Proper way to set timeout on a method in Java - java

I've looked over some existing answers here on SO and I've used Future in combination with ExecutorService to set timeout with TimeUnit to method.
But I'm trying to set timeout on a method inside my service implementation meaning that caller class is consuming interface.
So I'd like to avoid implementing callable in my service implementation, because I want this method to get executed in the same Thread.
Is there other way to set timeout or simulate timeout on a given method ?

You can have a look at TimeLimiter from guava that can take any class and produce time-limited proxy. But it still uses thread pool internally to wait for Future (at least the default SimpleTimeLimiter implementation).
I you want to run method in the same thread, you must have another thread to interrupt it after given timeout. And interruption won't always work. Thus thread pool and Future is the only way.

Related

Interrupting a runnable in executor threadpool

Suppose I started 10 threads using executor framework in java. I want to stop/interrupt a callables based on certain conditions later on. What is the best way to do that. I understand future.cancel(true), does not solve the issue.
Check this article.
Calling shutdownNow() or cancel() doesn’t stop the ongoing runnable. What these methods do is simply call .interrupt() on the respective thread(s). The problem is, your runnable doesn’t handle InterruptedException (and it can’t). It’s a pretty common problem described in multiple books and articles, but still it’s a bit counterintuitive.
In order to do that, you need to do quite a few things.
Extend Runnable
Make the “cancellable” resources (e.g. the input
stream) an instance field, which provide a cancel method to your
extended runnable, where you get the “cancellable” resource and
cancel it (e.g. call inputStream.close())
Implement a custom
ThreadFactory that in turn creates custom Thread instances that
override the interrupt() method and invoke the cancel() method on
your extended Runnable
Instantiate the executor with the custom
thread factory (static factory methods take it as an argument)
Handle
abrupt closing/stopping/disconnecting of your blocking resources, in the run()method

Advantage of directExecutor

As far as I understand Guava's MoreExecutors.directExecutor() creates an Executor which will executes the runnable before the execute method call could return.
What are the usecases that need direct executor ? Can't the caller directly call runnable.run() directly instead of the extra level of indirection by creating an executor and submitting the runnable to this executor ? May be I am missing the real purpose of it's existence. I wanted to understand in what case is this useful.
There are few places which require both Runnable and Executor.
One of then is for example ListenableFuture and its addListener method. The only way how to execute listener immediately within the same thread is to provide direct executor.
MoreExecutors.directExecutor() is useful when you call an API that requires you to specify an executor to execute the task (e.g. Futures.transform(), listenableFuture.addListener(), etc).
Note that when you use directExecutor() with these APIs, the runnable may be run on one of these two threads:
The thread that completes the previous future
The thread that calls transform()/addListener()
This uncertainty could cause unexpected issues. So be careful when you use directExecutor().

Telling the asynchronous job to wait in Java

I have a situation where sometimes (not always) my asynchronous job is not able to process results by the time needed and I have to return some kind of message to the client saying that his request is still being prepared by checking for it in the database.
The request and creating necessary object for it is handled in one database Transaction, the asynchronous process is handled in the different Transaction. I am using ScheduledThreadPoolExecutor by passing the runnable instance to the execute method.
The problems that sometimes the client makes a request and while the his browser is loading my asynchronous job is able to prepare the necessary data for it, but sometimes it isn't.
So my question is: Is there anyway I can tell asynchronous job to wait until the data is ready?
I am afraid that using just a Runnable instance you are not be able to tell the process to wait unless you sleep the Thread for sometime or looping and keep asking for the results which both are bad ideas.
In order to make this happen correctly, you should use a FutureTask for this by passing Callable instance to it's constructor. By overriding your call() method you should tell you transactional handler to do the job.
You also need to have some kind of a task manager which will add the task to the queue and creates a thread pool which takes and processes those tasks. For the queue purpose I would suggest to use for e.g.: LinkedBlockingDeque which accepts the generic type of FutureTask.
Also you should have a map of future tasks mapped by their name or something which takes the FutureTask as a value. In terms of waiting for the results when your Thread is processed the given FutureTask already you have to immediately remove it from the futures map. Then when your client requests you should check: if the futures map contains the task get the FutureTask from it and call futureTask.get() on it. This will wait until the task is finished.
This is just approach with which I would go. Hope this helps.

Handle a lot of Futures given by asynchronous rest-requests

I wanna use the jersey-client for creating asynchronous rest-requests, the function delivers me Futures, so i can, in my understanding, invoke get, and if the request is finished it will return something.
So i am thinking, i could store the Futures in a map and look into them from time to time by one thread. Or maybe i should create a new thread everytime someone sending an asynchronous request. There is also a requirement that it shouldn't last forever (a timeout).
What do you think?
I often use a List<Future<Void>> to store the futures. As get() blocks, I just cycle through them rather than poll them.
There is also a requirement that it should last forever (a timeout).
I assume you mean its shouldn't last forever. This requires support in the library you are using to make the requests. If they can be interrupted you can cancel(true) the future either in your waiting thread or another ScheduledExecutorService. If they can't be interrupts you may have to stop() the thread but only as a last resort.
The javadoc says:
A Future represents the result of an asynchronous computation. Methods
are provided to check if the computation is complete, to wait for its
completion, and to retrieve the result of the computation. The result
can only be retrieved using method get when the computation has
completed, blocking if necessary until it is ready.
Therefore it is up to you to choose which strategy to adopt: it mostly depends on what you want to do with those requests.
You could place those Futures in any iterable structure before going through them. Block on each get may be a strategy if you can handle each result pretty fast and do need to check while waiting if other futures are already returned.

How to use Thread Pool concept in Java?

I am creating a http proxy server in java. I have a class named Handler which is responsible for processing the requests and responses coming and going from web browser and to web server respectively. I have also another class named Copy which copies the inputStream object to outputStream object . Both these classes implement Runnable interface. I would like to use the concept of Thread pooling in my design, however i don't know how to go about that! Any hint or idea would be highly appreciated.
I suggest you look at Executor and ExecutorService. They add a lot of good stuff to make it easier to use Thread pools.
...
#Azad provided some good information and links. You should also buy and read the book Java Concurrency in Practice. (often abbreviated as JCiP) Note to stackoverflow big-wigs - how about some revenue link to Amazon???
Below is my brief summary of how to use and take advantage of ExecutorService with thread pools. Let's say you want 8 threads in the pool.
You can create one using the full featured constructors of ThreadPoolExecutor, e.g.
ExecutorService service = new ThreadPoolExecutor(8,8, more args here...);
or you can use the simpler but less customizable Executors factories, e.g.
ExecutorService service = Executors.newFixedThreadPool(8);
One advantage you immediately get is the ability to shutdown() or shutdownNow() the thread pool, and to check this status via isShutdown() or isTerminated().
If you don't care much about the Runnable you wish to run, or they are very well written, self-contained, never fail or log any errors appropriately, etc... you can call
execute(Runnable r);
If you do care about either the result (say, it calculates pi or downloads an image from a webpage) and/or you care if there was an Exception, you should use one of the submit methods that returns a Future. That allows you, at some time in the future, check if the task isDone() and to retrieve the result via get(). If there was an Exception, get() will throw it (wrapped in an ExecutionException). Note - even of your Future doesn't "return" anything (it is of type Void) it may still be good practice to call get() (ignoring the void result) to test for an Exception.
However, this checking the Future is a bit of chicken and egg problem. The whole point of a thread pool is to submit tasks without blocking. But Future.get() blocks, and Future.isDone() begs the questions of which thread is calling it, and what it does if it isn't done - do you sleep() and block?
If you are submitting a known chunk of related of tasks simultaneously, e.g., you are performing some big mathematical calculation like a matrix multiply that can be done in parallel, and there is no particular advantage to obtaining partial results, you can call invokeAll(). The calling thread will then block until all the tasks are complete, when you can call Future.get() on all the Futures.
What if the tasks are more disjointed, or you really want to use the partial results? Use ExecutorCompletionService, which wraps an ExecutorService. As tasks get completed, they are added to a queue. This makes it easy for a single thread to poll and remove events from the queue. JCiP has a great example of an web page app that downloads all the images in parallel, and renders them as soon as they become available for responsiveness.
I hope below will help you:,
class Executor
An object that executes submitted Runnable tasks. This interface provides a way of decoupling task submission from the mechanics of how each task will be run, including details of thread use, scheduling, etc. An Executor is normally used instead of explicitly creating threads. For example, rather than invoking new Thread(new(RunnableTask())).start() for each of a set of tasks, you might use:
Executor executor = anExecutor;
executor.execute(new RunnableTask1());
executor.execute(new RunnableTask2());
...
class ScheduledThreadPoolExecutor
A ThreadPoolExecutor that can additionally schedule commands to run after a given delay, or to execute periodically. This class is preferable to Timer when multiple worker threads are needed, or when the additional flexibility or capabilities of ThreadPoolExecutor (which this class extends) are required.
Delayed tasks execute no sooner than they are enabled, but without any real-time guarantees about when, after they are enabled, they will commence. Tasks scheduled for exactly the same execution time are enabled in first-in-first-out (FIFO) order of submission.
and
Interface ExecutorService
An Executor that provides methods to manage termination and methods that can produce a Future for tracking progress of one or more asynchronous tasks.
An ExecutorService can be shut down, which will cause it to stop accepting new tasks. After being shut down, the executor will eventually terminate, at which point no tasks are actively executing, no tasks are awaiting execution, and no new tasks can be submitted.
Edited:
you can find example to use Executor and ExecutorService herehereand here Question will be useful for you.

Categories

Resources