Immutable objects builder - java

Would it be considered a good practice to store the builder instance inside the instance that it has built? The thing is that I quite often find myself in a situation when I need to create a very similiar object to the one that I already have. Presumable this object has many 8-10 fields. Normally, with a mutable object I would have just used setter.
For instance, lets take the classic Bloch's NutricionFacts example:
public class NutritionFacts {
private final int servingSize;
private final int servings;
private final int calories;
private final int fat;
private final int sodium;
private final int carbohydrate;
private final Builder builder;
public static class Builder {
// Required parameters
private final int servingSize;
private final int servings;
// Optional parameters - initialized to default values
private int calories = 0;
private int fat = 0;
private int carbohydrate = 0;
private int sodium = 0;
public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings = servings;
}
public Builder calories(int val)
{ calories = val; return this; }
public Builder fat(int val)
{ fat = val; return this; }
public Builder carbohydrate(int val)
{ carbohydrate = val; return this; }
public Builder sodium(int val)
{ sodium = val; return this; }
public NutritionFacts build() {
return new NutritionFacts(this);
}
}
private NutritionFacts(Builder builder) {
servingSize = builder.servingSize;
servings = builder.servings;
calories = builder.calories;
fat = builder.fat;
sodium = builder.sodium;
carbohydrate = builder.carbohydrate;
this.builder = builder;
}
}
I have modified it a bit so I can access the builder instance if I want to make a simmiliar copy in the future?
What do you think?

What happens if you reuse the Builder to build a second instance? The Builder in the first instance would then produce instances similar to the second instance. Probably not what you expected.
I would suggest an option to create the Builder with a template instance.
public Builder(NutritionFacts template) {
this.servingSize = template.getServingSize();
...
}

Related

Integer constants as strings?

The requirements for this class is as follows:
Write a class called Elevator that should contain the following member variables:
currentFloor (int)
elevatorState (an int constant, either IDLE, TO_SOURCE, or TO_DESTINATION)
request (Request object representing the request being handled or null if the Elevator is idle)
You should also provide for this class the following:
A default constructor that sets request to null, elevatorState to IDLE, and currentFloor to 1.
Accessor and mutator methods for each variable.
Final variables to represent IDLE, TO_SOURCE, and TO_DESTINATION.
Heres what I have:
public class Elevator {
private int currentFloor;
private int elevatorState;
private Elevator request;
public Elevator(){
currentFloor = 1;
elevatorState = ; //this is my problem
request = null;
}
}
Im confused because it says to declare IDLE, TO_Source, and TO_DESTINATION as integer constants but wouldn't they be strings?
Any clarification would be very helpful.
Basically, what is being asked of is 3 int constants:
public static final int IDLE = 0;
public static final int TO_SOURCE = 1;
public static final int TO_DESTINATION = 2;
public Elevator(){
currentFloor = 1;
elevatorState = IDLE; //this is no longer my problem
request = null;
}
However, if you want to be a mister fancy pants and use OOP properly (something that may not be taught), you could use an Enum!
public enum ElevatorState {
IDLE, TO_SOURCE, TO_DESTINATION
}
Then in your class:
public class Elevator {
private ElevatorState elevatorState;
private int currentFloor;
private Elevator request;
public Elevator() {
currentFloor = 1;
elevatorState = ElevatorState.IDLE; //this is no longer my problem
request = null;
}
}
My Java is a little rusty, but this should be okay to use.
Well here is a possible solution to the problem:
public class Elevator
{
private static final int IDLE = 0;
private static final int TO_SOURCE = 1;
private static final int TO_DESTINATION = 2;
private int currentFloor;
private int elevatorState;
private Elevator request;
public Elevator(){
currentFloor = 1;
elevatorState = IDLE; //this is my problem
request = null;
}
public int getCurrentFloor() {
return currentFloor;
}
public void setCurrentFloor(int currentFloor) {
this.currentFloor = currentFloor;
}
public int getElevatorState() {
return elevatorState;
}
public void setElevatorState(int elevatorState) {
if( elevatorState == IDLE ) setRequest( null );
this.elevatorState = elevatorState;
}
public Elevator getRequest() {
return request;
}
public void setRequest(Elevator request) {
this.request = request;
}
}

Less verbose Builder pattern?

When i was reviewing Builder pattern in Josh's Bloch book, i came up with simpler implementation, but i'm not sure whether it's proper.
For example:
public class Test {
public static void main(String[] args) {
Numbers first = new Numbers.Builder().setD(3.14).build();
System.out.println(first);
Numbers second = new Numbers.Builder().setI(17).setF(1.24F).build();
System.out.println(second);
System.out.println(first);
}
}
final class Numbers {
private int i;
private long l;
private float f;
private double d;
private Numbers() {}
public static class Builder {
private final Numbers instance = new Numbers();
public Builder setI(int i) {
instance.i = i;
return this;
}
public Builder setL(long l) {
instance.l = l;
return this;
}
public Builder setF(float f) {
instance.f = f;
return this;
}
public Builder setD(double d) {
instance.d = d;
return this;
}
public Numbers build() {
return instance;
}
}
#Override
public String toString() {
return String.format("%4d %4d %7.3f %7.3f", i, l, f, d);
}
}
Is it can still be considered as a Builder pattern or i missed something?
EDIT
What about this?
//...
private Numbers() {}
private Numbers(Numbers o) {
i = o.i;
l = o.l;
f = o.f;
d = o.d;
}
public static class Builder {
private final Numbers instance = new Numbers();
//...
public Numbers build() {
return new Numbers(instance);
}
}
The problem with your code is that if you call build twice for the same Builder instance, you'll get the same Numbers instance. And if you call methods of the Builder after you called build and got the Numbers instance, you will change that instance. The instance created by the builder should be independent of the Builder once it's built.

How can I ensure my bean is built correctly?

I'm building a JavaBean (only fields and getters/setters) using the builder pattern.
For the sake of this example, assume this is our bean:
public class Pizza {
private int size;
private boolean cheese;
private boolean pepperoni;
private boolean bacon;
private Pizza(Builder builder) {
size = builder.size;
cheese = builder.cheese;
pepperoni = builder.pepperoni;
bacon = builder.bacon;
}
public static class Builder {
//required
private final int size;
//optional
private boolean cheese = false;
private boolean pepperoni = false;
private boolean bacon = false;
public Builder(int size) {
this.size = size;
}
public Builder cheese(boolean value) {
cheese = value;
return this;
}
public Builder pepperoni(boolean value) {
pepperoni = value;
return this;
}
public Builder bacon(boolean value) {
bacon = value;
return this;
}
public Pizza build() {
return new Pizza(this);
}
}
}
Taken from here.
Now I've been trying to ensure that all of the fields in Pizza are non-null, with reflection, iterating over the fields of Pizza and checking they aren't null, but it appears (and I could be wrong here) that my fields aren't set before the check occurs. This code by Jon Skeet is what I altered to check the non-nullness of my fields (and instead of counting, I'm throwing exceptions).
I then tried to check the fields of my builder instead, but I have extra fields in the builder (for instance, I have an XMLParser field which may be null). Subsetting the builder fields by the pizza fields doesn't work as they have different 'package paths' (?), e.g. org.GiusepesPizzaria.pizza.size vs org.GiusepesPizzaria.builder.size
Is there a better way to check this? Before implementing the reflection method, I used this sort of construct:
if(builder.size ==null){
throw new BadPizzaException("Eh, what're ya doin'?"+
" Pizza Size was not set correctly");
}else{
size=builder.size;
}
But it ends up, if you have say ~10 fields to check, long winded, and clutters what should be a simple class.
So that's what I've tried. Is there a better method?
An interesting pattern to ensure that all variables are set is to use the Step Builder Pattern where the first setter only allows you to set the second, the second only allows the third and so on. When you're at the last step you can build the class and by then you'll know that all methods have been called.
A short extract from that post:
Panino solePanino = PaninoStepBuilder.newBuilder()
.paninoCalled("sole panino")
.breadType("baguette")
.fish("sole")
.addVegetable("tomato")
.addVegetable("lettece")
.noMoreVegetablesPlease()
.build();
Where you must start with what the panino is called and follow it up with the bread type.
Try this:
public class Pizza
{
private final boolean bacon;
private final boolean cheese;
private final boolean pepperoni;
private final int size;
private Pizza()
{
throw new UnsupportedOperationException();
}
Pizza(
final int theSize,
final boolean theCheese,
final boolean thePepperoni,
final boolean theBacon)
{
bacon = theBacon;
cheese = theCheese;
pepperoni = thePepperoni;
size = theSize;
}
}
// new file.
public class PizzaBuilder
{
private boolean bacon;
private boolean cheese;
private boolean pepperoni;
private int size;
public PizzaBuilder()
{
size = 9; // default size.
}
public void setHasBacon()
{
bacon = true;
}
public void setHasNoBacon()
{
bacon = false;
}
public void setHasCheese()
{
cheese = true;
}
public void setHasNoCheese()
{
cheese = false;
}
public void setHasPepperoni()
{
pepperoni = true;
}
public void setHasNoPepperoni()
{
pepperoni = false;
}
public void setSizeNineInch()
{
size = 9;
}
public void setSizeTwelveInch()
{
size = 12;
}
public Pizza buildPizza()
{
return new Pizza(size, cheese, pepperoni, bacon);
}
}
With the builder above, there is no chance that the builder will ever produce an invalid pizza.
Assumption: only 9 and 12 inch pizza's are supported. add more setSize as needed.
The builder uses what I refer to as NMSetters. This style setter allows you to set values but does not expose the implementation of said value. It seems likely that this is not an original invention on my part.

static factory builder trouble

Needing to create an unspecified number of objects, I tried to create a builder that do that. All was well until I realized that my builder creates all objects with their properties having the same values.
So when I call the builder:
ValidationHelper v = new ValidationHelper.HelperBuilder()
.addHelper("ICAO Identifier", icaoIdentifier, rulesICAO)
.addHelper("Long Name", longName, rulesLongName)
.build();
... I'll have 2 objects and their properties will have values of the last object the builder was asked to create.
To start with, is factory builder the prudent approach to this? Secondly, is my builder salvageable?
Builder:
public class ValidationHelper {
private static ArrayList<HelperBuilder> validatorHelpers = new ArrayList();
public static class HelperBuilder {
private String txtFieldName;
private String txtFieldValue;
private List<Integer> valCodes = new ArrayList<Integer>();
private ArrayList<HelperBuilder> innerValidatorHelpers = new ArrayList<HelperBuilder>();
public HelperBuilder() {}
public final HelperBuilder addHelper(String txtFieldName, String txtFieldValue, int[] validationCodes) {
this.txtFieldName = txtFieldName;
this.txtFieldValue = txtFieldValue;
for( int i = 0; i < validationCodes.length; i++ ){
getValCodes().add((Integer) validationCodes[i]);
}
innerValidatorHelpers.add(this);
return this;
}
public final ValidationHelper build() {
return new ValidationHelper(this);
}
public String getTxtFieldName() {
return txtFieldName;
}
public String getTxtFieldValue() {
return txtFieldValue;
}
public List<Integer> getValCodes() {
return valCodes;
}
}//end HelperBuilder
private ValidationHelper(HelperBuilder helperBuilder) {
validatorHelpers = helperBuilder.innerValidatorHelpers;
}
public void setHelpers(ArrayList validatorHelpers) {
validatorHelpers = validatorHelpers;
}
public ArrayList getHelpers() {
return validatorHelpers;
}
}
EDIT/FIXED:
So for what it's worth, here's the revised builder. It needed another constructor that could properly initialize an instance of what it's supposed to build.
public class ValidationHelper {
private static ArrayList<HelperBuilder> validatorHelpers = new ArrayList();
public static class HelperBuilder {
private String txtFieldName;
private String txtFieldValue;
private List<Integer> valCodes = new ArrayList<Integer>();
private ArrayList<HelperBuilder> innerValidatorHelpers = new ArrayList<HelperBuilder>();
public HelperBuilder() {}
public HelperBuilder(String txtFieldName, String txtFieldValue, int[] validationCodes) {
this.txtFieldName = txtFieldName;
this.txtFieldValue = txtFieldValue;
for (int i = 0; i < validationCodes.length; i++) {
valCodes.add((Integer) validationCodes[i]);
}
}
public final HelperBuilder addHelper(String txtFieldName, String txtFieldValue, int[] validationCodes) {
innerValidatorHelpers.add( new HelperBuilder(txtFieldName, txtFieldValue, validationCodes) );
return this;
}
public final ValidationHelper build() {
return new ValidationHelper(this);
}
public String getTxtFieldName() {
return txtFieldName;
}
public String getTxtFieldValue() {
return txtFieldValue;
}
public List getValCodes() {
return valCodes;
}
}//end HelperBuilder
private ValidationHelper(HelperBuilder helperBuilder) {
validatorHelpers = helperBuilder.innerValidatorHelpers;
}
public ArrayList getHelpers() {
return validatorHelpers;
}
}
Each time you just overwrite the values in
private String txtFieldName;
private String txtFieldValue;
and the last one winns. So you create only 1 HelperInstance here
ValidationHelper v = new ValidationHelper.HelperBuilder()
and the fields name and value are overwritten each time you call addHelper(). But you need to create an instance for each "configuration". So addHelper should create a new Instance and add it into
private ArrayList<HelperBuilder> innerValidatorHelpers = ...;
If you want to build objects with different values you have to either
alter the builder between creating the objects so it will build something different.
instruct the builder to change the values automatically e.g. use a counter, or filename based on the date, or provide a list of values.

Named Parameter idiom in Java

How to implement Named Parameter idiom in Java? (especially for constructors)
I am looking for an Objective-C like syntax and not like the one used in JavaBeans.
A small code example would be fine.
The best Java idiom I've seem for simulating keyword arguments in constructors is the Builder pattern, described in Effective Java 2nd Edition.
The basic idea is to have a Builder class that has setters (but usually not getters) for the different constructor parameters. There's also a build() method. The Builder class is often a (static) nested class of the class that it's used to build. The outer class's constructor is often private.
The end result looks something like:
public class Foo {
public static class Builder {
public Foo build() {
return new Foo(this);
}
public Builder setSize(int size) {
this.size = size;
return this;
}
public Builder setColor(Color color) {
this.color = color;
return this;
}
public Builder setName(String name) {
this.name = name;
return this;
}
// you can set defaults for these here
private int size;
private Color color;
private String name;
}
public static Builder builder() {
return new Builder();
}
private Foo(Builder builder) {
size = builder.size;
color = builder.color;
name = builder.name;
}
private final int size;
private final Color color;
private final String name;
// The rest of Foo goes here...
}
To create an instance of Foo you then write something like:
Foo foo = Foo.builder()
.setColor(red)
.setName("Fred")
.setSize(42)
.build();
The main caveats are:
Setting up the pattern is pretty verbose (as you can see). Probably not worth it except for classes you plan on instantiating in many places.
There's no compile-time checking that all of the parameters have been specified exactly once. You can add runtime checks, or you can use this only for optional parameters and make required parameters normal parameters to either Foo or the Builder's constructor. (People generally don't worry about the case where the same parameter is being set multiple times.)
You may also want to check out this blog post (not by me).
This is worth of mentioning:
Foo foo = new Foo() {{
color = red;
name = "Fred";
size = 42;
}};
the so called double-brace initializer. It is actually an anonymous class with instance initializer.
Java 8 style:
public class Person {
String name;
int age;
private Person(String name, int age) {
this.name = name;
this.age = age;
}
static PersonWaitingForName create() {
return name -> age -> new Person(name, age);
}
static interface PersonWaitingForName {
PersonWaitingForAge name(String name);
}
static interface PersonWaitingForAge {
Person age(int age);
}
public static void main(String[] args) {
Person charlotte = Person.create()
.name("Charlotte")
.age(25);
}
}
named parameters
fix order of arguments
static check -> no nameless Person possible
hard to switch arguments of same type by accident (like it is possible in telescop constructors)
You could also try to follow advice from here.
int value;
int location;
boolean overwrite;
doIt(value=13, location=47, overwrite=true);
It's verbose on the call site, but overall gives the lowest overhead.
I would like to point out that this style addresses both the named parameter and the properties features without the get and set prefix which other language have. Its not conventional in Java realm but its simpler and shorter, especially if you have handled other languages.
class Person {
String name;
int age;
// name property
// getter
public String name() { return name; }
// setter
public Person name(String val) {
name = val;
return this;
}
// age property
// getter
public int age() { return age; }
// setter
public Person age(int val) {
age = val;
return this;
}
public static void main(String[] args) {
// addresses named parameter
Person jacobi = new Person().name("Jacobi Adane").age(3);
// addresses property style
System.out.println(jacobi.name());
System.out.println(jacobi.age());
// updates property values
jacobi.name("Lemuel Jacobi Adane");
jacobi.age(4);
System.out.println(jacobi.name());
System.out.println(jacobi.age());
}
}
If you are using Java 6, you can use the variable parameters and import static to produce a much better result. Details of this are found in:
http://zinzel.blogspot.com/2010/07/creating-methods-with-named-parameters.html
In short, you could have something like:
go();
go(min(0));
go(min(0), max(100));
go(max(100), min(0));
go(prompt("Enter a value"), min(0), max(100));
What about
public class Tiger {
String myColor;
int myLegs;
public Tiger color(String s)
{
myColor = s;
return this;
}
public Tiger legs(int i)
{
myLegs = i;
return this;
}
}
Tiger t = new Tiger().legs(4).color("striped");
Java does not support Objective-C-like named parameters for constructors or method arguments. Furthermore, this is really not the Java way of doing things. In java, the typical pattern is verbosely named classes and members. Classes and variables should be nouns and method named should be verbs. I suppose you could get creative and deviate from the Java naming conventions and emulate the Objective-C paradigm in a hacky way but this wouldn't be particularly appreciated by the average Java developer charged with maintaining your code. When working in any language, it behooves you to stick to the conventions of the language and community, especially when working on a team.
I feel like the "comment-workaround" deserves it's own answer (hidden in existing answers and mentioned in comments here).
someMethod(/* width */ 1024, /* height */ 768);
You could use a usual constructor and static methods that give the arguments a name:
public class Something {
String name;
int size;
float weight;
public Something(String name, int size, float weight) {
this.name = name;
this.size = size;
this.weight = weight;
}
public static String name(String name) {
return name;
}
public static int size(int size) {
return size;
}
public float weight(float weight) {
return weight;
}
}
Usage:
import static Something.*;
Something s = new Something(name("pen"), size(20), weight(8.2));
Limitations compared to real named parameters:
argument order is relevant
variable argument lists are not possible with a single constructor
you need a method for every argument
not really better than a comment (new Something(/*name*/ "pen", /*size*/ 20, /*weight*/ 8.2))
If you have the choice look at Scala 2.8. http://www.scala-lang.org/node/2075
Using Java 8's lambdas you can get even closer to real named parameters.
foo($ -> {$.foo = -10; $.bar = "hello"; $.array = new int[]{1, 2, 3, 4};});
Do note that this probably violates a couple dozen "java best practices" (like anything that makes use of the $ symbol).
public class Main {
public static void main(String[] args) {
// Usage
foo($ -> {$.foo = -10; $.bar = "hello"; $.array = new int[]{1, 2, 3, 4};});
// Compare to roughly "equivalent" python call
// foo(foo = -10, bar = "hello", array = [1, 2, 3, 4])
}
// Your parameter holder
public static class $foo {
private $foo() {}
public int foo = 2;
public String bar = "test";
public int[] array = new int[]{};
}
// Some boilerplate logic
public static void foo(Consumer<$foo> c) {
$foo foo = new $foo();
c.accept(foo);
foo_impl(foo);
}
// Method with named parameters
private static void foo_impl($foo par) {
// Do something with your parameters
System.out.println("foo: " + par.foo + ", bar: " + par.bar + ", array: " + Arrays.toString(par.array));
}
}
Pros:
Considerably shorter than any builder pattern I've seen so far
Works for both methods and constructors
Completely type safe
It looks very close to actual named parameters in other programming languages
It's about as safe as your typical builder pattern (can set parameters multiple times)
Cons:
Your boss will probably lynch you for this
It's harder to tell what's going on
You can use project Lombok's #Builder annotation to simulate named parameters in Java. This will generate a builder for you which you can use to create new instances of any class (both classes you've written and those coming from external libraries).
This is how to enable it on a class:
#Getter
#Builder
public class User {
private final Long id;
private final String name;
}
Afterwards you can use this by:
User userInstance = User.builder()
.id(1L)
.name("joe")
.build();
If you'd like to create such a Builder for a class coming from a library, create an annotated static method like this:
class UserBuilder {
#Builder(builderMethodName = "builder")
public static LibraryUser newLibraryUser(Long id, String name) {
return new LibraryUser(id, name);
}
}
This will generate a method named "builder" which can be called by:
LibraryUser user = UserBuilder.builder()
.id(1L)
.name("joe")
.build();
This is a variant of the Builder Pattern as described by Lawrence above.
I find myself using this a lot (at the apropriate places).
The main difference is, that in this case the Builder is immuatable. This has the advantage that it can be reused and is thread-safe.
So you can use this to make one default Builder and then in the various places where you need it you can configure it and build your object.
This makes most sense, if you are building the same object over and over again, because then you can make the builder static and don't have to worry about changing it's settings.
On the other hand if you have to build objects with changing paramaters this has quiet some overhead. (but hey, you can combine static / dynamic generation with custom build methods)
Here is the example code:
public class Car {
public enum Color { white, red, green, blue, black };
private final String brand;
private final String name;
private final Color color;
private final int speed;
private Car( CarBuilder builder ){
this.brand = builder.brand;
this.color = builder.color;
this.speed = builder.speed;
this.name = builder.name;
}
public static CarBuilder with() {
return DEFAULT;
}
private static final CarBuilder DEFAULT = new CarBuilder(
null, null, Color.white, 130
);
public static class CarBuilder {
final String brand;
final String name;
final Color color;
final int speed;
private CarBuilder( String brand, String name, Color color, int speed ) {
this.brand = brand;
this.name = name;
this.color = color;
this.speed = speed;
}
public CarBuilder brand( String newBrand ) {
return new CarBuilder( newBrand, name, color, speed );
}
public CarBuilder name( String newName ) {
return new CarBuilder( brand, newName, color, speed );
}
public CarBuilder color( Color newColor ) {
return new CarBuilder( brand, name, newColor, speed );
}
public CarBuilder speed( int newSpeed ) {
return new CarBuilder( brand, name, color, newSpeed );
}
public Car build() {
return new Car( this );
}
}
public static void main( String [] args ) {
Car porsche = Car.with()
.brand( "Porsche" )
.name( "Carrera" )
.color( Color.red )
.speed( 270 )
.build()
;
// -- or with one default builder
CarBuilder ASSEMBLY_LINE = Car.with()
.brand( "Jeep" )
.name( "Cherokee" )
.color( Color.green )
.speed( 180 )
;
for( ;; ) ASSEMBLY_LINE.build();
// -- or with custom default builder:
CarBuilder MERCEDES = Car.with()
.brand( "Mercedes" )
.color( Color.black )
;
Car c230 = MERCEDES.name( "C230" ).speed( 180 ).build(),
clk = MERCEDES.name( "CLK" ).speed( 240 ).build();
}
}
Any solution in Java is likely going to be pretty verbose, but it's worth mentioning that tools like Google AutoValues and Immutables will generate builder classes for you automatically using JDK compile time annotation processing.
For my case, I wanted named parameters to use in a Java enum, so a builder pattern wouldn't work because enum instances can't be instantiated by other classes. I came up with an approach similar #deamon's answer but adds compile-time checking of parameter ordering (at the expense of more code)
Here's client code:
Person p = new Person( age(16), weight(100), heightInches(65) );
And the implementation:
class Person {
static class TypedContainer<T> {
T val;
TypedContainer(T val) { this.val = val; }
}
static Age age(int age) { return new Age(age); }
static class Age extends TypedContainer<Integer> {
Age(Integer age) { super(age); }
}
static Weight weight(int weight) { return new Weight(weight); }
static class Weight extends TypedContainer<Integer> {
Weight(Integer weight) { super(weight); }
}
static Height heightInches(int height) { return new Height(height); }
static class Height extends TypedContainer<Integer> {
Height(Integer height) { super(height); }
}
private final int age;
private final int weight;
private final int height;
Person(Age age, Weight weight, Height height) {
this.age = age.val;
this.weight = weight.val;
this.height = height.val;
}
public int getAge() { return age; }
public int getWeight() { return weight; }
public int getHeight() { return height; }
}
Here is a compiler-checked Builder pattern. Caveats:
this can't prevent double assignment of an argument
you can't have a nice .build() method
one generic parameter per field
So you need something outside the class that will fail if not passed Builder<Yes, Yes, Yes>. See the getSum static method as an example.
class No {}
class Yes {}
class Builder<K1, K2, K3> {
int arg1, arg2, arg3;
Builder() {}
static Builder<No, No, No> make() {
return new Builder<No, No, No>();
}
#SuppressWarnings("unchecked")
Builder<Yes, K2, K3> arg1(int val) {
arg1 = val;
return (Builder<Yes, K2, K3>) this;
}
#SuppressWarnings("unchecked")
Builder<K1, Yes, K3> arg2(int val) {
arg2 = val;
return (Builder<K1, Yes, K3>) this;
}
#SuppressWarnings("unchecked")
Builder<K1, K2, Yes> arg3(int val) {
this.arg3 = val;
return (Builder<K1, K2, Yes>) this;
}
static int getSum(Builder<Yes, Yes, Yes> build) {
return build.arg1 + build.arg2 + build.arg3;
}
public static void main(String[] args) {
// Compiles!
int v1 = getSum(make().arg1(44).arg3(22).arg2(11));
// Builder.java:40: error: incompatible types:
// Builder<Yes,No,Yes> cannot be converted to Builder<Yes,Yes,Yes>
int v2 = getSum(make().arg1(44).arg3(22));
System.out.println("Got: " + v1 + " and " + v2);
}
}
Caveats explained. Why no build method? The trouble is that it's going to be in the Builder class, and it will be parameterized with K1, K2, K3, etc. As the method itself has to compile, everything it calls must compile. So, generally, we can't put a compilation test in a method of the class itself.
For a similar reason, we can't prevent double assignment using a builder model.
The idiom supported by the karg library may be worth considering:
class Example {
private static final Keyword<String> GREETING = Keyword.newKeyword();
private static final Keyword<String> NAME = Keyword.newKeyword();
public void greet(KeywordArgument...argArray) {
KeywordArguments args = KeywordArguments.of(argArray);
String greeting = GREETING.from(args, "Hello");
String name = NAME.from(args, "World");
System.out.println(String.format("%s, %s!", greeting, name));
}
public void sayHello() {
greet();
}
public void sayGoodbye() {
greet(GREETING.of("Goodbye");
}
public void campItUp() {
greet(NAME.of("Sailor");
}
}
You can imitate named parameters applying this pattern:
public static class CarParameters {
// to make it shorter getters and props are omitted
public ModelParameter setName(String name) {
this.name = name;
return new ModelParameter();
}
public class ModelParameter {
public PriceParameter setModel(String model) {
CarParameters.this.model = model;
return new PriceParameter();
}
}
public class PriceParameter {
public YearParameter setPrice(double price) {
CarParameters.this.price = price;
return new YearParameter();
}
}
public class YearParameter {
public ColorParameter setYear(int year) {
CarParameters.this.year = year;
return new ColorParameter();
}
}
public class ColorParameter {
public CarParameters setColor(Color color) {
CarParameters.this.color = color;
return new CarParameters();
}
}
}
and then you can pass it to your method as this:
factory.create(new CarParameters()
.setName("Ford")
.setModel("Focus")
.setPrice(20000)
.setYear(2011)
.setColor(BLUE));
You can read more here https://medium.com/#ivorobioff/named-parameters-in-java-9072862cfc8c
Now that we're all on Java 17 ;-), using records is a super-easy way to imitate this idiom:
public class OrderTemplate() {
private int tradeSize, limitDistance, backoffDistance;
public record TradeSize( int value ) {}
public record LimitDistance( int value ) {}
public record BackoffDistance( int value ) {}
public OrderTemplate( TradeSize t, LimitDistance d, BackoffDistance b ) {
this.tradeSize = t.value();
this.limitDistance = d.value();
this.backoffDistance = b.value();
}
}
Then you can call:
var t = new OrderTemplate( new TradeSize(30), new LimitDistance(182), new BackoffDistance(85) );
Which I've found extremely easy to read and I've completely stopped getting all the int parameters mixed up ("was it size first or distance...").
package org.xxx.lang;
/**
* A hack to work around the fact that java does not support
* named parameters in function calls.
*
* Its easy to swap a few String parameters, for example.
* Some IDEs are better than others than showing the parameter names.
* This will enforce a compiler error on an inadvertent swap.
*
* #param <T>
*/
public class Datum<T> {
public final T v;
public Datum(T v) {
this.v = v;
}
public T v() {
return v;
}
public T value() {
return v;
}
public String toString() {
return v.toString();
}
}
Example
class Catalog extends Datum<String> {
public Catalog(String v) {
super(v);
}
}
class Schema extends Datum<String> {
public Schema(String v) {
super(v);
}
}
class Meta {
public void getTables(String catalog, String schema, String tablePattern) {
// pseudo DatabaseMetaData.getTables();
}
}
class MetaChecked {
public void getTables(Catalog catalog, Schema schema, String tablePattern) {
// pseudo DatabaseMetaData.getTables();
}
}
#Test
public void test() {
Catalog c = new Catalog("test");
assertEquals("test",c.v);
assertEquals("test",c.v());
assertEquals("test",c.value());
String t = c.v;
assertEquals("test",t);
}
public void uncheckedExample() {
new Meta().getTables("schema","catalog","%");
new Meta().getTables("catalog","schema","%"); // ooops
}
public void checkedExample() {
// new MetaChecked().getTables(new Schema("schema"),new Catalog("catalog"),"%"); // won't compile
new MetaChecked().getTables(new Catalog("catalog"), new Schema("schema"),"%");
}
maybe can use this:
HashMapFlow<String,Object> args2 = HashMapFlow.of( "name", "Aton", "age", 21 );
Integer age = args2.get("age",51);
System.out.println(args2.get("name"));
System.out.println(age);
System.out.println((Integer)args2.get("dayOfBirth",26));
class:
import java.util.HashMap;
public class HashMapFlow<K,V> extends HashMap {
public static <K, V> HashMapFlow<K, V> of(Object... args) {
HashMapFlow<K, V> map = new HashMapFlow();
for( int i = 0; i < args.length; i+=2) {
map.put((K)args[i], (V)args[i+1]);
}
return map;
}
public <T> T get(Object key, V defaultValue) {
V result = (V)get(key);
if( result == null ) {
result = defaultValue;
}
return (T)result;
}
public HashMapFlow add(K key, V value) {
put(key,value);
return this;
}
}
#irreputable came up with a nice solution. However - it might leave your Class instance in a invalid state, as no validation and consistency checking will happen. Hence I prefer to combine this with the Builder solution, avoiding the extra subclass to be created, although it would still subclass the builder class. Additionally, because the extra builder class makes it more verbose, I added one more method using a lambda. I added some of the other builder approaches for completeness.
Starting with a class as follows:
public class Foo {
static public class Builder {
public int size;
public Color color;
public String name;
public Builder() { size = 0; color = Color.RED; name = null; }
private Builder self() { return this; }
public Builder size(int size) {this.size = size; return self();}
public Builder color(Color color) {this.color = color; return self();}
public Builder name(String name) {this.name = name; return self();}
public Foo build() {return new Foo(this);}
}
private final int size;
private final Color color;
private final String name;
public Foo(Builder b) {
this.size = b.size;
this.color = b.color;
this.name = b.name;
}
public Foo(java.util.function.Consumer<Builder> bc) {
Builder b = new Builder();
bc.accept(b);
this.size = b.size;
this.color = b.color;
this.name = b.name;
}
static public Builder with() {
return new Builder();
}
public int getSize() { return this.size; }
public Color getColor() { return this.color; }
public String getName() { return this.name; }
}
Then using this applying the different methods:
Foo m1 = new Foo(
new Foo.Builder ()
.size(1)
.color(BLUE)
.name("Fred")
);
Foo m2 = new Foo.Builder()
.size(1)
.color(BLUE)
.name("Fred")
.build();
Foo m3 = Foo.with()
.size(1)
.color(BLUE)
.name("Fred")
.build();
Foo m4 = new Foo(
new Foo.Builder() {{
size = 1;
color = BLUE;
name = "Fred";
}}
);
Foo m5 = new Foo(
(b)->{
b.size = 1;
b.color = BLUE;
b.name = "Fred";
}
);
It looks like in part a total rip-off from what #LaurenceGonsalves already posted, but you will see the small difference in convention chosen.
I am wonder, if JLS would ever implement named parameters, how they would do it? Would they be extending on one of the existing idioms by providing a short-form support for it? Also how does Scala support named parameters?
Hmmm - enough to research, and maybe a new question.

Categories

Resources