How to properly implement equals in Java - java

I need to implement the equals method in some class A. Class A has an orderer collection of Enum type, and the behaviour I want to achive is that equals returns true for two instances of Class A that have exactly the same Enum values in the collection (in exactly the same positions of the collection).
As I'm new to java, I'm having problems with this, and I dont know how to properly implement equals or the hashcode methods, so any help would be good :)

If you're using eclipse (netbeans has similar features, as do most java IDEs), you can simply got to the "Source" menu, and choose "Generate hashcode() and equals()". Then you select the fields you want to be considered (in your case the list of enum values.
That being said, assuming you already have the enum, here's the code that eclipse generated for me. Not that hashcode usually involves a prime number, as well as multiplication and addition. This tends to give you somewhat decent distribution of values.
public class Foo {
private List<FooEnum> enumValues;
#Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result
+ ((enumValues == null) ? 0 : enumValues.hashCode());
return result;
}
#Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Foo other = (Foo) obj;
if (enumValues == null) {
if (other.enumValues != null)
return false;
}
else if (!enumValues.equals(other.enumValues))
return false;
return true;
}
}

The overridden equals method will look like this
public boolean equals(Object o) {
if ((o instanceof yourtype) &&
(((yourtype)o).getPropertyToTest() == this.propertyToTest)) {
return true;
}
else {
return false;
}
}
The overridden hashCode method will look like this
public int hashCode() { return anIntRepresentingTheHashCode}
Pulling from the javadocs, your equals method must meet the following criteria:
reflexive - x.equals(x) is true
symmetric - if x.equals(y) then y.equals(x)
transitive - if x.equals(y) and y.equals(z) then x.equals(z)
consistent - if x.equals(y) is true, then it's always true unless the object is modified
null - x.equals(null) is false
Also, if two objects are equal based on the equals method, they must have identical hash codes.
The reverse is not true. If two objects are not equal, they may or may not have identical hash codes

Use EnumSet It retains natural order as per java docs also and it is optimized for Enums only.
The iterator returned by the iteratormethod traverses the elements in their natural order (the order in which the enum constants are declared). The returned iterator is weakly consistent: it will never throw ConcurrentModificationException and it may or may not show the effects of any modifications to the set that occur while the iteration is in progress.
You can use EnumSet as below
import java.util.EnumSet;
public enum Direction {
LEFT,
RIGHT,
ABOVE,
BELOW;
private static EnumSet<Direction> someDirection = EnumSet.of(Direction.LEFT,Direction.RIGHT) ;
}
Now because you are using EnumSet equals and Hashcode method will be provided default from AbstractSet which is parent class of EnumSet
So You don't have to care about them.

Related

Removing HashSet element [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
What issues / pitfalls must be considered when overriding equals and hashCode?
The theory (for the language lawyers and the mathematically inclined):
equals() (javadoc) must define an equivalence relation (it must be reflexive, symmetric, and transitive). In addition, it must be consistent (if the objects are not modified, then it must keep returning the same value). Furthermore, o.equals(null) must always return false.
hashCode() (javadoc) must also be consistent (if the object is not modified in terms of equals(), it must keep returning the same value).
The relation between the two methods is:
Whenever a.equals(b), then a.hashCode() must be same as b.hashCode().
In practice:
If you override one, then you should override the other.
Use the same set of fields that you use to compute equals() to compute hashCode().
Use the excellent helper classes EqualsBuilder and HashCodeBuilder from the Apache Commons Lang library. An example:
public class Person {
private String name;
private int age;
// ...
#Override
public int hashCode() {
return new HashCodeBuilder(17, 31). // two randomly chosen prime numbers
// if deriving: appendSuper(super.hashCode()).
append(name).
append(age).
toHashCode();
}
#Override
public boolean equals(Object obj) {
if (!(obj instanceof Person))
return false;
if (obj == this)
return true;
Person rhs = (Person) obj;
return new EqualsBuilder().
// if deriving: appendSuper(super.equals(obj)).
append(name, rhs.name).
append(age, rhs.age).
isEquals();
}
}
Also remember:
When using a hash-based Collection or Map such as HashSet, LinkedHashSet, HashMap, Hashtable, or WeakHashMap, make sure that the hashCode() of the key objects that you put into the collection never changes while the object is in the collection. The bulletproof way to ensure this is to make your keys immutable, which has also other benefits.
There are some issues worth noticing if you're dealing with classes that are persisted using an Object-Relationship Mapper (ORM) like Hibernate, if you didn't think this was unreasonably complicated already!
Lazy loaded objects are subclasses
If your objects are persisted using an ORM, in many cases you will be dealing with dynamic proxies to avoid loading object too early from the data store. These proxies are implemented as subclasses of your own class. This means thatthis.getClass() == o.getClass() will return false. For example:
Person saved = new Person("John Doe");
Long key = dao.save(saved);
dao.flush();
Person retrieved = dao.retrieve(key);
saved.getClass().equals(retrieved.getClass()); // Will return false if Person is loaded lazy
If you're dealing with an ORM, using o instanceof Person is the only thing that will behave correctly.
Lazy loaded objects have null-fields
ORMs usually use the getters to force loading of lazy loaded objects. This means that person.name will be null if person is lazy loaded, even if person.getName() forces loading and returns "John Doe". In my experience, this crops up more often in hashCode() and equals().
If you're dealing with an ORM, make sure to always use getters, and never field references in hashCode() and equals().
Saving an object will change its state
Persistent objects often use a id field to hold the key of the object. This field will be automatically updated when an object is first saved. Don't use an id field in hashCode(). But you can use it in equals().
A pattern I often use is
if (this.getId() == null) {
return this == other;
}
else {
return this.getId().equals(other.getId());
}
But: you cannot include getId() in hashCode(). If you do, when an object is persisted, its hashCode changes. If the object is in a HashSet, you'll "never" find it again.
In my Person example, I probably would use getName() for hashCode and getId() plus getName() (just for paranoia) for equals(). It's okay if there are some risk of "collisions" for hashCode(), but never okay for equals().
hashCode() should use the non-changing subset of properties from equals()
A clarification about the obj.getClass() != getClass().
This statement is the result of equals() being inheritance unfriendly. The JLS (Java language specification) specifies that if A.equals(B) == true then B.equals(A) must also return true. If you omit that statement inheriting classes that override equals() (and change its behavior) will break this specification.
Consider the following example of what happens when the statement is omitted:
class A {
int field1;
A(int field1) {
this.field1 = field1;
}
public boolean equals(Object other) {
return (other != null && other instanceof A && ((A) other).field1 == field1);
}
}
class B extends A {
int field2;
B(int field1, int field2) {
super(field1);
this.field2 = field2;
}
public boolean equals(Object other) {
return (other != null && other instanceof B && ((B)other).field2 == field2 && super.equals(other));
}
}
Doing new A(1).equals(new A(1)) Also, new B(1,1).equals(new B(1,1)) result give out true, as it should.
This looks all very good, but look what happens if we try to use both classes:
A a = new A(1);
B b = new B(1,1);
a.equals(b) == true;
b.equals(a) == false;
Obviously, this is wrong.
If you want to ensure the symmetric condition. a=b if b=a and the Liskov substitution principle call super.equals(other) not only in the case of B instance, but check after for A instance:
if (other instanceof B )
return (other != null && ((B)other).field2 == field2 && super.equals(other));
if (other instanceof A) return super.equals(other);
else return false;
Which will output:
a.equals(b) == true;
b.equals(a) == true;
Where, if a is not a reference of B, then it might be a be a reference of class A (because you extend it), in this case you call super.equals() too.
For an inheritance-friendly implementation, check out Tal Cohen's solution, How Do I Correctly Implement the equals() Method?
Summary:
In his book Effective Java Programming Language Guide (Addison-Wesley, 2001), Joshua Bloch claims that "There is simply no way to extend an instantiable class and add an aspect while preserving the equals contract." Tal disagrees.
His solution is to implement equals() by calling another nonsymmetric blindlyEquals() both ways. blindlyEquals() is overridden by subclasses, equals() is inherited, and never overridden.
Example:
class Point {
private int x;
private int y;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof Point))
return false;
Point p = (Point)o;
return (p.x == this.x && p.y == this.y);
}
public boolean equals(Object o) {
return (this.blindlyEquals(o) && o.blindlyEquals(this));
}
}
class ColorPoint extends Point {
private Color c;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof ColorPoint))
return false;
ColorPoint cp = (ColorPoint)o;
return (super.blindlyEquals(cp) &&
cp.color == this.color);
}
}
Note that equals() must work across inheritance hierarchies if the Liskov Substitution Principle is to be satisfied.
Still amazed that none recommended the guava library for this.
//Sample taken from a current working project of mine just to illustrate the idea
#Override
public int hashCode(){
return Objects.hashCode(this.getDate(), this.datePattern);
}
#Override
public boolean equals(Object obj){
if ( ! obj instanceof DateAndPattern ) {
return false;
}
return Objects.equal(((DateAndPattern)obj).getDate(), this.getDate())
&& Objects.equal(((DateAndPattern)obj).getDate(), this.getDatePattern());
}
There are two methods in super class as java.lang.Object. We need to override them to custom object.
public boolean equals(Object obj)
public int hashCode()
Equal objects must produce the same hash code as long as they are equal, however unequal objects need not produce distinct hash codes.
public class Test
{
private int num;
private String data;
public boolean equals(Object obj)
{
if(this == obj)
return true;
if((obj == null) || (obj.getClass() != this.getClass()))
return false;
// object must be Test at this point
Test test = (Test)obj;
return num == test.num &&
(data == test.data || (data != null && data.equals(test.data)));
}
public int hashCode()
{
int hash = 7;
hash = 31 * hash + num;
hash = 31 * hash + (null == data ? 0 : data.hashCode());
return hash;
}
// other methods
}
If you want get more, please check this link as http://www.javaranch.com/journal/2002/10/equalhash.html
This is another example,
http://java67.blogspot.com/2013/04/example-of-overriding-equals-hashcode-compareTo-java-method.html
Have Fun! #.#
There are a couple of ways to do your check for class equality before checking member equality, and I think both are useful in the right circumstances.
Use the instanceof operator.
Use this.getClass().equals(that.getClass()).
I use #1 in a final equals implementation, or when implementing an interface that prescribes an algorithm for equals (like the java.util collection interfaces—the right way to check with with (obj instanceof Set) or whatever interface you're implementing). It's generally a bad choice when equals can be overridden because that breaks the symmetry property.
Option #2 allows the class to be safely extended without overriding equals or breaking symmetry.
If your class is also Comparable, the equals and compareTo methods should be consistent too. Here's a template for the equals method in a Comparable class:
final class MyClass implements Comparable<MyClass>
{
…
#Override
public boolean equals(Object obj)
{
/* If compareTo and equals aren't final, we should check with getClass instead. */
if (!(obj instanceof MyClass))
return false;
return compareTo((MyClass) obj) == 0;
}
}
For equals, look into Secrets of Equals by Angelika Langer. I love it very much. She's also a great FAQ about Generics in Java. View her other articles here (scroll down to "Core Java"), where she also goes on with Part-2 and "mixed type comparison". Have fun reading them!
equals() method is used to determine the equality of two objects.
as int value of 10 is always equal to 10. But this equals() method is about equality of two objects. When we say object, it will have properties. To decide about equality those properties are considered. It is not necessary that all properties must be taken into account to determine the equality and with respect to the class definition and context it can be decided. Then the equals() method can be overridden.
we should always override hashCode() method whenever we override equals() method. If not, what will happen? If we use hashtables in our application, it will not behave as expected. As the hashCode is used in determining the equality of values stored, it will not return the right corresponding value for a key.
Default implementation given is hashCode() method in Object class uses the internal address of the object and converts it into integer and returns it.
public class Tiger {
private String color;
private String stripePattern;
private int height;
#Override
public boolean equals(Object object) {
boolean result = false;
if (object == null || object.getClass() != getClass()) {
result = false;
} else {
Tiger tiger = (Tiger) object;
if (this.color == tiger.getColor()
&& this.stripePattern == tiger.getStripePattern()) {
result = true;
}
}
return result;
}
// just omitted null checks
#Override
public int hashCode() {
int hash = 3;
hash = 7 * hash + this.color.hashCode();
hash = 7 * hash + this.stripePattern.hashCode();
return hash;
}
public static void main(String args[]) {
Tiger bengalTiger1 = new Tiger("Yellow", "Dense", 3);
Tiger bengalTiger2 = new Tiger("Yellow", "Dense", 2);
Tiger siberianTiger = new Tiger("White", "Sparse", 4);
System.out.println("bengalTiger1 and bengalTiger2: "
+ bengalTiger1.equals(bengalTiger2));
System.out.println("bengalTiger1 and siberianTiger: "
+ bengalTiger1.equals(siberianTiger));
System.out.println("bengalTiger1 hashCode: " + bengalTiger1.hashCode());
System.out.println("bengalTiger2 hashCode: " + bengalTiger2.hashCode());
System.out.println("siberianTiger hashCode: "
+ siberianTiger.hashCode());
}
public String getColor() {
return color;
}
public String getStripePattern() {
return stripePattern;
}
public Tiger(String color, String stripePattern, int height) {
this.color = color;
this.stripePattern = stripePattern;
this.height = height;
}
}
Example Code Output:
bengalTiger1 and bengalTiger2: true
bengalTiger1 and siberianTiger: false
bengalTiger1 hashCode: 1398212510
bengalTiger2 hashCode: 1398212510
siberianTiger hashCode: –1227465966
Logically we have:
a.getClass().equals(b.getClass()) && a.equals(b) ⇒ a.hashCode() == b.hashCode()
But not vice-versa!
One gotcha I have found is where two objects contain references to each other (one example being a parent/child relationship with a convenience method on the parent to get all children).
These sorts of things are fairly common when doing Hibernate mappings for example.
If you include both ends of the relationship in your hashCode or equals tests it's possible to get into a recursive loop which ends in a StackOverflowException.
The simplest solution is to not include the getChildren collection in the methods.

Creating Java classes usable as keys for a hashmap

I have made a class called Coordinates which simply holds some x and y integers. I want to use this as a key for a HashMap.
However, I noticed that when you create two different instances of Coordinates with the same x and y values, they are used as different keys by the hash map. That is, you can put two entries even though both of them have the same coordinates.
I have overriden equals():
public boolean equals(Object obj) {
if (!(obj instanceof Coord)) {
return false;
}else if (obj == this) {
return true;
}
Coord other = (Coord)obj;
return (x == other.x && y == other.y);
}
But the HashMap still uses the two instances as if they were different keys. What do I do?
And I know I could use an integer array of two elements instead. But I want to use this class.
You need to override hashCode. Java 7 provides a utility method for this.
#Override
public int hashCode() {
return Objects.hash(x, y);
}
You should also override hashCode() so that two equal instances have the same hashCode(). E.g.:
#Override
public int hashCode() {
int result = x;
result = 31 * result + y;
return result;
}
Note that it is not strictly required for two instances that are not equal to have different hash codes, but the less collisions you have, the better performance you'll get from you HashMap.
A hash map uses the hashCode method of objects to determine which bucket to put the object into.
If your object doesn't implement hashCode, it inherits the default implementation from Object. From the docs:
As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the JavaTM programming language.)
As such, each object will appear to be distinct.
Note that different objects may return the same hashCode.
That's called a collision.
When that happens,
then in addition to the hashCode,
the hash map implementation will use the equals method to determine if two objects are equal.
Note that most IDE offer to generate the equals and hashCode methods from the fields defined in your class. In fact, IntelliJ encourages to define these two methods at the same time. For good reason. These two methods are intimately related,
and whenever you change one of them, or implement one of them, or override one of them,
you must review (and most probably change) the other one too.
The methods in this class are 100% generated code (by IntelliJ):
class Coord {
private int x;
private int y;
#Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Coord coord = (Coord) o;
if (x != coord.x) return false;
if (y != coord.y) return false;
return true;
}
#Override
public int hashCode() {
int result = x;
result = 31 * result + y;
return result;
}
}
You probably did not override the hashCode method. Why is that required ? To answer this, you must understand how an hashtable works.
An hashtable is basically an array of linkedlists. Each bucket in the array corresponds to a particular value of hashCode % numberOfBuckets. All the objects with the same hashCode % numberOfBuckets will be stored within a linkedlist in the associated bucket and will be recognized (during the lookup for instance) basing on their equals method. Therefore, the exact specification is a.hashCode() != b.hashCode() => !a.equals(b) which is equivalent to a.equals(b) => a.hashCode() == b.hashCode().
If you use the default implementation of hashCode, which is based on the reference, then two objects that are equal but have a different reference (and so, most probably, a different hashCode) will be stored in a different bucket, resulting in a duplicate key.

What's the difference of hashCode() and equals()? [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
What issues / pitfalls must be considered when overriding equals and hashCode?
The theory (for the language lawyers and the mathematically inclined):
equals() (javadoc) must define an equivalence relation (it must be reflexive, symmetric, and transitive). In addition, it must be consistent (if the objects are not modified, then it must keep returning the same value). Furthermore, o.equals(null) must always return false.
hashCode() (javadoc) must also be consistent (if the object is not modified in terms of equals(), it must keep returning the same value).
The relation between the two methods is:
Whenever a.equals(b), then a.hashCode() must be same as b.hashCode().
In practice:
If you override one, then you should override the other.
Use the same set of fields that you use to compute equals() to compute hashCode().
Use the excellent helper classes EqualsBuilder and HashCodeBuilder from the Apache Commons Lang library. An example:
public class Person {
private String name;
private int age;
// ...
#Override
public int hashCode() {
return new HashCodeBuilder(17, 31). // two randomly chosen prime numbers
// if deriving: appendSuper(super.hashCode()).
append(name).
append(age).
toHashCode();
}
#Override
public boolean equals(Object obj) {
if (!(obj instanceof Person))
return false;
if (obj == this)
return true;
Person rhs = (Person) obj;
return new EqualsBuilder().
// if deriving: appendSuper(super.equals(obj)).
append(name, rhs.name).
append(age, rhs.age).
isEquals();
}
}
Also remember:
When using a hash-based Collection or Map such as HashSet, LinkedHashSet, HashMap, Hashtable, or WeakHashMap, make sure that the hashCode() of the key objects that you put into the collection never changes while the object is in the collection. The bulletproof way to ensure this is to make your keys immutable, which has also other benefits.
There are some issues worth noticing if you're dealing with classes that are persisted using an Object-Relationship Mapper (ORM) like Hibernate, if you didn't think this was unreasonably complicated already!
Lazy loaded objects are subclasses
If your objects are persisted using an ORM, in many cases you will be dealing with dynamic proxies to avoid loading object too early from the data store. These proxies are implemented as subclasses of your own class. This means thatthis.getClass() == o.getClass() will return false. For example:
Person saved = new Person("John Doe");
Long key = dao.save(saved);
dao.flush();
Person retrieved = dao.retrieve(key);
saved.getClass().equals(retrieved.getClass()); // Will return false if Person is loaded lazy
If you're dealing with an ORM, using o instanceof Person is the only thing that will behave correctly.
Lazy loaded objects have null-fields
ORMs usually use the getters to force loading of lazy loaded objects. This means that person.name will be null if person is lazy loaded, even if person.getName() forces loading and returns "John Doe". In my experience, this crops up more often in hashCode() and equals().
If you're dealing with an ORM, make sure to always use getters, and never field references in hashCode() and equals().
Saving an object will change its state
Persistent objects often use a id field to hold the key of the object. This field will be automatically updated when an object is first saved. Don't use an id field in hashCode(). But you can use it in equals().
A pattern I often use is
if (this.getId() == null) {
return this == other;
}
else {
return this.getId().equals(other.getId());
}
But: you cannot include getId() in hashCode(). If you do, when an object is persisted, its hashCode changes. If the object is in a HashSet, you'll "never" find it again.
In my Person example, I probably would use getName() for hashCode and getId() plus getName() (just for paranoia) for equals(). It's okay if there are some risk of "collisions" for hashCode(), but never okay for equals().
hashCode() should use the non-changing subset of properties from equals()
A clarification about the obj.getClass() != getClass().
This statement is the result of equals() being inheritance unfriendly. The JLS (Java language specification) specifies that if A.equals(B) == true then B.equals(A) must also return true. If you omit that statement inheriting classes that override equals() (and change its behavior) will break this specification.
Consider the following example of what happens when the statement is omitted:
class A {
int field1;
A(int field1) {
this.field1 = field1;
}
public boolean equals(Object other) {
return (other != null && other instanceof A && ((A) other).field1 == field1);
}
}
class B extends A {
int field2;
B(int field1, int field2) {
super(field1);
this.field2 = field2;
}
public boolean equals(Object other) {
return (other != null && other instanceof B && ((B)other).field2 == field2 && super.equals(other));
}
}
Doing new A(1).equals(new A(1)) Also, new B(1,1).equals(new B(1,1)) result give out true, as it should.
This looks all very good, but look what happens if we try to use both classes:
A a = new A(1);
B b = new B(1,1);
a.equals(b) == true;
b.equals(a) == false;
Obviously, this is wrong.
If you want to ensure the symmetric condition. a=b if b=a and the Liskov substitution principle call super.equals(other) not only in the case of B instance, but check after for A instance:
if (other instanceof B )
return (other != null && ((B)other).field2 == field2 && super.equals(other));
if (other instanceof A) return super.equals(other);
else return false;
Which will output:
a.equals(b) == true;
b.equals(a) == true;
Where, if a is not a reference of B, then it might be a be a reference of class A (because you extend it), in this case you call super.equals() too.
For an inheritance-friendly implementation, check out Tal Cohen's solution, How Do I Correctly Implement the equals() Method?
Summary:
In his book Effective Java Programming Language Guide (Addison-Wesley, 2001), Joshua Bloch claims that "There is simply no way to extend an instantiable class and add an aspect while preserving the equals contract." Tal disagrees.
His solution is to implement equals() by calling another nonsymmetric blindlyEquals() both ways. blindlyEquals() is overridden by subclasses, equals() is inherited, and never overridden.
Example:
class Point {
private int x;
private int y;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof Point))
return false;
Point p = (Point)o;
return (p.x == this.x && p.y == this.y);
}
public boolean equals(Object o) {
return (this.blindlyEquals(o) && o.blindlyEquals(this));
}
}
class ColorPoint extends Point {
private Color c;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof ColorPoint))
return false;
ColorPoint cp = (ColorPoint)o;
return (super.blindlyEquals(cp) &&
cp.color == this.color);
}
}
Note that equals() must work across inheritance hierarchies if the Liskov Substitution Principle is to be satisfied.
Still amazed that none recommended the guava library for this.
//Sample taken from a current working project of mine just to illustrate the idea
#Override
public int hashCode(){
return Objects.hashCode(this.getDate(), this.datePattern);
}
#Override
public boolean equals(Object obj){
if ( ! obj instanceof DateAndPattern ) {
return false;
}
return Objects.equal(((DateAndPattern)obj).getDate(), this.getDate())
&& Objects.equal(((DateAndPattern)obj).getDate(), this.getDatePattern());
}
There are two methods in super class as java.lang.Object. We need to override them to custom object.
public boolean equals(Object obj)
public int hashCode()
Equal objects must produce the same hash code as long as they are equal, however unequal objects need not produce distinct hash codes.
public class Test
{
private int num;
private String data;
public boolean equals(Object obj)
{
if(this == obj)
return true;
if((obj == null) || (obj.getClass() != this.getClass()))
return false;
// object must be Test at this point
Test test = (Test)obj;
return num == test.num &&
(data == test.data || (data != null && data.equals(test.data)));
}
public int hashCode()
{
int hash = 7;
hash = 31 * hash + num;
hash = 31 * hash + (null == data ? 0 : data.hashCode());
return hash;
}
// other methods
}
If you want get more, please check this link as http://www.javaranch.com/journal/2002/10/equalhash.html
This is another example,
http://java67.blogspot.com/2013/04/example-of-overriding-equals-hashcode-compareTo-java-method.html
Have Fun! #.#
There are a couple of ways to do your check for class equality before checking member equality, and I think both are useful in the right circumstances.
Use the instanceof operator.
Use this.getClass().equals(that.getClass()).
I use #1 in a final equals implementation, or when implementing an interface that prescribes an algorithm for equals (like the java.util collection interfaces—the right way to check with with (obj instanceof Set) or whatever interface you're implementing). It's generally a bad choice when equals can be overridden because that breaks the symmetry property.
Option #2 allows the class to be safely extended without overriding equals or breaking symmetry.
If your class is also Comparable, the equals and compareTo methods should be consistent too. Here's a template for the equals method in a Comparable class:
final class MyClass implements Comparable<MyClass>
{
…
#Override
public boolean equals(Object obj)
{
/* If compareTo and equals aren't final, we should check with getClass instead. */
if (!(obj instanceof MyClass))
return false;
return compareTo((MyClass) obj) == 0;
}
}
For equals, look into Secrets of Equals by Angelika Langer. I love it very much. She's also a great FAQ about Generics in Java. View her other articles here (scroll down to "Core Java"), where she also goes on with Part-2 and "mixed type comparison". Have fun reading them!
equals() method is used to determine the equality of two objects.
as int value of 10 is always equal to 10. But this equals() method is about equality of two objects. When we say object, it will have properties. To decide about equality those properties are considered. It is not necessary that all properties must be taken into account to determine the equality and with respect to the class definition and context it can be decided. Then the equals() method can be overridden.
we should always override hashCode() method whenever we override equals() method. If not, what will happen? If we use hashtables in our application, it will not behave as expected. As the hashCode is used in determining the equality of values stored, it will not return the right corresponding value for a key.
Default implementation given is hashCode() method in Object class uses the internal address of the object and converts it into integer and returns it.
public class Tiger {
private String color;
private String stripePattern;
private int height;
#Override
public boolean equals(Object object) {
boolean result = false;
if (object == null || object.getClass() != getClass()) {
result = false;
} else {
Tiger tiger = (Tiger) object;
if (this.color == tiger.getColor()
&& this.stripePattern == tiger.getStripePattern()) {
result = true;
}
}
return result;
}
// just omitted null checks
#Override
public int hashCode() {
int hash = 3;
hash = 7 * hash + this.color.hashCode();
hash = 7 * hash + this.stripePattern.hashCode();
return hash;
}
public static void main(String args[]) {
Tiger bengalTiger1 = new Tiger("Yellow", "Dense", 3);
Tiger bengalTiger2 = new Tiger("Yellow", "Dense", 2);
Tiger siberianTiger = new Tiger("White", "Sparse", 4);
System.out.println("bengalTiger1 and bengalTiger2: "
+ bengalTiger1.equals(bengalTiger2));
System.out.println("bengalTiger1 and siberianTiger: "
+ bengalTiger1.equals(siberianTiger));
System.out.println("bengalTiger1 hashCode: " + bengalTiger1.hashCode());
System.out.println("bengalTiger2 hashCode: " + bengalTiger2.hashCode());
System.out.println("siberianTiger hashCode: "
+ siberianTiger.hashCode());
}
public String getColor() {
return color;
}
public String getStripePattern() {
return stripePattern;
}
public Tiger(String color, String stripePattern, int height) {
this.color = color;
this.stripePattern = stripePattern;
this.height = height;
}
}
Example Code Output:
bengalTiger1 and bengalTiger2: true
bengalTiger1 and siberianTiger: false
bengalTiger1 hashCode: 1398212510
bengalTiger2 hashCode: 1398212510
siberianTiger hashCode: –1227465966
Logically we have:
a.getClass().equals(b.getClass()) && a.equals(b) ⇒ a.hashCode() == b.hashCode()
But not vice-versa!
One gotcha I have found is where two objects contain references to each other (one example being a parent/child relationship with a convenience method on the parent to get all children).
These sorts of things are fairly common when doing Hibernate mappings for example.
If you include both ends of the relationship in your hashCode or equals tests it's possible to get into a recursive loop which ends in a StackOverflowException.
The simplest solution is to not include the getChildren collection in the methods.

Hash function for a generic object

How do you come up with a hash function for a generic object? There is the constraint that two objects need to have the same hash value if they are "equal" as defined by the user. How does Java accomplish this?
I just found the answer to my own question. The way Java does it is that it defines a hashCode for every object and by default the hashCode for two objects are the same iff the two objects are the same in memory. So when the client of the hashtable overrides the equals() method for an object, he should also override the method that computes hashcode such that if a.equals(b) is true, then a.hashCode() must also equal b.hashCode(). This way, it is assured that equal objects have the same hashcode.
First, basically you define the hash function of a class by overriding the hashCode() method. The Javadoc states:
The general contract of hashCode is:
Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hash tables.
So the more important question is: What makes two of your objects equal? Or vice versa: What properties make your objects unique? If you have an answer to that, create an equals() method that compares all of the properties and returns true if they're all the same and false otherwise.
The hashCode() method is a bit more involved, I would suggest that you do not create it yourself but let your IDE do it. In Eclipse, you can select Source and then Generate hashCode() and equals() from the menu. This also guarantees that the requirements from above hold.
Here is a small (and simplified) example where the two methods have been generated using Eclipse. Notice that I chose not to include the city property since the zipCode already uniquely identifies the city within a country.
public class Address {
private String streetAndNumber;
private String zipCode;
private String city;
private String country;
#Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((country == null) ? 0 : country.hashCode());
result = prime * result
+ ((streetAndNumber == null) ? 0 : streetAndNumber.hashCode());
result = prime * result + ((zipCode == null) ? 0 : zipCode.hashCode());
return result;
}
#Override
public boolean equals(final Object obj) {
if(this == obj)
return true;
if(obj == null)
return false;
if(!(obj instanceof Address))
return false;
final Address other = (Address) obj;
if(country == null) {
if(other.country != null)
return false;
}
else if(!country.equals(other.country))
return false;
if(streetAndNumber == null) {
if(other.streetAndNumber != null)
return false;
}
else if(!streetAndNumber.equals(other.streetAndNumber))
return false;
if(zipCode == null) {
if(other.zipCode != null)
return false;
}
else if(!zipCode.equals(other.zipCode))
return false;
return true;
}
}
Java doesn't do that. If the hashCode() and equals() are not explicitly implemented, JVM will generate different hashCodes for meaningfully equal instances. You can check Effective Java by Joshua Bloch. It's really helpful.
Several options:
read Effective Java, by Joshua Bloch. It contains a good algorithm for hash codes
let your IDE generate the hashCode method
Java SE 7 and greater: use Objects.hash
The class java.lang.Object cheats. It defines equality (as is determined by equals) as being object identity (as can be determined by ==). So, unless you override equals in your subclass, two instances of your class are "equal", if they happen to be the same object.
The associated hash code for this is implemented by the system function System.identityHashCode (which is no longer really based on object addresses -- was it ever? -- but can be thought of as being implemented this way).
If you override equals, then this implementation of hashCode no longer makes sense.
Consider the following example:
class Identifier {
private final int lower;
private final int upper;
public boolean equals(Object any) {
if (any == this) return true;
else if (!(any instanceof Identifier)) return false;
else {
final Identifier id = (Identifier)any;
return lower == id.lower && upper == id.upper;
}
}
}
Two instances of this class are considered equal, if their "lower" and "upper" members have the same values. Since equality is now determined by object members, we need to define hashCode in a compatible way.
public int hashCode() {
return lower * 31 + upper; // possible implementation, maybe not too sophisticated though
}
As you can see, we use the same fields in hashCode which we also use when we determine equality. It is generally a good idea to base the hash code on all members, which are also considered when comparing for equality.
Consider this example instead:
class EmailAddress {
private final String mailbox;
private final String displayName;
public boolean equals(Object any) {
if (any == this) return true;
else if (!(any instanceof EmailAddress)) return false;
else {
final EmailAddress id = (EmailAddress)any;
return mailbox.equals(id.mailbox);
}
}
}
Since here, equality is only determined by the mailbox member, the hash code should also only be based on that member:
public int hashCode() {
return mailbox.hashCode();
}
Hashing of an object is established by overriding hashCode() method, which the developer can override.
Java uses prime numbers in the default hashcode calculation.
If the equals() and hashCode() method aren't implemented, the JVM will generate hashcode implicitly for the object (for Serializable classes, a serialVersionUID is generated).

What issues should be considered when overriding equals and hashCode in Java?

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
What issues / pitfalls must be considered when overriding equals and hashCode?
The theory (for the language lawyers and the mathematically inclined):
equals() (javadoc) must define an equivalence relation (it must be reflexive, symmetric, and transitive). In addition, it must be consistent (if the objects are not modified, then it must keep returning the same value). Furthermore, o.equals(null) must always return false.
hashCode() (javadoc) must also be consistent (if the object is not modified in terms of equals(), it must keep returning the same value).
The relation between the two methods is:
Whenever a.equals(b), then a.hashCode() must be same as b.hashCode().
In practice:
If you override one, then you should override the other.
Use the same set of fields that you use to compute equals() to compute hashCode().
Use the excellent helper classes EqualsBuilder and HashCodeBuilder from the Apache Commons Lang library. An example:
public class Person {
private String name;
private int age;
// ...
#Override
public int hashCode() {
return new HashCodeBuilder(17, 31). // two randomly chosen prime numbers
// if deriving: appendSuper(super.hashCode()).
append(name).
append(age).
toHashCode();
}
#Override
public boolean equals(Object obj) {
if (!(obj instanceof Person))
return false;
if (obj == this)
return true;
Person rhs = (Person) obj;
return new EqualsBuilder().
// if deriving: appendSuper(super.equals(obj)).
append(name, rhs.name).
append(age, rhs.age).
isEquals();
}
}
Also remember:
When using a hash-based Collection or Map such as HashSet, LinkedHashSet, HashMap, Hashtable, or WeakHashMap, make sure that the hashCode() of the key objects that you put into the collection never changes while the object is in the collection. The bulletproof way to ensure this is to make your keys immutable, which has also other benefits.
There are some issues worth noticing if you're dealing with classes that are persisted using an Object-Relationship Mapper (ORM) like Hibernate, if you didn't think this was unreasonably complicated already!
Lazy loaded objects are subclasses
If your objects are persisted using an ORM, in many cases you will be dealing with dynamic proxies to avoid loading object too early from the data store. These proxies are implemented as subclasses of your own class. This means thatthis.getClass() == o.getClass() will return false. For example:
Person saved = new Person("John Doe");
Long key = dao.save(saved);
dao.flush();
Person retrieved = dao.retrieve(key);
saved.getClass().equals(retrieved.getClass()); // Will return false if Person is loaded lazy
If you're dealing with an ORM, using o instanceof Person is the only thing that will behave correctly.
Lazy loaded objects have null-fields
ORMs usually use the getters to force loading of lazy loaded objects. This means that person.name will be null if person is lazy loaded, even if person.getName() forces loading and returns "John Doe". In my experience, this crops up more often in hashCode() and equals().
If you're dealing with an ORM, make sure to always use getters, and never field references in hashCode() and equals().
Saving an object will change its state
Persistent objects often use a id field to hold the key of the object. This field will be automatically updated when an object is first saved. Don't use an id field in hashCode(). But you can use it in equals().
A pattern I often use is
if (this.getId() == null) {
return this == other;
}
else {
return this.getId().equals(other.getId());
}
But: you cannot include getId() in hashCode(). If you do, when an object is persisted, its hashCode changes. If the object is in a HashSet, you'll "never" find it again.
In my Person example, I probably would use getName() for hashCode and getId() plus getName() (just for paranoia) for equals(). It's okay if there are some risk of "collisions" for hashCode(), but never okay for equals().
hashCode() should use the non-changing subset of properties from equals()
A clarification about the obj.getClass() != getClass().
This statement is the result of equals() being inheritance unfriendly. The JLS (Java language specification) specifies that if A.equals(B) == true then B.equals(A) must also return true. If you omit that statement inheriting classes that override equals() (and change its behavior) will break this specification.
Consider the following example of what happens when the statement is omitted:
class A {
int field1;
A(int field1) {
this.field1 = field1;
}
public boolean equals(Object other) {
return (other != null && other instanceof A && ((A) other).field1 == field1);
}
}
class B extends A {
int field2;
B(int field1, int field2) {
super(field1);
this.field2 = field2;
}
public boolean equals(Object other) {
return (other != null && other instanceof B && ((B)other).field2 == field2 && super.equals(other));
}
}
Doing new A(1).equals(new A(1)) Also, new B(1,1).equals(new B(1,1)) result give out true, as it should.
This looks all very good, but look what happens if we try to use both classes:
A a = new A(1);
B b = new B(1,1);
a.equals(b) == true;
b.equals(a) == false;
Obviously, this is wrong.
If you want to ensure the symmetric condition. a=b if b=a and the Liskov substitution principle call super.equals(other) not only in the case of B instance, but check after for A instance:
if (other instanceof B )
return (other != null && ((B)other).field2 == field2 && super.equals(other));
if (other instanceof A) return super.equals(other);
else return false;
Which will output:
a.equals(b) == true;
b.equals(a) == true;
Where, if a is not a reference of B, then it might be a be a reference of class A (because you extend it), in this case you call super.equals() too.
For an inheritance-friendly implementation, check out Tal Cohen's solution, How Do I Correctly Implement the equals() Method?
Summary:
In his book Effective Java Programming Language Guide (Addison-Wesley, 2001), Joshua Bloch claims that "There is simply no way to extend an instantiable class and add an aspect while preserving the equals contract." Tal disagrees.
His solution is to implement equals() by calling another nonsymmetric blindlyEquals() both ways. blindlyEquals() is overridden by subclasses, equals() is inherited, and never overridden.
Example:
class Point {
private int x;
private int y;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof Point))
return false;
Point p = (Point)o;
return (p.x == this.x && p.y == this.y);
}
public boolean equals(Object o) {
return (this.blindlyEquals(o) && o.blindlyEquals(this));
}
}
class ColorPoint extends Point {
private Color c;
protected boolean blindlyEquals(Object o) {
if (!(o instanceof ColorPoint))
return false;
ColorPoint cp = (ColorPoint)o;
return (super.blindlyEquals(cp) &&
cp.color == this.color);
}
}
Note that equals() must work across inheritance hierarchies if the Liskov Substitution Principle is to be satisfied.
Still amazed that none recommended the guava library for this.
//Sample taken from a current working project of mine just to illustrate the idea
#Override
public int hashCode(){
return Objects.hashCode(this.getDate(), this.datePattern);
}
#Override
public boolean equals(Object obj){
if ( ! obj instanceof DateAndPattern ) {
return false;
}
return Objects.equal(((DateAndPattern)obj).getDate(), this.getDate())
&& Objects.equal(((DateAndPattern)obj).getDate(), this.getDatePattern());
}
There are two methods in super class as java.lang.Object. We need to override them to custom object.
public boolean equals(Object obj)
public int hashCode()
Equal objects must produce the same hash code as long as they are equal, however unequal objects need not produce distinct hash codes.
public class Test
{
private int num;
private String data;
public boolean equals(Object obj)
{
if(this == obj)
return true;
if((obj == null) || (obj.getClass() != this.getClass()))
return false;
// object must be Test at this point
Test test = (Test)obj;
return num == test.num &&
(data == test.data || (data != null && data.equals(test.data)));
}
public int hashCode()
{
int hash = 7;
hash = 31 * hash + num;
hash = 31 * hash + (null == data ? 0 : data.hashCode());
return hash;
}
// other methods
}
If you want get more, please check this link as http://www.javaranch.com/journal/2002/10/equalhash.html
This is another example,
http://java67.blogspot.com/2013/04/example-of-overriding-equals-hashcode-compareTo-java-method.html
Have Fun! #.#
There are a couple of ways to do your check for class equality before checking member equality, and I think both are useful in the right circumstances.
Use the instanceof operator.
Use this.getClass().equals(that.getClass()).
I use #1 in a final equals implementation, or when implementing an interface that prescribes an algorithm for equals (like the java.util collection interfaces—the right way to check with with (obj instanceof Set) or whatever interface you're implementing). It's generally a bad choice when equals can be overridden because that breaks the symmetry property.
Option #2 allows the class to be safely extended without overriding equals or breaking symmetry.
If your class is also Comparable, the equals and compareTo methods should be consistent too. Here's a template for the equals method in a Comparable class:
final class MyClass implements Comparable<MyClass>
{
…
#Override
public boolean equals(Object obj)
{
/* If compareTo and equals aren't final, we should check with getClass instead. */
if (!(obj instanceof MyClass))
return false;
return compareTo((MyClass) obj) == 0;
}
}
For equals, look into Secrets of Equals by Angelika Langer. I love it very much. She's also a great FAQ about Generics in Java. View her other articles here (scroll down to "Core Java"), where she also goes on with Part-2 and "mixed type comparison". Have fun reading them!
equals() method is used to determine the equality of two objects.
as int value of 10 is always equal to 10. But this equals() method is about equality of two objects. When we say object, it will have properties. To decide about equality those properties are considered. It is not necessary that all properties must be taken into account to determine the equality and with respect to the class definition and context it can be decided. Then the equals() method can be overridden.
we should always override hashCode() method whenever we override equals() method. If not, what will happen? If we use hashtables in our application, it will not behave as expected. As the hashCode is used in determining the equality of values stored, it will not return the right corresponding value for a key.
Default implementation given is hashCode() method in Object class uses the internal address of the object and converts it into integer and returns it.
public class Tiger {
private String color;
private String stripePattern;
private int height;
#Override
public boolean equals(Object object) {
boolean result = false;
if (object == null || object.getClass() != getClass()) {
result = false;
} else {
Tiger tiger = (Tiger) object;
if (this.color == tiger.getColor()
&& this.stripePattern == tiger.getStripePattern()) {
result = true;
}
}
return result;
}
// just omitted null checks
#Override
public int hashCode() {
int hash = 3;
hash = 7 * hash + this.color.hashCode();
hash = 7 * hash + this.stripePattern.hashCode();
return hash;
}
public static void main(String args[]) {
Tiger bengalTiger1 = new Tiger("Yellow", "Dense", 3);
Tiger bengalTiger2 = new Tiger("Yellow", "Dense", 2);
Tiger siberianTiger = new Tiger("White", "Sparse", 4);
System.out.println("bengalTiger1 and bengalTiger2: "
+ bengalTiger1.equals(bengalTiger2));
System.out.println("bengalTiger1 and siberianTiger: "
+ bengalTiger1.equals(siberianTiger));
System.out.println("bengalTiger1 hashCode: " + bengalTiger1.hashCode());
System.out.println("bengalTiger2 hashCode: " + bengalTiger2.hashCode());
System.out.println("siberianTiger hashCode: "
+ siberianTiger.hashCode());
}
public String getColor() {
return color;
}
public String getStripePattern() {
return stripePattern;
}
public Tiger(String color, String stripePattern, int height) {
this.color = color;
this.stripePattern = stripePattern;
this.height = height;
}
}
Example Code Output:
bengalTiger1 and bengalTiger2: true
bengalTiger1 and siberianTiger: false
bengalTiger1 hashCode: 1398212510
bengalTiger2 hashCode: 1398212510
siberianTiger hashCode: –1227465966
Logically we have:
a.getClass().equals(b.getClass()) && a.equals(b) ⇒ a.hashCode() == b.hashCode()
But not vice-versa!
One gotcha I have found is where two objects contain references to each other (one example being a parent/child relationship with a convenience method on the parent to get all children).
These sorts of things are fairly common when doing Hibernate mappings for example.
If you include both ends of the relationship in your hashCode or equals tests it's possible to get into a recursive loop which ends in a StackOverflowException.
The simplest solution is to not include the getChildren collection in the methods.

Categories

Resources