different values for float and double - java

I don't understand why are float values different from double values. From the example bellow it appears that float provides different result than double for the same operation:
public class Test {
public static void main(String[] args) {
double a = 99999.8d;
double b = 99999.65d;
System.out.println(a + b);
float a2 = 99999.8f;
float b2 = 99999.65f;
System.out.println(a2 + b2);
}
}
Output:
199999.45
199999.44
Can you explain what makes this difference between float and double?

A float is a 32 bit IEEE 754 floating point.
A double is a 64 bit IEEE 754 floating point.
so it is just a matter of precision because neither of the fraction portions .8 and .65 have a terminating binary representation, so there is some rounding error. the double has more precision so it has slightly less rounding error.
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Can you explain what makes this difference between float and double?
Sure. Imagine you had two decimal types, one with five significant digits, and one with ten.
What value would you use to represent pi for each of those types? In both cases you'd be trying to get as close to a number which you couldn't represent exactly - but you wouldn't end up with the same value, would you?
It's the same for float and double - both are binary floating point types, but double has more precision than float.

public class Main {
public static void main(String[] args) {
float a=12.6664287277627762f;
double b=12.6664287277627762;
System.out.println(a);
System.out.println(b);
}
}
Output:
12.666429
12.666428727762776
float can handle about 7 decimal places. A double can handle about 16 decimal places.

Doubles have twice the precision of floats. Thus they have smaller rounding errors.
A float has (usually) 32 bits, and a double 64 (again usually). Thus floats have rounding errors on more numbers than doubles.

Floats have less precision than doubles.
It's roughly half as much - 23 bits vs 52 for double(Thanks a lot Mr. Skeet!)!
32-bit for floats, 64-bit for doubles. ...Remember that the word "float" has fewer letters than "double", that's a "memory" trick :)

Related

Float to string conversion output differs

I am trying to parse string to float but it gives me some different output.
Suppose my code :
String a = "111111111111111111111.23";
Float f = Float.parseFloat(a);
System.out.println(f);
It gives me something like: 1.1111111E20
In a simple manner, it gives me 111111110000000000000
How do I get all the data shown? I do not want to truncate the input data.
How to get whole data as it is. Don't want to truncate the input data.
Then whatever you do, don't use a float. At least use double, but even double will struggle with that value as IEEE-754 double-precision floating point numbers are only precise to roughly 15 digits when expressed in base 10. For greater precision than that, look at BigDecimal.
BigDecimal never rounds automatically or loses precision it is highly preferred in calculations.
A float is a decimal numeric type represented with 32 bit.
A double is a 64 bit decimal number, so it can represent larger values than a float.
You can Use BigDecimal
public static void main(String[] args) {
String a = "111111111111111111111.23";
BigDecimal f = new BigDecimal(a);
System.out.println(f);
}
Output
111111111111111111111.23

double inaccuracy [duplicate]

public class doublePrecision {
public static void main(String[] args) {
double total = 0;
total += 5.6;
total += 5.8;
System.out.println(total);
}
}
The above code prints:
11.399999999999
How would I get this to just print (or be able to use it as) 11.4?
As others have mentioned, you'll probably want to use the BigDecimal class, if you want to have an exact representation of 11.4.
Now, a little explanation into why this is happening:
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
(Source: Wikipedia: Double precision)
For a detailed description of how floating point values are handled in Java, see the Section 4.2.3: Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 11.399999999999 as the result of 5.6 + 5.8.
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As has been mentioned several times already, Java has a BigDecimal class which will handle very large numbers and very small numbers.
From the Java API Reference for the BigDecimal class:
Immutable,
arbitrary-precision signed decimal
numbers. A BigDecimal consists of an
arbitrary precision integer unscaled
value and a 32-bit integer scale. If
zero or positive, the scale is the
number of digits to the right of the
decimal point. If negative, the
unscaled value of the number is
multiplied by ten to the power of the
negation of the scale. The value of
the number represented by the
BigDecimal is therefore (unscaledValue
× 10^-scale).
There has been many questions on Stack Overflow relating to the matter of floating point numbers and its precision. Here is a list of related questions that may be of interest:
Why do I see a double variable initialized to some value like 21.4 as 21.399999618530273?
How to print really big numbers in C++
How is floating point stored? When does it matter?
Use Float or Decimal for Accounting Application Dollar Amount?
If you really want to get down to the nitty gritty details of floating point numbers, take a look at What Every Computer Scientist Should Know About Floating-Point Arithmetic.
When you input a double number, for example, 33.33333333333333, the value you get is actually the closest representable double-precision value, which is exactly:
33.3333333333333285963817615993320941925048828125
Dividing that by 100 gives:
0.333333333333333285963817615993320941925048828125
which also isn't representable as a double-precision number, so again it is rounded to the nearest representable value, which is exactly:
0.3333333333333332593184650249895639717578887939453125
When you print this value out, it gets rounded yet again to 17 decimal digits, giving:
0.33333333333333326
If you just want to process values as fractions, you can create a Fraction class which holds a numerator and denominator field.
Write methods for add, subtract, multiply and divide as well as a toDouble method. This way you can avoid floats during calculations.
EDIT: Quick implementation,
public class Fraction {
private int numerator;
private int denominator;
public Fraction(int n, int d){
numerator = n;
denominator = d;
}
public double toDouble(){
return ((double)numerator)/((double)denominator);
}
public static Fraction add(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop + bTop, a.denominator * b.denominator);
}
else{
return new Fraction(a.numerator + b.numerator, a.denominator);
}
}
public static Fraction divide(Fraction a, Fraction b){
return new Fraction(a.numerator * b.denominator, a.denominator * b.numerator);
}
public static Fraction multiply(Fraction a, Fraction b){
return new Fraction(a.numerator * b.numerator, a.denominator * b.denominator);
}
public static Fraction subtract(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop-bTop, a.denominator*b.denominator);
}
else{
return new Fraction(a.numerator - b.numerator, a.denominator);
}
}
}
Observe that you'd have the same problem if you used limited-precision decimal arithmetic, and wanted to deal with 1/3: 0.333333333 * 3 is 0.999999999, not 1.00000000.
Unfortunately, 5.6, 5.8 and 11.4 just aren't round numbers in binary, because they involve fifths. So the float representation of them isn't exact, just as 0.3333 isn't exactly 1/3.
If all the numbers you use are non-recurring decimals, and you want exact results, use BigDecimal. Or as others have said, if your values are like money in the sense that they're all a multiple of 0.01, or 0.001, or something, then multiply everything by a fixed power of 10 and use int or long (addition and subtraction are trivial: watch out for multiplication).
However, if you are happy with binary for the calculation, but you just want to print things out in a slightly friendlier format, try java.util.Formatter or String.format. In the format string specify a precision less than the full precision of a double. To 10 significant figures, say, 11.399999999999 is 11.4, so the result will be almost as accurate and more human-readable in cases where the binary result is very close to a value requiring only a few decimal places.
The precision to specify depends a bit on how much maths you've done with your numbers - in general the more you do, the more error will accumulate, but some algorithms accumulate it much faster than others (they're called "unstable" as opposed to "stable" with respect to rounding errors). If all you're doing is adding a few values, then I'd guess that dropping just one decimal place of precision will sort things out. Experiment.
You may want to look into using java's java.math.BigDecimal class if you really need precision math. Here is a good article from Oracle/Sun on the case for BigDecimal. While you can never represent 1/3 as someone mentioned, you can have the power to decide exactly how precise you want the result to be. setScale() is your friend.. :)
Ok, because I have way too much time on my hands at the moment here is a code example that relates to your question:
import java.math.BigDecimal;
/**
* Created by a wonderful programmer known as:
* Vincent Stoessel
* xaymaca#gmail.com
* on Mar 17, 2010 at 11:05:16 PM
*/
public class BigUp {
public static void main(String[] args) {
BigDecimal first, second, result ;
first = new BigDecimal("33.33333333333333") ;
second = new BigDecimal("100") ;
result = first.divide(second);
System.out.println("result is " + result);
//will print : result is 0.3333333333333333
}
}
and to plug my new favorite language, Groovy, here is a neater example of the same thing:
import java.math.BigDecimal
def first = new BigDecimal("33.33333333333333")
def second = new BigDecimal("100")
println "result is " + first/second // will print: result is 0.33333333333333
Pretty sure you could've made that into a three line example. :)
If you want exact precision, use BigDecimal. Otherwise, you can use ints multiplied by 10 ^ whatever precision you want.
As others have noted, not all decimal values can be represented as binary since decimal is based on powers of 10 and binary is based on powers of two.
If precision matters, use BigDecimal, but if you just want friendly output:
System.out.printf("%.2f\n", total);
Will give you:
11.40
You're running up against the precision limitation of type double.
Java.Math has some arbitrary-precision arithmetic facilities.
You can't, because 7.3 doesn't have a finite representation in binary. The closest you can get is 2054767329987789/2**48 = 7.3+1/1407374883553280.
Take a look at http://docs.python.org/tutorial/floatingpoint.html for a further explanation. (It's on the Python website, but Java and C++ have the same "problem".)
The solution depends on what exactly your problem is:
If it's that you just don't like seeing all those noise digits, then fix your string formatting. Don't display more than 15 significant digits (or 7 for float).
If it's that the inexactness of your numbers is breaking things like "if" statements, then you should write if (abs(x - 7.3) < TOLERANCE) instead of if (x == 7.3).
If you're working with money, then what you probably really want is decimal fixed point. Store an integer number of cents or whatever the smallest unit of your currency is.
(VERY UNLIKELY) If you need more than 53 significant bits (15-16 significant digits) of precision, then use a high-precision floating-point type, like BigDecimal.
private void getRound() {
// this is very simple and interesting
double a = 5, b = 3, c;
c = a / b;
System.out.println(" round val is " + c);
// round val is : 1.6666666666666667
// if you want to only two precision point with double we
// can use formate option in String
// which takes 2 parameters one is formte specifier which
// shows dicimal places another double value
String s = String.format("%.2f", c);
double val = Double.parseDouble(s);
System.out.println(" val is :" + val);
// now out put will be : val is :1.67
}
Use java.math.BigDecimal
Doubles are binary fractions internally, so they sometimes cannot represent decimal fractions to the exact decimal.
/*
0.8 1.2
0.7 1.3
0.7000000000000002 2.3
0.7999999999999998 4.2
*/
double adjust = fToInt + 1.0 - orgV;
// The following two lines works for me.
String s = String.format("%.2f", adjust);
double val = Double.parseDouble(s);
System.out.println(val); // output: 0.8, 0.7, 0.7, 0.8
Doubles are approximations of the decimal numbers in your Java source. You're seeing the consequence of the mismatch between the double (which is a binary-coded value) and your source (which is decimal-coded).
Java's producing the closest binary approximation. You can use the java.text.DecimalFormat to display a better-looking decimal value.
Short answer: Always use BigDecimal and make sure you are using the constructor with String argument, not the double one.
Back to your example, the following code will print 11.4, as you wish.
public class doublePrecision {
public static void main(String[] args) {
BigDecimal total = new BigDecimal("0");
total = total.add(new BigDecimal("5.6"));
total = total.add(new BigDecimal("5.8"));
System.out.println(total);
}
}
Multiply everything by 100 and store it in a long as cents.
Computers store numbers in binary and can't actually represent numbers such as 33.333333333 or 100.0 exactly. This is one of the tricky things about using doubles. You will have to just round the answer before showing it to a user. Luckily in most applications, you don't need that many decimal places anyhow.
Floating point numbers differ from real numbers in that for any given floating point number there is a next higher floating point number. Same as integers. There's no integer between 1 and 2.
There's no way to represent 1/3 as a float. There's a float below it and there's a float above it, and there's a certain distance between them. And 1/3 is in that space.
Apfloat for Java claims to work with arbitrary precision floating point numbers, but I've never used it. Probably worth a look.
http://www.apfloat.org/apfloat_java/
A similar question was asked here before
Java floating point high precision library
Use a BigDecimal. It even lets you specify rounding rules (like ROUND_HALF_EVEN, which will minimize statistical error by rounding to the even neighbor if both are the same distance; i.e. both 1.5 and 2.5 round to 2).
Why not use the round() method from Math class?
// The number of 0s determines how many digits you want after the floating point
// (here one digit)
total = (double)Math.round(total * 10) / 10;
System.out.println(total); // prints 11.4
Check out BigDecimal, it handles problems dealing with floating point arithmetic like that.
The new call would look like this:
term[number].coefficient.add(co);
Use setScale() to set the number of decimal place precision to be used.
If you have no choice other than using double values, can use the below code.
public static double sumDouble(double value1, double value2) {
double sum = 0.0;
String value1Str = Double.toString(value1);
int decimalIndex = value1Str.indexOf(".");
int value1Precision = 0;
if (decimalIndex != -1) {
value1Precision = (value1Str.length() - 1) - decimalIndex;
}
String value2Str = Double.toString(value2);
decimalIndex = value2Str.indexOf(".");
int value2Precision = 0;
if (decimalIndex != -1) {
value2Precision = (value2Str.length() - 1) - decimalIndex;
}
int maxPrecision = value1Precision > value2Precision ? value1Precision : value2Precision;
sum = value1 + value2;
String s = String.format("%." + maxPrecision + "f", sum);
sum = Double.parseDouble(s);
return sum;
}
You can Do the Following!
System.out.println(String.format("%.12f", total));
if you change the decimal value here %.12f
So far I understand it as main goal to get correct double from wrong double.
Look for my solution how to get correct value from "approximate" wrong value - if it is real floating point it rounds last digit - counted from all digits - counting before dot and try to keep max possible digits after dot - hope that it is enough precision for most cases:
public static double roundError(double value) {
BigDecimal valueBigDecimal = new BigDecimal(Double.toString(value));
String valueString = valueBigDecimal.toPlainString();
if (!valueString.contains(".")) return value;
String[] valueArray = valueString.split("[.]");
int places = 16;
places -= valueArray[0].length();
if ("56789".contains("" + valueArray[0].charAt(valueArray[0].length() - 1))) places--;
//System.out.println("Rounding " + value + "(" + valueString + ") to " + places + " places");
return valueBigDecimal.setScale(places, RoundingMode.HALF_UP).doubleValue();
}
I know it is long code, sure not best, maybe someone can fix it to be more elegant. Anyway it is working, see examples:
roundError(5.6+5.8) = 11.399999999999999 = 11.4
roundError(0.4-0.3) = 0.10000000000000003 = 0.1
roundError(37235.137567000005) = 37235.137567
roundError(1/3) 0.3333333333333333 = 0.333333333333333
roundError(3723513756.7000005) = 3.7235137567E9 (3723513756.7)
roundError(3723513756123.7000005) = 3.7235137561237E12 (3723513756123.7)
roundError(372351375612.7000005) = 3.723513756127E11 (372351375612.7)
roundError(1.7976931348623157) = 1.797693134862316
Do not waste your efford using BigDecimal. In 99.99999% cases you don't need it. java double type is of cource approximate but in almost all cases, it is sufficiently precise. Mind that your have an error at 14th significant digit. This is really negligible!
To get nice output use:
System.out.printf("%.2f\n", total);

how does Java convert floats to strings

Here's what I'm looking at:
float p=1.15f;
BigDecimal bdp=new BigDecimal(p);
float q=1.1499999f;
float r=1.14999999f;
System.out.println(p); //1.15
System.out.println(bdp); //1.14999997615814208984375
System.out.println(q); //1.1499999
System.out.println(r); //1.15
So I understand that the decimal value of "p" 1.15 can't be represented exactly in binary.
And so the large big decimal "bdp" output makes perfect sense to me ... that's the actual value of the float.
Question 1
When the float "p" gets converted back to a string for output (as 1.15), how/where does that rounding occur (from the internal 1.149..375 value to 1.15)?
And where is it specified in the documentation? The toString javadoc doesn't really help (me at least).
I do see this in the language spec:
The elements of the types float and double are those values that can
be represented using the IEEE 754 32-bit single-precision and 64-bit
double-precision binary floating-point formats, respectively.
Wikipedia's IEEE 754 article gives this:
This gives from 6 to 9 significant decimal digits precision (if a
decimal string with at most 6 significant decimal is converted to IEEE
754 single precision and then converted back to the same number of
significant decimal, then the final string should match the original;
Question 2
So it seems that this is just how Java/IEEE 754 floats are supposed to work?
I get guaranteed accuracy of float/string conversion/representation up to a certain number of digits (like for "p" and "q"), and if that number of digits is exceeded Java will do some rounding for display (like for "r")?
Thanks for help.
I think this is the relevant part of the Javadoc that describes the behavior you're looking at (from the static String toString(float) method):
How many digits must be printed for the fractional part of m or a? There must be at least one digit to represent the fractional part, and beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float.
To paraphrase: the toString methods for floating-point types will generally produce the shortest decimal representation that can unabmiguously identify the true value of the floating-point number.
Example program to illustrate:
import java.math.BigDecimal;
public class FloatTest {
static void show(float f) {
BigDecimal f_exact = new BigDecimal(f);
System.out.println("---");
System.out.println("String value: " + f);
System.out.println("Exact value: " + f_exact);
System.out.println("Delta: " +
new BigDecimal("1.15").subtract(f_exact));
}
public static void main(String[] args) {
show(1.15f);
show(Math.nextUp(1.15f));
}
}
Output:
---
String value: 1.15
Exact value: 1.14999997615814208984375
Delta: 2.384185791015625E-8
---
String value: 1.1500001
Exact value: 1.150000095367431640625
Delta: -9.5367431640625E-8
Thanks mttdbrd ... that helps. From your first paragraph then I think that the answer to my question is: yes, Java does this rounding internally in accordance with the IEEE spec.
Here's the output of a program that let's me see a little bit of that rounding in action:
-------------------------------------------
string 1.49999
bigdec of float 1.499989986419677734375
float back to str 1.49999
-------------------------------------------
string 1.4999991
bigdec of float 1.49999904632568359375
float back to str 1.499999
-------------------------------------------
string 1.4999992
bigdec of float 1.49999916553497314453125
float back to str 1.4999992
-------------------------------------------
string 1.4999993
bigdec of float 1.4999992847442626953125
float back to str 1.4999993
-------------------------------------------
string 1.4999994
bigdec of float 1.49999940395355224609375
float back to str 1.4999994
-------------------------------------------
string 1.4999995
bigdec of float 1.499999523162841796875
float back to str 1.4999995
-------------------------------------------
string 1.4999996
bigdec of float 1.49999964237213134765625
float back to str 1.4999996
-------------------------------------------
string 1.4999997
bigdec of float 1.49999964237213134765625
float back to str 1.4999996
-------------------------------------------
string 1.4999998
bigdec of float 1.4999997615814208984375
float back to str 1.4999998
-------------------------------------------
string 1.4999999
bigdec of float 1.49999988079071044921875
float back to str 1.4999999
-------------------------------------------
string 1.15
bigdec of float 1.14999997615814208984375
float back to str 1.15
-------------------------------------------
string 1.49999964237213134765626
bigdec of float 1.49999964237213134765625
float back to str 1.4999996
And here's the program if anyone wants it:
public static void floatAccuracy3()
{
printFloatAndBigDec("1.49999");
for (int i = 1; i < 10; i++) {
String s="1.499999";
s+=i;
printFloatAndBigDec(s);
}
printFloatAndBigDec("1.15");
printFloatAndBigDec("1.49999964237213134765626");
}
public static void printFloatAndBigDec(String s)
{
Float f=new Float(s);
BigDecimal bdf=new BigDecimal(f);
System.out.println("-------------------------------------------");
System.out.println("string "+s);
System.out.println("bigdec of float "+bdf);
System.out.println("float back to str "+f);
}
And some other links in case they're helpful to anyone else researching this stuff:
floating point basics
princeton cs intro floating points
What Every Computer Scientist Should Know About Floating-Point Arithmetic
Why 0.1 Does Not Exist In Floating-Point
JLS 4.2.4 Floating-Point Operations
IEEE round to nearest
From the JLS, 4.2.4. Floating-Point Operations:
The Java programming language requires that floating-point arithmetic
behave as if every floating-point operator rounded its floating-point
result to the result precision. Inexact results must be rounded to the
representable value nearest to the infinitely precise result; if the
two nearest representable values are equally near, the one with its
least significant bit zero is chosen. This is the IEEE 754 standard's
default rounding mode known as round to nearest.
The Java programming language uses round toward zero when converting a
floating value to an integer (§5.1.3), which acts, in this case, as
though the number were truncated, discarding the mantissa bits.
Rounding toward zero chooses at its result the format's value closest
to and no greater in magnitude than the infinitely precise result.

Converting numbers to float with 2 decimal places

float f = 0.00f;
System.out.println(f);
gives the output:
0.00
I'd like to format a number represented by a percentage to 2 decimal places. But the result should be a float and not a string.
e.g.
10.001 needs to be converted to 10.00
0.0 needs to be converted to 0.00
78.8 needs to be converted to 78.80
The values thus formatted will be assigned to a float.. how would one accomplish this?
private float parse(float val){
DecimalFormat twoDForm = new DecimalFormat("#.##");
return Float.valueOf(twoDForm.format(val));
}
As long as you call it passing an valid float, your result will be a float.
But you can't show the right most zero if its not a String.
In the general case, you can't do that. There's no guarantee that a particular decimal value can be represented by a float that has only two digits right of the decimal.
A float is the wrong data type for this kind of precision. You need to use a decimal type or a scaled integer instead.
Assignment works the same way. If you assign the value 133.47 to a floating-point variable, your environment will assign the closest valid floating-point number to the variable. The closest valid floating-point number will probably not be 133.47.
You can compile and execute this program in C.
#include <stdio.h>
int main (void) {
float r;
r = 133.47;
printf("%.2f, %f\n", r, r);
return 0;
}
It prints these values on my system
$ ./a.out
133.47, 133.470001
Formatting to two decimal places changed the way 'r' looks, but it didn't change its value. Your system will do floating-point arithmetic based on the actual value, not the formatted value. (Unless you also change the data type.)
Floats don't have decimal places. They have binary places. It follows that the only fractions that can be represented exactly in a float to two decimal places are 0, 0.25, 0.5, 0.75. In all the other cases what you are asking is impossible.
import java.text.DecimalFormat;
public class Padding {
public static void main(String[] args) {
float value = 10.001f;
DecimalFormat decimal = new DecimalFormat("0.00");
String formattedValue = decimal.format(value);
System.out.println(formattedValue);
}
}
Output : 10.00

Retain precision with double in Java

public class doublePrecision {
public static void main(String[] args) {
double total = 0;
total += 5.6;
total += 5.8;
System.out.println(total);
}
}
The above code prints:
11.399999999999
How would I get this to just print (or be able to use it as) 11.4?
As others have mentioned, you'll probably want to use the BigDecimal class, if you want to have an exact representation of 11.4.
Now, a little explanation into why this is happening:
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
(Source: Wikipedia: Double precision)
For a detailed description of how floating point values are handled in Java, see the Section 4.2.3: Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 11.399999999999 as the result of 5.6 + 5.8.
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As has been mentioned several times already, Java has a BigDecimal class which will handle very large numbers and very small numbers.
From the Java API Reference for the BigDecimal class:
Immutable,
arbitrary-precision signed decimal
numbers. A BigDecimal consists of an
arbitrary precision integer unscaled
value and a 32-bit integer scale. If
zero or positive, the scale is the
number of digits to the right of the
decimal point. If negative, the
unscaled value of the number is
multiplied by ten to the power of the
negation of the scale. The value of
the number represented by the
BigDecimal is therefore (unscaledValue
× 10^-scale).
There has been many questions on Stack Overflow relating to the matter of floating point numbers and its precision. Here is a list of related questions that may be of interest:
Why do I see a double variable initialized to some value like 21.4 as 21.399999618530273?
How to print really big numbers in C++
How is floating point stored? When does it matter?
Use Float or Decimal for Accounting Application Dollar Amount?
If you really want to get down to the nitty gritty details of floating point numbers, take a look at What Every Computer Scientist Should Know About Floating-Point Arithmetic.
When you input a double number, for example, 33.33333333333333, the value you get is actually the closest representable double-precision value, which is exactly:
33.3333333333333285963817615993320941925048828125
Dividing that by 100 gives:
0.333333333333333285963817615993320941925048828125
which also isn't representable as a double-precision number, so again it is rounded to the nearest representable value, which is exactly:
0.3333333333333332593184650249895639717578887939453125
When you print this value out, it gets rounded yet again to 17 decimal digits, giving:
0.33333333333333326
If you just want to process values as fractions, you can create a Fraction class which holds a numerator and denominator field.
Write methods for add, subtract, multiply and divide as well as a toDouble method. This way you can avoid floats during calculations.
EDIT: Quick implementation,
public class Fraction {
private int numerator;
private int denominator;
public Fraction(int n, int d){
numerator = n;
denominator = d;
}
public double toDouble(){
return ((double)numerator)/((double)denominator);
}
public static Fraction add(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop + bTop, a.denominator * b.denominator);
}
else{
return new Fraction(a.numerator + b.numerator, a.denominator);
}
}
public static Fraction divide(Fraction a, Fraction b){
return new Fraction(a.numerator * b.denominator, a.denominator * b.numerator);
}
public static Fraction multiply(Fraction a, Fraction b){
return new Fraction(a.numerator * b.numerator, a.denominator * b.denominator);
}
public static Fraction subtract(Fraction a, Fraction b){
if(a.denominator != b.denominator){
double aTop = b.denominator * a.numerator;
double bTop = a.denominator * b.numerator;
return new Fraction(aTop-bTop, a.denominator*b.denominator);
}
else{
return new Fraction(a.numerator - b.numerator, a.denominator);
}
}
}
Observe that you'd have the same problem if you used limited-precision decimal arithmetic, and wanted to deal with 1/3: 0.333333333 * 3 is 0.999999999, not 1.00000000.
Unfortunately, 5.6, 5.8 and 11.4 just aren't round numbers in binary, because they involve fifths. So the float representation of them isn't exact, just as 0.3333 isn't exactly 1/3.
If all the numbers you use are non-recurring decimals, and you want exact results, use BigDecimal. Or as others have said, if your values are like money in the sense that they're all a multiple of 0.01, or 0.001, or something, then multiply everything by a fixed power of 10 and use int or long (addition and subtraction are trivial: watch out for multiplication).
However, if you are happy with binary for the calculation, but you just want to print things out in a slightly friendlier format, try java.util.Formatter or String.format. In the format string specify a precision less than the full precision of a double. To 10 significant figures, say, 11.399999999999 is 11.4, so the result will be almost as accurate and more human-readable in cases where the binary result is very close to a value requiring only a few decimal places.
The precision to specify depends a bit on how much maths you've done with your numbers - in general the more you do, the more error will accumulate, but some algorithms accumulate it much faster than others (they're called "unstable" as opposed to "stable" with respect to rounding errors). If all you're doing is adding a few values, then I'd guess that dropping just one decimal place of precision will sort things out. Experiment.
You may want to look into using java's java.math.BigDecimal class if you really need precision math. Here is a good article from Oracle/Sun on the case for BigDecimal. While you can never represent 1/3 as someone mentioned, you can have the power to decide exactly how precise you want the result to be. setScale() is your friend.. :)
Ok, because I have way too much time on my hands at the moment here is a code example that relates to your question:
import java.math.BigDecimal;
/**
* Created by a wonderful programmer known as:
* Vincent Stoessel
* xaymaca#gmail.com
* on Mar 17, 2010 at 11:05:16 PM
*/
public class BigUp {
public static void main(String[] args) {
BigDecimal first, second, result ;
first = new BigDecimal("33.33333333333333") ;
second = new BigDecimal("100") ;
result = first.divide(second);
System.out.println("result is " + result);
//will print : result is 0.3333333333333333
}
}
and to plug my new favorite language, Groovy, here is a neater example of the same thing:
import java.math.BigDecimal
def first = new BigDecimal("33.33333333333333")
def second = new BigDecimal("100")
println "result is " + first/second // will print: result is 0.33333333333333
Pretty sure you could've made that into a three line example. :)
If you want exact precision, use BigDecimal. Otherwise, you can use ints multiplied by 10 ^ whatever precision you want.
As others have noted, not all decimal values can be represented as binary since decimal is based on powers of 10 and binary is based on powers of two.
If precision matters, use BigDecimal, but if you just want friendly output:
System.out.printf("%.2f\n", total);
Will give you:
11.40
You're running up against the precision limitation of type double.
Java.Math has some arbitrary-precision arithmetic facilities.
You can't, because 7.3 doesn't have a finite representation in binary. The closest you can get is 2054767329987789/2**48 = 7.3+1/1407374883553280.
Take a look at http://docs.python.org/tutorial/floatingpoint.html for a further explanation. (It's on the Python website, but Java and C++ have the same "problem".)
The solution depends on what exactly your problem is:
If it's that you just don't like seeing all those noise digits, then fix your string formatting. Don't display more than 15 significant digits (or 7 for float).
If it's that the inexactness of your numbers is breaking things like "if" statements, then you should write if (abs(x - 7.3) < TOLERANCE) instead of if (x == 7.3).
If you're working with money, then what you probably really want is decimal fixed point. Store an integer number of cents or whatever the smallest unit of your currency is.
(VERY UNLIKELY) If you need more than 53 significant bits (15-16 significant digits) of precision, then use a high-precision floating-point type, like BigDecimal.
private void getRound() {
// this is very simple and interesting
double a = 5, b = 3, c;
c = a / b;
System.out.println(" round val is " + c);
// round val is : 1.6666666666666667
// if you want to only two precision point with double we
// can use formate option in String
// which takes 2 parameters one is formte specifier which
// shows dicimal places another double value
String s = String.format("%.2f", c);
double val = Double.parseDouble(s);
System.out.println(" val is :" + val);
// now out put will be : val is :1.67
}
Use java.math.BigDecimal
Doubles are binary fractions internally, so they sometimes cannot represent decimal fractions to the exact decimal.
/*
0.8 1.2
0.7 1.3
0.7000000000000002 2.3
0.7999999999999998 4.2
*/
double adjust = fToInt + 1.0 - orgV;
// The following two lines works for me.
String s = String.format("%.2f", adjust);
double val = Double.parseDouble(s);
System.out.println(val); // output: 0.8, 0.7, 0.7, 0.8
Doubles are approximations of the decimal numbers in your Java source. You're seeing the consequence of the mismatch between the double (which is a binary-coded value) and your source (which is decimal-coded).
Java's producing the closest binary approximation. You can use the java.text.DecimalFormat to display a better-looking decimal value.
Short answer: Always use BigDecimal and make sure you are using the constructor with String argument, not the double one.
Back to your example, the following code will print 11.4, as you wish.
public class doublePrecision {
public static void main(String[] args) {
BigDecimal total = new BigDecimal("0");
total = total.add(new BigDecimal("5.6"));
total = total.add(new BigDecimal("5.8"));
System.out.println(total);
}
}
Multiply everything by 100 and store it in a long as cents.
Computers store numbers in binary and can't actually represent numbers such as 33.333333333 or 100.0 exactly. This is one of the tricky things about using doubles. You will have to just round the answer before showing it to a user. Luckily in most applications, you don't need that many decimal places anyhow.
Floating point numbers differ from real numbers in that for any given floating point number there is a next higher floating point number. Same as integers. There's no integer between 1 and 2.
There's no way to represent 1/3 as a float. There's a float below it and there's a float above it, and there's a certain distance between them. And 1/3 is in that space.
Apfloat for Java claims to work with arbitrary precision floating point numbers, but I've never used it. Probably worth a look.
http://www.apfloat.org/apfloat_java/
A similar question was asked here before
Java floating point high precision library
Use a BigDecimal. It even lets you specify rounding rules (like ROUND_HALF_EVEN, which will minimize statistical error by rounding to the even neighbor if both are the same distance; i.e. both 1.5 and 2.5 round to 2).
Why not use the round() method from Math class?
// The number of 0s determines how many digits you want after the floating point
// (here one digit)
total = (double)Math.round(total * 10) / 10;
System.out.println(total); // prints 11.4
Check out BigDecimal, it handles problems dealing with floating point arithmetic like that.
The new call would look like this:
term[number].coefficient.add(co);
Use setScale() to set the number of decimal place precision to be used.
If you have no choice other than using double values, can use the below code.
public static double sumDouble(double value1, double value2) {
double sum = 0.0;
String value1Str = Double.toString(value1);
int decimalIndex = value1Str.indexOf(".");
int value1Precision = 0;
if (decimalIndex != -1) {
value1Precision = (value1Str.length() - 1) - decimalIndex;
}
String value2Str = Double.toString(value2);
decimalIndex = value2Str.indexOf(".");
int value2Precision = 0;
if (decimalIndex != -1) {
value2Precision = (value2Str.length() - 1) - decimalIndex;
}
int maxPrecision = value1Precision > value2Precision ? value1Precision : value2Precision;
sum = value1 + value2;
String s = String.format("%." + maxPrecision + "f", sum);
sum = Double.parseDouble(s);
return sum;
}
You can Do the Following!
System.out.println(String.format("%.12f", total));
if you change the decimal value here %.12f
So far I understand it as main goal to get correct double from wrong double.
Look for my solution how to get correct value from "approximate" wrong value - if it is real floating point it rounds last digit - counted from all digits - counting before dot and try to keep max possible digits after dot - hope that it is enough precision for most cases:
public static double roundError(double value) {
BigDecimal valueBigDecimal = new BigDecimal(Double.toString(value));
String valueString = valueBigDecimal.toPlainString();
if (!valueString.contains(".")) return value;
String[] valueArray = valueString.split("[.]");
int places = 16;
places -= valueArray[0].length();
if ("56789".contains("" + valueArray[0].charAt(valueArray[0].length() - 1))) places--;
//System.out.println("Rounding " + value + "(" + valueString + ") to " + places + " places");
return valueBigDecimal.setScale(places, RoundingMode.HALF_UP).doubleValue();
}
I know it is long code, sure not best, maybe someone can fix it to be more elegant. Anyway it is working, see examples:
roundError(5.6+5.8) = 11.399999999999999 = 11.4
roundError(0.4-0.3) = 0.10000000000000003 = 0.1
roundError(37235.137567000005) = 37235.137567
roundError(1/3) 0.3333333333333333 = 0.333333333333333
roundError(3723513756.7000005) = 3.7235137567E9 (3723513756.7)
roundError(3723513756123.7000005) = 3.7235137561237E12 (3723513756123.7)
roundError(372351375612.7000005) = 3.723513756127E11 (372351375612.7)
roundError(1.7976931348623157) = 1.797693134862316
Do not waste your efford using BigDecimal. In 99.99999% cases you don't need it. java double type is of cource approximate but in almost all cases, it is sufficiently precise. Mind that your have an error at 14th significant digit. This is really negligible!
To get nice output use:
System.out.printf("%.2f\n", total);

Categories

Resources