat them for each logging framework. The wrapper isn't where you eliminate code duplication. The elimination of code duplication is in not having to write multiple versions of the code that calls the wrapper and the underlying classes. See https://bradleyaross.wordpress.com/2016/05/05/java-logging-frameworks/
The class bradleyross.helpers.GenericPrinter is another wrapper that enables you to write code that works with both the PrintStream, PrintWriter, and StringWriter classes and interfaces.
Related
Background
I learned Factory pattern, and the power of generics and I'm attempting to piece them together.
Here are my efforts
Without generic input parameter - No warnings
public abstract class ArtifactCreator {
public abstract void setArtifacts(String workflowInput);
}
public class FooArtifactCreator extends ArtifactCreator {
#Override
public void setArtifacts(String input) {
return null;
}
}
public class BarArtifactCreator extends ArtifactCreator {
#Override
public void setArtifacts(String input) {
return null;
}
}
public class Factory {
public ArtifactCreator getArtifactCreator(String domain) {
if (domain == "foo") {
return new FooArtifactCreator()
} else if (domain == "bar") {
return new BarArtifactCreator()
}
return null;
}
}
My whole problem is the workflowInput is relegated to the type String. But I want it to be some generic POJO.
With generics - I get warnings in Factory.java and Store.java that I want to get rid of correctly. (I want to be using generics for my use-case the right way).
Raw use of parameterized class 'ArtifactCreator' on both the files in Store.java and Factory.java
Unchecked call to 'setArtifacts(T)' as a member of raw type 'ArtifactCreator' in Store.java
public abstract class ArtifactCreator {
public abstract void setArtifacts(T workflowInput);
}
public class FooArtifactCreator extends ArtifactCreator<FooInput> {
#Override
public void setArtifacts(FooInput input) {
return null;
}
}
public class BarArtifactCreator extends ArtifactCreator<BarInput> {
#Override
public void setArtifacts(BarInput input) {
return null;
}
}
public class Factory {
public ArtifactCreator getArtifactCreator(String domain) {
if (domain == "foo") {
return new FooArtifactCreator()
} else if (domain == "bar") {
return new BarArtifactCreator()
}
return null;
}
}
public class Input {
private String domain;
private String otherInput;
}
public class Store {
private final Factory factory;
public Store(Factory factory) {
this.factory = factory;
}
public ArtifactCreator getCaseClosureArtifactFactory(Input req) {
ArtifactCreator artifactCreator = factory.setArtifacts(req.getDomain());
//In reality - Create either FooInput or BarInput depending on
//`otherInput` field in `Input` POJO. Assume that there will be another
//factory/HashMap to return the input needed
FooInput input = new FooInput();
artifactCreator.setArtifacts(input);
}
}
One way I can think of solving my problems is do something like:
public class WorkflowInput {
private FooInput input;
private BarInput input;
}
public abstract class ArtifactCreator {
public abstract void setArtifacts(WorkflowInput workflowInput);
}
public class FooArtifactCreator extends ArtifactCreator {
#Override
public void setArtifacts(WorkflowInput input) {
FooInput input = input.getFooInput(); //Extract specific input
}
}
public class BarArtifactCreator extends ArtifactCreator {
#Override
public void setArtifacts(WorkflowInput input) {
BarInput input = input.getBarInput(); //Extract specific input
}
}
This feels a bit unecessary to keep some fields in WorkflowInput null.
I am writing a java (processing) library for unexperienced students, and am looking for the best architecture for implementing it.
Initialization of an object should be as close as possible to this:
myObject = new General("type1");
Such that myObject will become an instance of Type1 which extends General:
class General {
public General() {}
}
class Type1 extends General {
public Type1() {}
}
class Type2 extends General {
public Type1() {}
}
As far as I know, this isn't possible (choosing between extended classes during initialization), but I'm looking for the closest solution possible.
So far, my best solution is to make a static initializer inside General:
class General {
...
static General init (String type) {
General temp;
if (type.equals("type1") {
temp = new Type1();
}
...
return temp;
}
and the initialization is:
General myObject;
myObject = General.init("type1");
This is far from ideal...
thanks.
you can make a factory class that manages initialization.
instead of doing it inside the parent.
// Empty vocabulary of actual object
public interface IPerson
{
string GetName();
}
public class Villager : IPerson
{
public string GetName()
{
return "Village Person";
}
}
public class CityPerson : IPerson
{
public string GetName()
{
return "City Person";
}
}
public enum PersonType
{
Rural,
Urban
}
/// <summary>
/// Implementation of Factory - Used to create objects.
/// </summary>
public class Factory
{
public IPerson GetPerson(PersonType type)
{
switch (type)
{
case PersonType.Rural:
return new Villager();
case PersonType.Urban:
return new CityPerson();
default:
throw new NotSupportedException();
}
}
}
The State design pattern can be a solution here. Rather than the constructor argument changing the type of the object (which isn't possible) it can set a field of the object, to make it behave as if its type is different.
package stackoverflow.questions;
public class Main {
private interface MyInterface {
String foo();
int bar();
}
private static class Type1 implements MyInterface {
#Override public String foo() { return "lorem ipsum "; }
#Override public int bar() { return 6; }
}
private static class Type2 implements MyInterface {
#Override public String foo() { return "dolor sit amet"; }
#Override public int bar() { return 7; }
}
public static class General {
private final MyInterface type;
public General(String type) {
try {
this.type = (MyInterface) Class
.forName("stackoverflow.questions.Main$" + type)
.getDeclaredConstructor().newInstance();
} catch (Exception e) {
throw new IllegalArgumentException("Invalid type: " + type);
}
}
public String method1() { return type.foo(); }
public int method2() { return type.bar(); }
}
public static void main(String... args) {
General one = new General("Type1");
General two = new General("Type2");
System.out.println(one.method1() + two.method1());
System.out.println(one.method2() * two.method2());
}
}
I'm using an external library that provides tightly related classes (generated from some template), but unfortunately without a shared interface, e.g.
public class A {
public UUID id();
public Long version();
public String foo();
public String bar();
}
public class B {
public UUID id();
public Long version();
public String foo();
public String bar();
}
public class C {
public UUID id();
public Long version();
public String foo();
public String bar();
}
// ... and more: D, E, F, etc.
Given I have no influence over the external library, what's the idiomatic way to write logic common to a group of classes that share the same method signatures (at least, for the methods being used by the common logic)?
Currently I do one of three things, on a case-by-case basis:
I write helper methods that take the primitive results from each object, e.g.
private static void myHelper(UUID id, Long version, String foo, String bar) {
...
}
This way I can "unpack" an object regardless of its type:
myHelper(whatever.id(), whatever.version(), whatever.foo(), whatever.bar());
But that can get very wordy, especially when I need to work with many members.
In the scenario where I'm only working with getters (i.e. only need to access current values of the objects), I've found a way to use mapping libraries like Dozer or ModelMapper to map A or B or C to my own common class, e.g.
public class CommonABC {
UUID id;
Long version;
String foo;
String bar;
}
By playing with configuration, you can get these libraries to map all members, whether method or field, public or private, to your class, e.g.
modelMapper.getConfiguration()
.setFieldMatchingEnabled(true)
.setFieldAccessLevel(Configuration.AccessLevel.PRIVATE);
But this was kind of a "broadsword" approach, a hack that IMO isn't clearly justified merely to factor out duplicate code.
Finally, in certain other scenarios it was most succinct to simply do
private static void myHelper(Object extLibEntity) {
if (extLibEntity instanceof A) {
...
} else if (extLibEntity instanceof B) {
...
} else if (extLibEntity instanceof C) {
...
} else {
throw new RuntimeException(...);
}
}
It's obvious why this is bad.
In enterprise situations where you have to live with a library that is this way, what would you do?
I'm leaning toward writing a very explicit, if verbose, mapper (not using a generic mapper library) that translates these entities from the start. But, I wonder if there's a better way. (Like, is there a way to "cast" an object as implementing a new interface, in runtime?)
An option that is (under the hood) likely similar to the second approach, but comparatively lean and flexible, is to use Dynamic Proxy Classes. With only a few lines of code, you can let any object "appear" to implement a certain interface, as long as it has the required methods. The following is an MCVE that shows the basic approach:
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
import java.util.UUID;
public class DelegatingProxyExample {
public static void main(String[] args) {
A a = new A();
B b = new B();
C c = new C();
CommonInterface commonA = wrap(a);
CommonInterface commonB = wrap(b);
CommonInterface commonC = wrap(c);
use(commonA);
use(commonB);
use(commonC);
}
private static void use(CommonInterface commonInterface) {
System.out.println(commonInterface.id());
System.out.println(commonInterface.version());
System.out.println(commonInterface.foo());
System.out.println(commonInterface.bar());
}
private static CommonInterface wrap(Object object) {
CommonInterface commonInterface = (CommonInterface) Proxy.newProxyInstance(
CommonInterface.class.getClassLoader(),
new Class[] { CommonInterface.class }, new Delegator(object));
return commonInterface;
}
}
// Partially based on the example from
// https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
class Delegator implements InvocationHandler {
private static Method hashCodeMethod;
private static Method equalsMethod;
private static Method toStringMethod;
static {
try {
hashCodeMethod = Object.class.getMethod("hashCode", (Class<?>[]) null);
equalsMethod = Object.class.getMethod("equals", new Class[] { Object.class });
toStringMethod = Object.class.getMethod("toString", (Class<?>[]) null);
} catch (NoSuchMethodException e) {
throw new NoSuchMethodError(e.getMessage());
}
}
private Object delegate;
public Delegator(Object delegate) {
this.delegate = delegate;
}
public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {
Class<?> declaringClass = m.getDeclaringClass();
if (declaringClass == Object.class) {
if (m.equals(hashCodeMethod)) {
return proxyHashCode(proxy);
} else if (m.equals(equalsMethod)) {
return proxyEquals(proxy, args[0]);
} else if (m.equals(toStringMethod)) {
return proxyToString(proxy);
} else {
throw new InternalError("unexpected Object method dispatched: " + m);
}
} else {
// TODO Here, the magic happens. Add some sensible error checks here!
Method delegateMethod = delegate.getClass().getDeclaredMethod(
m.getName(), m.getParameterTypes());
return delegateMethod.invoke(delegate, args);
}
}
protected Integer proxyHashCode(Object proxy) {
return new Integer(System.identityHashCode(proxy));
}
protected Boolean proxyEquals(Object proxy, Object other) {
return (proxy == other ? Boolean.TRUE : Boolean.FALSE);
}
protected String proxyToString(Object proxy) {
return proxy.getClass().getName() + '#' + Integer.toHexString(proxy.hashCode());
}
}
interface CommonInterface {
UUID id();
Long version();
String foo();
String bar();
}
class A {
public UUID id() {
return UUID.randomUUID();
}
public Long version() {
return 1L;
}
public String foo() {
return "fooA";
}
public String bar() {
return "barA";
}
}
class B {
public UUID id() {
return UUID.randomUUID();
}
public Long version() {
return 2L;
}
public String foo() {
return "fooB";
}
public String bar() {
return "barB";
}
}
class C {
public UUID id() {
return UUID.randomUUID();
}
public Long version() {
return 3L;
}
public String foo() {
return "fooC";
}
public String bar() {
return "barC";
}
}
Of course, this uses reflection internally, and should only be used when you know what you're doing. Particularly, you should add some sensible error checking, at the place that is marked with TODO: There, the method of the interface is looked up in the given delegate object.
The only technique not tried:
package aplus;
public interface Common {
...
}
public class A extends original.A implements Common {
}
public class B extends original.B implements Common {
}
I have some generated code (i.e. it cannot be changed) that looks something like this.
class Generated1 {
public String getA() {
return "1";
}
public void setB(String b) {
}
public void setC(String c) {
}
public void setD(String d) {
}
}
class Generated2 {
public String getA() {
return "2";
}
public void setB(String b) {
}
public void setC(String c) {
}
public void setD(String d) {
}
}
I am exploring these objects by reflection. None of them implement any common interface but there's many of them and I want to treat them as if they implement:
interface CommonInterface {
String getA();
void setB(String b);
void setC(String c);
void setD(String d);
}
It certainly should be possible. This is considered perfectly good code
class CommonInterface1 extends Generated1 implements CommonInterface {
// These are perfectly good classes.
}
class CommonInterface2 extends Generated2 implements CommonInterface {
// These are perfectly good classes.
}
I suppose what I'm looking for is something like:
private void doCommon(CommonInterface c) {
String a = c.getA();
c.setB(a);
c.setC(a);
c.setD(a);
}
private void test() {
// Simulate getting by reflection.
List<Object> objects = Arrays.asList(new Generated1(), new Generated2());
for (Object object : objects) {
// What is the simplest way to call `doCommon` with object here?
doCommon(object);
}
}
My question: How do I treat an object that doesn't implement an interface but actually has all the code to do so as if it does implement the interface.
I want to replace
private void doCommon(Generated1 c) {
String a = c.getA();
c.setB(a);
c.setC(a);
c.setD(a);
}
private void doCommon(Generated2 c) {
String a = c.getA();
c.setB(a);
c.setC(a);
c.setD(a);
}
...
with
private void doCommon(CommonInterface c) {
String a = c.getA();
c.setB(a);
c.setC(a);
c.setD(a);
}
I know I can use a Proxy like this but I'd really prefer to use something better.
private void test() {
// Simulate getting by reflection.
List<Object> objects = Arrays.asList(new Generated1(), new Generated2());
for (Object object : objects) {
// What is the simplest way to call `doCommon` with object here?
doCommon(adapt(object));
}
}
private CommonInterface adapt(Object o) {
return adapt(o, CommonInterface.class);
}
public static <T> T adapt(final Object adaptee,
final Class<T>... interfaceToImplement) {
return (T) Proxy.newProxyInstance(
adaptee.getClass().getClassLoader(),
interfaceToImplement,
// Call the equivalent method from the adaptee.
(proxy, method, args) -> adaptee.getClass()
.getMethod(method.getName(), method.getParameterTypes())
.invoke(adaptee, args));
}
If you're using reflection, you don't need the two CommonInterfaceX classes, you can use a proxy implementing CommonInterface:
public class Wrapper implements InvocationHandler {
private final Object delegate;
public static <T> T wrap(Object obj, Class<T> intf) {
ClassLoader cl = Thread.currentThread().getContextClassLoader();
Object proxy = Proxy.newProxyInstance(cl, new Class<?>[] {intf},
new Wrapper(obj));
return intf.cast(proxy);
}
private Wrapper(Object delegate) {
this.delegate = delegate;
}
#Override
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
Method dmethod = delegate.getClass().getMethod(
method.getName(), method.getParameterTypes());
return dmethod.invoke(delegate, args);
}
}
You can use this class as follows:
List<Object> objects = Arrays.asList(new Generated1(), new Generated2());
for (Object object : objects) {
CommonInterface proxy = Wrapper.wrap(object, CommonInterface.class);
doCommon(proxy);
}
UPDATE: note that the same Wrapper class works with any interface.
There's no way to achieve a static type relationship between Generated1 and Generated2.
Even if you created CommonInterface1 and CommonInterface2, you still wouldn't be able to statically use a Generated1 object as a CommonInterface1 because new Generated1() is not a CommonInterface1 (and will never become one)
By far the simplest solution is to change your code generation to add the CommonInterface to Generated1 and Generated2.
If that's absolutely impossible, the only other way to avoid this code duplication is to go for reflection.
You can do it manuallly by reflection.
public class Generated {
public String getA() {
return "A";
}
public String sayHello(String name) {
return "hello " + name;
}
}
public class Helper {
private static final String METHOD_NAME = "getA";
private static final String METHOD_WITH_PARAM_NAME = "sayHello";
public static void main(String[] args) throws Exception {
Generated generated = new Generated();
accessMethod(generated);
accessMethodWithParameter(generated);
}
private static void accessMethod(Generated g) throws Exception {
Method[] methods = g.getClass().getDeclaredMethods();
for(Method method : methods) {
if(isCommonMethod(method)) {
String result = (String) method.invoke(g);
System.out.println(METHOD_NAME + "() = " + result);
}
}
}
private static boolean isCommonMethod(Method m) {
return m.getName().equals(METHOD_NAME) && m.getReturnType().equals(String.class);
}
private static void accessMethodWithParameter(Generated g) throws Exception {
Method[] methods = g.getClass().getDeclaredMethods();
for(Method method : methods) {
if(isCommonMethodWithParameter(method)) {
String result = (String) method.invoke(g, "Max");
System.out.println(METHOD_WITH_PARAM_NAME + "(\"Max\") = " + result);
}
}
}
private static boolean isCommonMethodWithParameter(Method m) {
return m.getName().equals(METHOD_WITH_PARAM_NAME) &&
m.getReturnType().equals(String.class) &&
m.getParameterTypes().length == 1 &&
m.getParameterTypes()[0].equals(String.class);
}
}
Output is
getA() = A
sayHello("Max") = hello Max
If you want to replace as your comment. I think you can do it easily
First, you create interface CommonInterface
interface CommonInterface {
String getA();
void setB(String b);
void setC(String c);
void setD(String d);
}
After that, you create 2 class Generated1 and Generated2 inherited CommonInterface
class Generated1 implements CommonInterface {
#overide
public String getA() {
return "1";
}
#overide
public void setB(String b) {
}
#overide
public void setC(String c) {
}
#overide
public void setD(String d) {
}
}
class Generated2 implements CommonInterface {
#overide
public String getA() {
return "2";
}
#overide
public void setB(String b) {
}
#overide
public void setC(String c) {
}
#overide
public void setD(String d) {
}
}
Suppose I already have 2 classes in my code:
class SomeOrder {
String getOrderId() { return orderId; }
}
class AnotherOrder {
String getOrderId() { return orderId; }
}
How to create an interface around both these classes which is:
interface Order {
String getOrderId();
}
Ideally, I would modify the code so that SomOrder implements Order and AnotherOrder implements Order but the catch here is that they belong in a package that I cannot control or edit (i.e. they come from an external jar).
My algorithm currently looks like this:
void sorter(List<SomeOrder> orders) {
... <custom sort logic> ...
someOrder.getOrderId();
}
void sorter(List<AnotherOrder> orders) {
... <custom sort logic> ...
someOrder.getOrderId();
}
With a single interface I can write:
void sorter(List<Order> orders) {
... <custom sort logic> ...
order.getOrderId();
}
You can use adapter classes:
class SomeOrderAdapter implements Order {
private SomeOrder delegate;
#Override
public String getOrderId() {
return delegate.getOrderId();
}
}
and similar for AnotherOrder.
Since your interface is a functional interface, you could define functions that map to this new Order interface my referencing the getOrderId method for each different class:
private Order wrap(SomeOrder obj) {
return obj::getOrderId;
}
private Order wrap(AnotherOrder obj) {
return obj::getOrderId;
}
An example calling it:
private void test() {
List<Order> orders = Arrays.asList(
wrap(new SomeOrder()),
wrap(new AnotherOrder())
);
sorter(orders);
}
Create a Proxy wrapped around the instances implementing the interface you need. The proxy just calls the instance's method with the same parameters.
public class Proxied<T> implements InvocationHandler {
private final T wrapped;
public Proxied(T wrapped) {
this.wrapped = Objects.requireNonNull(wrapped);
}
public T getWrapped() {
return wrapped;
}
public <I> Class<I> proxy(Class<I> interfaceClass) {
#SuppressWarnings("unchecked")
Class<I> proxyClass = (Class<I>) Proxy.getProxyClass(getClass().getClassLoader(), interfaceClass);
return proxyClass;
}
#Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
return method.invoke(wrapped, args);
}
}