Initialization of a boolean with a Boolean.FALSE/.TRUE - why? - java

In some of our companys projects code I often read something like this:
boolean foo = Boolean.FALSE;
Besides the fact that AFAIK I only have to initialize local variables in Java at all (no random values like in Pascal) and besides the fact that especially for booleans I often WANT to have an initialization, what do I miss here? Why not:
boolean foo = false;
I don't get it. And code analyzation tools like PMD and Findbugs mark it, too. But why?
Edit:
Without really knowing much about the bytecode except that it is there I created an example class and decompiled it. The Boolean.FALSE went to:
0: getstatic #15 // Field java/lang/Boolean.FALSE:Ljava/lang/Boolean;
3: invokevirtual #21 // Method java/lang/Boolean.booleanValue:()Z
6: istore_1
The 'false' variant went to:
0: iconst_1
1: istore_1
So without knowing too much about this, I'd guess that more statements means more time to execute so it's not only wrong but also slower in the long run.

boolean foo = Boolean.FALSE;
This is strange and unnecessarily complicated code, written by someone who likely didn't know Java very well. You shouldn't write code like this, and PMD and FindBugs are right to mark this.
Boolean.FALSE is a java.lang.Boolean object that gets auto-unboxed; the compiler essentially translates this to:
boolean foo = Boolean.FALSE.booleanValue();
I don't have to initialize variables in Java at all...
Member variables do not need to be initialized explicitly; if you don't, they'll be initialized with a default value (which is false in the case of boolean). Local variables do need to be explicitly initialized; if you try to use a local variable without initializing it, the compiler will give you an error.

Both are same. but boolean foo = false; is enough.

There is no good reason to do this, it was probably just a novice Java programmer. I wouldn't worry too much, just replace it with false.
At the same time, you can usually if not always arrange your code such that you never declare a variable you don't have the final value for, i.e., making your objects immutable, which makes them easier to think about. What's the value of x? compared to What's the value of x between the calls to foo() and bar()? The first is generally easier to answer. This requires you to split up your classes along lines you might not be used to doing but I recommend at least trying it out.

The style to use an auto-unboxed Boolean constant in fact meshes well with the overall oververbosity endemic to many Java projects. For example:
public boolean isItOrIsItNotTheValueWeExpect(String aStringParameterThatCouldBeNull) {
boolean booleanReturnValue = Boolean.FALSE;
if (aStringParameterThatCouldBeNull != null) {
if (aStringParameterThatCouldBeNull.length() > 3) {
booleanReturnValue = Boolean.TRUE;
}
else {
booleanReturnValue = Boolean.FALSE;
}
}
else if (aStringParameterThatCouldBeNull == null) {
booleanReturnValue = Boolean.TRUE.booleanValue();
}
return booleanReturnValue;
}
Obviously, the code above would be much preferred to this unreadable mess:
public boolean validate(String s) {
return s == null? true : s.length() > 3;
}
The very occurrence of a ternary operator is considered a transgression and some projects even have it flagged by CheckStyle.
If your projects conform to such stylistic guidelines as these, that could justify your suspicious line of code.

There is no difference really although the 1st method won't work on a 1.4 or earlier JVM. The first is more convoluted since it is fetching the static value from the Boolean object and then relying on autoboxing (introduced in 1.5) to change it from a Boolean object to a boolean primitive) although I can't imagine it would ever make any speed difference.
Generally though if you are assuming a particular initial value for a variable then I would recommend initialising it rather than just declaring it as it makes the code more readable.

Related

Why do i have to return from a function that switches on an enum and covers every possible entry? [duplicate]

Normally, default is not necessary in a switch statement. However, in the following situation the code successfully compiles only when I uncomment the default statement. Can anybody explain why?
public enum XYZ {A,B};
public static String testSwitch(XYZ xyz)
{
switch(xyz)
{
case A:
return "A";
case B:
//default:
return "B";
}
}
The reason that you have to uncomment the default is that your function says that it returns a String, but if you only have case labels defined for A and B then the function will not return a value if you pass in anything else. Java requires that all functions that state that they return a value actually return a value on all possible control paths, and in your case the compiler isn't convinced that all possible inputs have a value returned.
I believe (and I'm not sure of this) that the reason for this is that even if you cover all your enum cases, the code could still fail in some cases. In particular, suppose that you compile the Java code containing this switch statement (which works just fine), then later on change the enum so that there's now a third constant - let's say C - but you don't recompile the code with the switch statement in it. Now, if you try writing Java code that uses the previously-compiled class and passes in C into this statement, then the code won't have a value to return, violating the Java contract that all functions always return values.
More technically speaking, I think the real reason is that the JVM bytecode verifier always rejects functions in which there is some control path that falls off the end of a function (see §4.9.2 of the JVM spec), and so if the code were to compile it would just get rejected by the JVM at runtime anyway. The compiler therefore gives you the error to report that a problem exists.
I think this is explained by the JLS definite assignment rules for switch statements (JLS 16.2.9) which states the following:
"V is [un]assigned after a switch statement iff all of the following are true:
Either there is a default label in the switch block or V is [un]assigned after the switch expression.
If we then apply this to the notional V which is the return value of the method, we can see that if there is no default branch, the value would be notionally unassigned.
OK ... I'm extrapolating definite assignment rules to cover return values, and maybe they don't. But the fact that I couldn't find something more direct in the spec doesn't mean it isn't there :-)
There's another (more sound) reason why the compiler has to give an error. It stems from the binary compatibility rules for enum (JLS 13.4.26) which state the following:
"Adding or reordering constants from an enum type will not break compatibility with pre-existing binaries."
So how does that apply in this case? Well suppose that the compiler was allowed to infer that the OP's example switch statement always returned something. What happens if the programmer now changes the enum to add an extra constant? According to the JLS binary compatibility rules, we haven't broken binary compatibility. Yet the method containing the switch statement can now (depending on its argument) return an undefined value. That cannot be allowed to happen, so therefore the switch must be a compilation error.
In Java 12 they have introduced enhancements to switch that include switch expressions. This runs into the same problem with enums that change between compile time and runtime. According to the JEP 354, they solving this problem as follows:
The cases of a switch expression must be exhaustive; for all possible values there must be a matching switch label. (Obviously switch statements are not required to be exhaustive.)
In practice this normally means that a default clause is required; however, in the case of an enum switch expression that covers all known constants, a default clause is inserted by the compiler to indicate that the enum definition has changed between compile-time and runtime. Relying on this implicit default clause insertion makes for more robust code; now when code is recompiled, the compiler checks that all cases are explicitly handled. Had the developer inserted an explicit default clause (as is the case today) a possible error will have been hidden.
The only thing that is not crystal clear is what the implicit default clause would actually do. My guess is that it would throw an unchecked exception. (As of right now, the JLS for Java 12 has not been updated to describe the new switch expressions.)
In Java 12 you can use the preview switch expression feature (JEP-325) as follows:
public static String testSwitch(XYZ xyz) {
return switch (xyz) {
case A -> "A";
case B -> "B";
};
}
and you don't need default case as long as you handle all enum values in switch.
Note, to use a preview feature you'll have to pass --enable-preview --source 12 options to javac and java
As has been stated, you need to return a value and the compiler doesn't assume that the enum cannot change in the future. E.g. you can create another version of the enum and use that without recompiling the method.
Note: there is a third value for xyz which is null.
public static String testSwitch(XYZ xyz) {
if(xyz == null) return "null";
switch(xyz){
case A:
return "A";
case B:
return "B";
}
return xyz.getName();
}
This ha the same result as
public static String testSwitch(XYZ xyz) {
return "" + xyz;
}
The only way to avoid a return is to throw an exception.
public static String testSwitch(XYZ xyz) {
switch(xyz){
case A:
return "A";
case B:
return "B";
}
throw new AssertionError("Unknown XYZ "+xyz);
}
There is a contract that this method has to return a String unless it throws an Exception. And everytime is not limited to those cases where the value of xyz is equal to XVZ.A or XYZ.B.
Here's another example, where it's obviuos, that the code will run correct but where we have a compiletime error for the very same reason:
public boolean getTrue() {
if (1 == 1) return true;
}
It is not true that you have to add a default statement, it is true, that you have to return a value at any time. So either add a default statement or add a return statement after the switch block.
Because compiler cannot guess that there are only two values in the enum and forces you to return value from the method. (However I dont know why it cannot guess, maybe it has something with reflection).
what happens when xyz is null in your code example? In that case the method is missing a return statement.
default: throw new AssertionError();

How to tell Java that a variable cannot possibly be null?

I have a program that basically looks like this:
boolean[] stuffNThings;
int state=1;
for(String string:list){
switch(state){
case 1:
if(/*condition*/){
// foo
break;
}else{
stuffNThings=new boolean[/*size*/];
state=2;
}
// intentional fallthrough
case 2:
// bar
stuffNThings[0]=true;
}
}
As you, a human, can see, case 2 only ever happens when there was previously a state 1 and it switched to state 2 after initialising the array. But Eclipse and the Java compiler don't see this, because it looks like pretty complex logic to them. So Eclipse complains:
The local variable stuffNThings may not have been initialized."
And if I change "boolean[] stuffNThings;" to "boolean[] stuffNThings=null;", it switches to this error message:
Potential null pointer access: The variable stuffNThings may be null at this location.
I also can't initialise it at the top, because the size of the array is only determined after the final loop in state 1.
Java thinks that the array could be null there, but I know that it can't. Is there some way to tell Java this? Or am I definitely forced to put a useless null check around it? Adding that makes the code harder to understand, because it looks like there may be a case where the value doesn't actually get set to true.
Java thinks that the array could be null there, but I know that it can't.
Strictly speaking, Java thinks that the variable could be uninitialized. If it is not definitely initialized, the value should not be observable.
(Whether the variable is silently initialized to null or left in an indeterminate state is an implementation detail. The point is, the language says you shouldn't be allowed to see the value.)
But anyway, the solution is to initialize it to null. It is redundant, but there is no way to tell Java to "just trust me, it will be initialized".
In the variations where you are getting "Potential null pointer access" messages:
It is a warning, not an error.
You can ignore or suppress a warning. (If your correctness analysis is wrong then you may get NPE's as a result. But that's your choice.)
You can turn off some or all warnings with compiler switches.
You can suppress a specific warning with a #SuppressWarnings annotation:
For Eclipse, use #SuppressWarnings("null").
For Android, use #SuppressWarnings("ConstantConditions").
Unfortunately, the warning tags are not fully standardized. However, a compiler should silently ignore a #SuppressWarnings for a warning tag that it doesn't recognize.
You may be able to restructure the code.
In your example, the code is using switch drop through. People seldom do that because it leads to code that is hard to understand. So, I'm not surprised that you can find edge-case examples involving drop-through where a compiler gets the NPE warnings a bit wrong.
Either way, you can easily avoid the need to do drop-through by restructuring your code. Copy the code in the case 2: case to the end of the case 1: case. Fixed. Move on.
Note the "possibly uninitialized" error is not the Java compiler being "stupid". There is a whole chapter of the JLS on the rules for definite assignment, etcetera. A Java compiler is not permitted to be smart about it, because that would mean that the same Java code would be legal or not legal, depending on the compiler implementation. That would be bad for code portability.
What we actually have here is a language design compromise. The language stops you from using variables that are (really) not initialized. But to do this, the "dumb" compiler must sometimes stop you using variables that you (the smart programmer) know will be initialized ... because the rules say that it should.
(The alternatives are worse: either no compile-time checks for uninitialized variables leading to hard crashes in unpredictable places, or checks that are different for different compilers.)
A distinct non-answer: when code is "so" complicated that an IDE / java compiler doesn't "see it", then that is a good indication that your code is too complicated anyway. At least for me, it wasn't obvious what you said. I had to read up and down repeatedly to convince myself that the statement given in the question is correct.
You have an if in a switch in a for. Clean code, and "single layer of abstraction" would tell you: not a good starting point.
Look at your code. What you have there is a state machine in disguise. Ask yourself whether it would be worth to refactor this on larger scale, for example by turning it into an explicit state machine of some sort.
Another less intrusive idea: use a List instead of an array. Then you can simply create an empty list, and add elements to that as needed.
After just trying to execute the code regardless of Eclipse complaining, I noticed that it does indeed run without problems. So apparently it was just a warning being set to "error" level, despite not being critical.
There was a "configure problem severity" button, so I set the severity of "Potential null pointer access" to "warning" (and adjusted some other levels accordingly). Now Eclipse just marks it as warning and executes the code without complaining.
More understandable would be:
boolean[] stuffNThings;
boolean initialized = false;
for (String string: list) {
if (!initialized) {
if (!/*condition*/) {
stuffNThings = new boolean[/*size*/];
initailized = true;
}
}
if (initialized) {
// bar
stuffNThings[0] = true;
}
}
Two loops, one for the initialisation, and one for playing with the stuff might or might not be more clear.
It is easier on flow analysis (compared to a switch with fall-through).
Furthermore instead of a boolean[] a BitSet might used too (as it is not fixed sized as an array).
BitSet stuffNThings = new BitSet(/*max size*/);

Java optimization for temporary variables from compiler

In my program I have a long if condition which looks something like this:
if((items.size() > 0 && !k.getText().equals(last)) || cr.isLast() == true)
Now I thought it is easier to read if I use a variable for the first statement so I changed my code into this:
boolean textChanged = items.size() > 0 && !k.getText().equals(last);
if(fachChanged == true || cr.isLast() == true)
Now my question is: Does the second code need more memory because I used a temporary variable or is this optimized from the compiler? I think today it is not so important if one boolean less or more is stored in the memory but there is the wish to create an optimized and memory friendly program.
"The First Rule of Program Optimization: Don't do it. The Second Rule of Program Optimization (for experts only!): Don't do it yet." — Michael A. Jackson
The compiler will optimize what can be optimized, you should care about the more difficult task: try to write clean and readable code.
if((items.size() > 0 && !k.getText().equals(last)) || cr.isLast() == true)
This is resolved to a boolean value by a compiler, and that boolean has to go somewhere. Once the if statement is finished, the boolean is disposed of. If you create a local variable, that boolean is maintained in memory for its life time (here it looks like up until the end of the method).
That said, the compiler may notice this, and provided that boolean isn't used anywhere else, it will probably evaluate to your first example anyway. Either way, this is quite a stringent optimisation, and something that Java can definitely handle either way.
Use your extracted solution - it is more readable, you can debug it properly and the compiler optimizes it anyway. Also, only locally scoped variables (and boolean primitives above all) wont get stored on the heap and are therefore quickly disposed anyway.
I 100% agree with all the other answers so far, but I'm also compelled to actually answer the question.
my question is: Does the second code need more memory because I used a
temporary variable
Probably not. It's most likely that in both cases, the compiler will put the boolean in a register and it will never hit memory at all. It depends on what other code is happening around the code you've provided.
If you reference that variable later on, you might run out of registers and it would end up on the stack. In either case it would never go in the heap, so your memory profile will be identical either way.

Java: Use getter vs caching value

I have a getter that returns a String and I am comparing it to some other String. I check the returned value for null so my ifstatement looks like this (and I really do exit early if it is true)
if (someObject.getFoo() != null && someObject.getFoo().equals(someOtherString)) {
return;
}
Performancewise, would it be better to store the returned String rather than calling the getter twice like this? Does it even matter?
String foo = someObject.getFoo();
if (foo != null && foo.equals(someOtherString)) {
return;
}
To answer questions from the comments, this check is not performed very often and the getter is fairly simple. I am mostly curious how allocating a new local variable compares to executing the getter an additional time.
It depends entirely on what the getter does. If it's a simple getter (retrieving a data member), then the JVM will be able to inline it on-the-fly if it determines that code is a hot spot for performance. This is actually why Oracle/Sun's JVM is called "HotSpot". :-) It will apply aggressive JIT optimization where it sees that it needs it (when it can). If the getter does something complex, though, naturally it could be slower to use it and have it repeat that work.
If the code isn't a hot spot, of course, you don't care whether there's a difference in performance.
Someone once told me that the inlined getter can sometimes be faster than the value cached to a local variable, but I've never proven that to myself and don't know the theory behind why it would be the case.
Use the second block. The first block will most likely get optimized to the second anyway, and the second is more readable. But the main reason is that, if someObject is ever accessed by other threads, and if the optimization somehow gets disabled, the first block will throw no end of NullPointerException exceptions.
Also: even without multi-threading, if someObject is by any chance made volatile, the optimization will disappear. (Bad for performance, and, of course, really bad with multiple threads.) And lastly, the second block will make using a debugger easier (not that that would ever be necessary.)
You can omit the first null check since equals does that for you:
The result is true if and only if the argument is not null and is a String object that represents the same sequence of characters as this object.
So the best solution is simply:
if(someOtherString.equals(someObject.getFoo())
They both look same,even Performance wise.Use the 1st block if you are sure you won't be using the returned value further,if not,use 2nd block.
I prefer the second code block because it assigns foo and then foo cannot change to null/notnull.
Null are often required and Java should solve this by using the 'Elvis' operator:
if (someObject.getFoo()?.equals(someOtherString)) {
return;
}

Java: How to check for null pointers efficiently

There are some patterns for checking whether a parameter to a method has been given a null value.
First, the classic one. It is common in self-made code and obvious to understand.
public void method1(String arg) {
if (arg == null) {
throw new NullPointerException("arg");
}
}
Second, you can use an existing framework. That code looks a little nicer because it only occupies a single line. The downside is that it potentially calls another method, which might make the code run a little slower, depending on the compiler.
public void method2(String arg) {
Assert.notNull(arg, "arg");
}
Third, you can try to call a method without side effects on the object. This may look odd at first, but it has fewer tokens than the above versions.
public void method3(String arg) {
arg.getClass();
}
I haven't seen the third pattern in wide use, and it feels almost as if I had invented it myself. I like it for its shortness, and because the compiler has a good chance of optimizing it away completely or converting it into a single machine instruction. I also compile my code with line number information, so if a NullPointerException is thrown, I can trace it back to the exact variable, since I have only one such check per line.
Which check do you prefer, and why?
Approach #3: arg.getClass(); is clever, but unless this idiom see widespread adoption, I'd prefer the clearer, more verbose methods as opposed to saving a few characters. I'm a "write once, read many" kind of programmer.
The other approaches are self-documenting: there's a log message you can use to clarify what happened - this log message is use when reading the code and also at run-time. arg.getClass(), as it stands, is not self-documenting. You could use a comment at least o clarify to reviewers of the code:
arg.getClass(); // null check
But you still don't get a chance to put a specific message in the runtime like you can with the other methods.
Approach #1 vs #2 (null-check+NPE/IAE vs assert): I try to follow guidelines like this:
http://data.opengeo.org/GEOT-290810-1755-708.pdf
Use assert to check parameters on private methods
assert param > 0;
Use null check + IllegalArgumentException to check parameters on public methods
if (param == null) throw new IllegalArgumentException("param cannot be null");
Use null check + NullPointerException where needed
if (getChild() == null) throw new NullPointerException("node must have children");
HOWEVER, since this is question may be about catching potential null issues most efficiently, then I have to mention my preferred method for dealing with null is using static analysis, e.g. type annotations (e.g. #NonNull) a la JSR-305. My favorite tool for checking them is:
The Checker Framework:
Custom pluggable types for Java
https://checkerframework.org/manual/#checker-guarantees
If its my project (e.g. not a library with a public API) and if I can use the Checker Framework throughout:
I can document my intention more clearly in the API (e.g. this parameter may not be null (the default), but this one may be null (#Nullable; the method may return null; etc). This annotation is right at the declaration, rather than further away in the Javadoc, so is much more likely to be maintained.
static analysis is more efficient than any runtime check
static analysis will flag potential logic flaws in advance (e.g. that I tried to pass a variable that may be null to a method that only accepts a non-null parameter) rather than depending on the issue occurring at runtime.
One other bonus is that the tool lets me put the annotations in a comment (e.g. `/#Nullable/), so my library code can compatible with type-annotated projects and non-type-annotated projects (not that I have any of these).
In case the link goes dead again, here's the section from GeoTools Developer Guide:
http://data.opengeo.org/GEOT-290810-1755-708.pdf
5.1.7 Use of Assertions, IllegalArgumentException and NPE
The Java language has for a couple of years now made an assert keyword available; this keyword can be used to perform debug only checks.
While there are several uses of this facility, a common one is to check method parameters on private (not public) methods. Other uses are
post-conditions and invariants.
Reference: Programming With Assertions
Pre-conditions (like argument checks in private methods) are typically easy targets for assertions. Post-conditions and invariants are sometime
less straighforward but more valuable, since non-trivial conditions have more risks to be broken.
Example 1: After a map projection in the referencing module, an assertion performs the inverse map projection and checks the result
with the original point (post-condition).
Example 2: In DirectPosition.equals(Object) implementations, if the result is true, then the assertion ensures that
hashCode() are identical as required by the Object contract.
Use Assert to check Parameters on Private methods
private double scale( int scaleDenominator ){
assert scaleDenominator > 0;
return 1 / (double) scaleDenominator;
}
You can enable assertions with the following command line parameter:
java -ea MyApp
You can turn only GeoTools assertions with the following command line parameter:
java -ea:org.geotools MyApp
You can disable assertions for a specific package as shown here:
java -ea:org.geotools -da:org.geotools.referencing MyApp
Use IllegalArgumentExceptions to check Parameters on Public Methods
The use of asserts on public methods is strictly discouraged; because the mistake being reported has been made in client code - be honest and
tell them up front with an IllegalArgumentException when they have screwed up.
public double toScale( int scaleDenominator ){
if( scaleDenominator > 0 ){
throw new IllegalArgumentException( "scaleDenominator must be greater than 0");
}
return 1 / (double) scaleDenominator;
}
Use NullPointerException where needed
If possible perform your own null checks; throwing a IllegalArgumentException or NullPointerException with detailed information
about what has gone wrong.
public double toScale( Integer scaleDenominator ){
if( scaleDenominator == null ){
throw new NullPointerException( "scaleDenominator must be provided");
}
if( scaleDenominator > 0 ){
throw new IllegalArgumentException( "scaleDenominator must be greater than 0");
}
return 1 / (double) scaleDenominator;
}
Aren't you optimizing a biiiiiiiiiiiiiiit too prematurely!?
I would just use the first. It's clear and concise.
I rarely work with Java, but I assume there's a way to have Assert only operate on debug builds, so that would be a no-no.
The third gives me the creeps, and I think I would immediately resort to violence if I ever saw it in code. It's completely unclear what it's doing.
You can use the Objects Utility Class.
public void method1(String arg) {
Objects.requireNonNull(arg);
}
see http://docs.oracle.com/javase/7/docs/api/java/util/Objects.html#requireNonNull%28T%29
You should not be throwing NullPointerException. If you want a NullPointerException, just dont check the value and it will be thrown automatically when the parameter is null and you attempt to dereference it.
Check out the apache commons lang Validate and StringUtils classes.
Validate.notNull(variable) it will throw an IllegalArgumentException if "variable" is null.
Validate.notEmpty(variable) will throw an IllegalArgumentException if "variable" is empty (null or zero length".
Perhaps even better:
String trimmedValue = StringUtils.trimToEmpty(variable) will guarantee that "trimmedValue" is never null. If "variable" is null, "trimmedValue" will be the empty string ("").
In my opinion, there are three issues with the third method:
The intent is unclear to the casual reader.
Even though you have line number information, line numbers change. In a real production system, knowing that there was a problem in SomeClass at line 100 doesn't give you all the info you need. You also need to know the revision of the file in question and be able to get to that revision. All in all, a lot of hassle for what appears to be very little benefit.
It is not at all clear why you think the call to arg.getClass can be optimized away. It is a native method. Unless HotSpot is coded to have specific knowledge of the method for this exact eventuality, it'll probably leave the call alone since it can't know about any potential side-effects of the C code that gets called.
My preference is to use #1 whenever I feel there's a need for a null check. Having the variable name in the error message is great for quickly figuring out what exactly has gone wrong.
P.S. I don't think that optimizing the number of tokens in the source file is a very useful criterion.
The first method is my preference because it conveys the most intent. There are often shortcuts that can be taken in programming but my view is that shorter code is not always better code.
x==null is super fast, and it can be a couple of CPU clocks (incl. the branch prediction which is going to succeed). AssertNotNull will be inlined, so no difference there.
x.getClass() should not be faster than x==null even if it uses trap. (reason: the x will be in some register and checking a register vs an immediate value is fast, the branch is going to be predicted properly as well)
Bottom line: unless you do something truly weird, it'd be optimized by the JVM.
The first option is the easiest one and also is the most clear.
It's not common in Java, but in C and C++ where the = operator can be included in a expression in the if statement and therefore lead to errors, it's often recommended to switch places between the variable and the constant like this:
if (NULL == variable) {
...
}
instead of:
if (variable == NULL) {
...
}
preventing errors of the type:
if (variable = NULL) { // Assignment!
...
}
If you make the change, the compiler will find that kind of errors for you.
While I agree with the general consensus of preferring to avoid the getClass() hack, it is worth noting that, as of OpenJDK version 1.8.0_121, javac will use the getClass() hack to insert null checks prior to creating lambda expressions. For example, consider:
public class NullCheck {
public static void main(String[] args) {
Object o = null;
Runnable r = o::hashCode;
}
}
After compiling this with javac, you can use javap to see the bytecode by running javap -c NullCheck. The output is (in part):
Compiled from "NullCheck.java"
public class NullCheck {
public NullCheck();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: aconst_null
1: astore_1
2: aload_1
3: dup
4: invokevirtual #2 // Method java/lang/Object.getClass:()Ljava/lang/Class;
7: pop
8: invokedynamic #3, 0 // InvokeDynamic #0:run:(Ljava/lang/Object;)Ljava/lang/Runnable;
13: astore_2
14: return
}
The instruction set at "lines" 3, 4 and 7 are basically invoking o.getClass(), and discarding the result. If you run NullCheck, you'll get a NullPointerException thrown from line 4.
Whether this is something that the Java folks concluded was a necessary optimization, or it is just a cheap hack, I don't know. However, based on John Rose's comment at https://bugs.openjdk.java.net/browse/JDK-8042127?focusedCommentId=13612451&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-13612451, I suspect that it may indeed be the case that the getClass() hack, which produces an implicit null check, may be ever so slightly more performant than its explicit counterpart. That said, I would avoid using it unless careful benchmarking showed that it made any appreciable difference.
(Interestingly, the Eclipse Compiler For Java (ECJ) does not include this null check, and running NullCheck as compiled by ECJ will not throw a n NPE.)
I'd use the built-in Java assert mechanism.
assert arg != null;
The advantage of this over all the other methods is that it can be switched off.
I prefer method 4, 5 or 6, with #4 being applied to public API methods and 5 / 6 for internal methods, although #6 would be more frequently applied to public methods.
/**
* Method 4.
* #param arg A String that should have some method called upon it. Will be ignored if
* null, empty or whitespace only.
*/
public void method4(String arg) {
// commons stringutils
if (StringUtils.isNotBlank(arg) {
arg.trim();
}
}
/**
* Method 5.
* #param arg A String that should have some method called upon it. Shouldn't be null.
*/
public void method5(String arg) {
// Let NPE sort 'em out.
arg.trim();
}
/**
* Method 6.
* #param arg A String that should have some method called upon it. Shouldn't be null.
*/
public void method5(String arg) {
// use asserts, expect asserts to be enabled during dev-time, so that developers
// that refuse to read the documentations get slapped on the wrist for still passing
// null. Assert is a no-op if the -ae param is not passed to the jvm, so 0 overhead.
assert arg != null : "Arg cannot be null"; // insert insult here.
arg.trim();
}
The best solution to handle nulls is to not use nulls. Wrap third-party or library methods that may return nulls with null guards, replacing the value with something that makes sense (such as an empty string) but does nothing when used. Throw NPE's if a null really shouldn't be passed, especially in setter methods where the passed object doesn't get called right away.
There is no vote for this one, but I use a slight variation of #2, like
erStr += nullCheck (varName, String errMsg); // returns formatted error message
Rationale: (1) I can loop over a bunch of arguments, (2) The nullCheck method is tucked away in a superclass and (3) at the end of the loop,
if (erStr.length() > 0)
// Send out complete error message to client
else
// do stuff with variables
In the superclass method, your #3 looks nice, but I wouldn't throw an exception (what is the point, somebody has to handle it, and as a servlet container, tomcat will ignore it, so it might as well be this())
Regards, - M.S.
First method. I would never do the second or the third method, not unless they are implemented efficiently by the underlying JVM. Otherwise, those two are just prime examples of premature optimization (with the third having a possible performance penalty - you don't want to be dealing and accessing class meta-data in general access points.)
The problem with NPEs is that they are things that cross-cut many aspects of programming (and my aspects, I mean something deeper and more profound that AOP). It is a language design problem (not saying that the language is bad, but that it is one fundamental short-coming... of any language that allows null pointers or references.)
As such, it is best to simply deal with it explicitly as in the first method. All other methods are (failed) attempts to simplify a model of operations, an unavoidable complexity that exists on the underlying programming model.
It is a bullet that we cannot avoid to bite. Deal with it explicitly as it is - in the general case that is - the less painful down the road.
I believe that the fourth and the most useful pattern is to do nothing. Your code will throw NullPointerException or other exception a couple of lines later (if null is illegal value) and will work fine if null is OK in this context.
I believe that you should perform null check only if you have something to do with it. Checking to throw exception is irrelevant in most cases.
Just do not forget to mention in javadoc whether the parameter can be null.

Categories

Resources