Implementing class - java

These days I am trying to learn java. Now I just learned how to use multiple classes and I am building the game 'brick breaker', but I don't understand why this isn't working.
public void run() {
BricksandBox world = new BricksandBox();
world.createWorld();
}
and here is the part of code from 'BricksandBox':
public void createWorld(){
buildCanvas();
int i = 0;
while(i < NBRICK_ROWS){
i++;
createARow();
setCollumNumber();
}
}
/*builds the gamecenter */
private void buildCanvas(){
GRect can = new GRect(APPLICATION_WIDTH, APPLICATION_HEIGHT);
add(can);
}
private void createARow(){
for (int i = 1; i <= NBRICKS_PER_ROW; i++){
//int y = the brickYoffset + BrickHeight+BrickSep this moves
// the brick one down.
int y = BRICK_Y_OFFSET+((BRICK_SEP+BRICK_HEIGHT)*collumNumber);
/*
* i-1 because it can't be set to zero. else there will be 11 bricks.
* so you do i-1.
*/
int x = BRICK_SEP/2+(BRICK_SEP*(i-1))+(BRICK_WIDTH*(i-1));
GRect brick = new GRect(x,y,BRICK_WIDTH,BRICK_HEIGHT);
brick.setFilled(true);
//setting the color
if(collumNumber <= 1){
brick.setColor(Color.RED);
}
else if(collumNumber <= 3){
brick.setColor(Color.ORANGE);
}
else if(collumNumber <= 5){
brick.setColor(Color.YELLOW);
}
else if(collumNumber <= 7){
brick.setColor(Color.GREEN);
}
else if(collumNumber <= 9){
brick.setColor(Color.CYAN);
}
add(brick);
}
}
private void setCollumNumber(){
//MeeBezig. create a value that counts up from 1 to 10.
//1 is the first row number. 2 is the second row number etc...
int x = BRICK_SEP/2+(BRICK_SEP*collumNumber)+(BRICK_WIDTH*collumNumber/2);
int y = BRICK_Y_OFFSET+((BRICK_HEIGHT)*collumNumber);
if(contains(x,y)){
collumNumber++;
}
}
/**
* a number that counts from one to ten
*/
private int collumNumber;'
First the part was just in the main file. But for decomposition I tried to put it in a diffrent class. but that now when I run the program, it just shows a blank canvas.
Thanks in advance!

Related

Java 2D Array Specific Move

I have made a class where a 6x10 2D array is generated to act as a board.
A random starting location is then generated in the constructor.I only want adjacent moves to be possible.
For example, if the random location has been generated as (2,3) then for example the user enters (1,2) it would be a valid move, but (6,1) would be an invalid move.
Then if the user enters say (1,2), they can then go to any adjacent cell from (1,2).
I have included the class below, and the adjacent method I tried to make to test it, but I'm a bit confused on how I am approaching this.
import java.util.Arrays;
import java.util.Random;
public class Test {
public static final int ROWS = 6;
public static final int COLUMNS = 10;
public int[][] board;
public static void main(String[] args)
{
Test t = new Test();
t.getBoard();
t.makeMove(6,1); //I want this to be an invalid move.
t.getBoard();
t.makeMove(1,2); // this should be a valid move
t.getBoard();
}
public Test()
{
board = new int[ROWS][COLUMNS];
createRandomLocation();
}
public void createRandomLocation()
{
Random rand = new Random();
int x = rand.nextInt(6);
int y = rand.nextInt(10);
board[x][y] = 1;
}
public void makeMove(int x,int y){
if (Math.abs(x-cur_x)==0 || Math.abs(y-cur_y)==0) {
board[x][y] = 1;
}
public String getBoard() {
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[i].length; j++) {
System.out.print(board[i][j] + " ");
}
System.out.println();
}
System.out.println();
return Arrays.deepToString(board);
}
}
Adjacent:
/*public boolean isMoveAllowed(int [][] array,int x, int y){
boolean adjacent = false;
int trueCount = 0;
if(array[x-1][y-1] == 0) trueCount++; //topleft
if(array[x-1][y] == 0) trueCount++; //top
if(array[x-1][y+1] == 0) trueCount++;//topright
if(array[x][y+1] == 0) trueCount++;//right
if(array[x][y-1] == 0) trueCount++;//left
if(array[x+1][y-1] == 0) trueCount++;//bottomleft
if(array[x+1][y] == 0) trueCount++;//bottom
if(array[x+1][y+1] == 0) trueCount++; //bottomright
if (trueCount == 8)
{
adjacent = true;
}
return adjacent;
}*/
Your problem description has the answer baked into it already. You want any move from (a,b) to (c,d) to be legal if the distance between a and c, and b and d, is zero or one. So if you see Math.abs(a-c)>1, that's an illegal move. So: have the current position stored in some variables, and compare them to the desired new location:
public static void main(String[] args)
{
Board b = new Board(6, 10);
try {
b.tryMove(6,1);
} catch(IllegalMoveException e) {
// do whatever you need to do to inform the user that move is illegal
}
}
With the Board class responsible for tracking coordinates:
class Board {
protected int cur_x, cur_y, rows, cols;
public Board(int rows, int cols) {
this.rows = rows;
this.cols = cols;
this.setRandomPosition();
}
public void setRandomPosition() {
cur_x = (int) Math.round(Math.random() * cols);
cur_y = (int) Math.round(Math.random() * rows);
}
public void tryMove(int x, int y) throws IllegalMoveException {
if (Math.abs(x-cur_x)>1 || Math.abs(y-cur_y)>1) {
throw new IllegalMoveException(...);
}
// bounds check omitted here, but: ensure that
// 0<=x<cols and 0<=y<rows, otherwise throw an
// IllegalMoveException as well.
cur_x = x;
cur_y = y;
}
// with getters for the current x and y, etc.
}
It would be much easier to test for a true case rather than a false case like you currently have, the isMoveAllowed method should look something like this:
public boolean isMoveAllowed(int[][] array, int x, int y) {
return ((array[x + 1][y] == 1) ||
(array[x - 1][y] == 1) ||
(array[x][y + 1] == 1) ||
(array[x][y - 1] == 1));
}
This will return true if the move is adjacent to the current player position

Tic Tac Toe winning condition change when scalable board is larger than 4x4

So, I have been making this Tic Tac Toe program for a while now.
It's a basic Tic Tac Toe game but the game board is scalable. The program is almost finished but one little feature is missing.
I have to make the game end if player gets five or more marks in a row when the game board is larger than 4x4.
F.E. If the game board is 9x9 the game has to end when the player or the computer gets five marks in a row.
(Mark = "O" or "X").
The game now ends when someone gets marks in a row equals to the size of the board (if 9x9 you need 9 marks in a row to win).
I have to implement a feature in the playerHasWon and I've been having a lot of trouble finding out how. I think it's a simple to implement thing but I have not found out how to do it.
Hope my explanation is easy enough to understand. Here's the code:
package tictac;
import java.util.Scanner;
import java.util.Random;
public class Tictac {
public static final int DRAW = 0; // game ends as a draw
public static final int COMPUTER = 1; // computer wins
public static final int PLAYER = 2; // player wins
public static final char PLAYER_MARK = 'X'; // The "X"
public static final char COMPUTER_MARK = 'O'; // The "O"
public static int size; // size of the board
public static String[][] board; // the board itself
public static int score = 0; // game win score
public static Scanner scan = new Scanner(System.in); // scanner
/**
* Builds the board with the integer size and user input.
*
* Displays game win message and switches play turns.
*
* #param args the command line parameters. Not used.
*/
public static void main(String[] args) {
while (true) {
System.out.println("Select board size");
System.out.print("[int]: ");
try {
size = Integer.parseInt(scan.nextLine());
} catch (Exception e) {
System.out.println("You can't do that.");
continue; // after message, give player new try
}
break;
}
int[] move = {};
board = new String[size][size];
setupBoard();
int i = 1;
loop: // creates the loop
while (true) {
if (i % 2 == 1) {
displayBoard();
move = getMove();
} else {
computerTurn();
}
switch (isGameFinished(move)) {
case PLAYER:
System.err.println("YOU WIN!");
displayBoard();
break loop;
case COMPUTER:
System.err.println("COMPUTER WINS!");
displayBoard();
break loop;
case DRAW:
System.err.println("IT'S A DRAW");
displayBoard();
break loop;
}
i++;
}
}
/**
* Checks for game finish.
*
* #param args command line parameters. Not used.
*
* #return DRAW the game ends as draw.
* #return COMPUTER the game ends as computer win.
* #return PLAYERE the game ends as player win.
*/
private static int isGameFinished(int[] move) {
if (isDraw()) {
return DRAW;
} else if (playerHasWon(board, move,
Character.toString(COMPUTER_MARK))) {
return COMPUTER;
} else if (playerHasWon(board, move,
Character.toString(PLAYER_MARK))) {
return PLAYER;
}
return -1; // can't be 0 || 1 || 2
}
/**
* Checks for win for every direction on the board.
*
* #param board the game board.
* #param move move on the board.
* #param playerMark mark on the board "X" or "O".
* #return the game is won.
*/
public static boolean playerHasWon(String[][] board, int[] move,
String playerMark) { //playermark x || o
// horizontal check
for (int i = 0; i < size; i++) {
if (board[i][0].equals(playerMark)) {
int j;
for (j = 1; j < size; j++) {
if (!board[i][j].equals(playerMark)) {
break;
}
}
if (j == size) {
return true;
}
}
}
// vertical check
for (int i = 0; i < size; i++) {
if (board[0][i].equals(playerMark)) {
int j;
for (j = 1; j < size; j++) {
if (!board[j][i].equals(playerMark)) {
break;
}
}
if (j == size) {
return true;
}
}
}
// diagonals check
int i;
for (i = 0; i < size; i++) {
if (!board[i][i].equals(playerMark)) {
break;
}
}
if (i == size) {
return true;
}
for (i = 0; i < size; i++) {
if (!board[i][(size - 1) - i].equals(playerMark)) {
break;
}
}
return i == size;
}
/**
* Checks for draws.
*
* #return if this game is a draw.
*/
public static boolean isDraw() {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
if (board[i][j] == " ") {
return false;
}
}
}
return true;
}
/**
* Displays the board.
*
*
*/
public static void displayBoard() {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
System.out.printf("[%s]", board[i][j]);
}
System.out.println();
}
}
/**
* Displays the board.
*
*
*/
public static void setupBoard() {
for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
board[i][j] = " ";
}
}
}
/**
* Takes in user input and sends it to isValidPlay.
*
* #return null.
*/
public static int[] getMove() {
Scanner sc = new Scanner(System.in);
System.out.println("Your turn:");
while (true) {
try {
System.out.printf("ROW: [0-%d]: ", size - 1);
int x = Integer.parseInt(sc.nextLine());
System.out.printf("COL: [0-%d]: ", size - 1);
int y = Integer.parseInt(sc.nextLine());
if (isValidPlay(x, y)) {
board[x][y] = "" + PLAYER_MARK;
return new int[]{x, y};
} else { // if input is unallowed
System.out.println("You can't do that");
continue; // after message, give player new try
}
} catch (Exception e) {
System.out.println("You can't do that.");
}
return null;
}
}
/*
* Randomizes computer's turn, where it inputs the mark 'O'.
*
*
*/
public static void computerTurn() {
Random rgen = new Random(); // Random number generator
while (true) {
int x = (int) (Math.random() * size);
int y = (int) (Math.random() * size);
if (isValidPlay(x, y)) {
board[x][y] = "" + COMPUTER_MARK;
break;
}
}
}
/**
* Checks if a move is possible.
*
* #param inX x-move is out of bounds.
* #param inY y-move is out of bounds.
* #return false
*/
public static boolean isValidPlay(int inX, int inY) {
// Play is out of bounds and thus not valid.
if ((inX >= size) || (inY >= size)) {
return false;
}
// Checks if a play have already been made at the location,
// and the location is thus invalid.
return (board[inX][inY] == " ");
}
}
// End of file
Took a quick look, detected the problem and came up with a quick fix:
public static boolean checkDiagonal(String markToLook) {
// how many marks are we looking for in row?
int sizeToWin = Math.min(size, 5);
// running down and right
// don't need to iterate rows that can't be the starting point
// of a winning diagonal formation, thus can exlude some with
// row < (size - (sizeToWin - 1))
for (int row = 0; row < (size - (sizeToWin - 1)); row++) {
for (int col = 0; col < size; col++) {
int countOfMarks = 0;
// down and right
for (int i = row; i < size; i++) {
if (board[i][i] == null ? markToLook == null :
board[i][i].equals(markToLook)) {
countOfMarks++;
if (countOfMarks >= sizeToWin) {
return true;
}
}
}
countOfMarks = 0;
// down and left
for (int i = row; i < size; i++) {
if (board[i][size - 1 - i] == null ? markToLook == null :
board[i][size - 1 - i].equals(markToLook)) {
countOfMarks++;
if (countOfMarks >= sizeToWin) {
return true;
}
}
}
}
}
return false;
}
And call it from your PlayerHasWon method instead of performign the checks there. Basically we iterate each possible starting square on the board for a diagonal winning formation, and run check down+left and down+right for each of the squares.
I am in awful hurry and did not test it much, but will return in couple of hours to improve this solution. Seems to work.
Edit: My previous solution I found lacking in further tests, I've updated the above code to function as desired.
First, I think playerMark should be a char and not a String. That said, let's go for the answer. The "horizontal" case would be:
// This is the number of marks in a row required to win
// Adjust formula if necessary
final int required = size > 4 ? 5 : 3;
for (int i = 0; i < size; i++) {
int currentScore = 0;
for (j = 0; j < size; j++) {
if (board[i][j].equals(playerMark)) {
currentScore++;
if (currentScore >= required)
return true;
}
else {
currentScore = 0;
}
}
}
}
The vertical case would be analogous. The diagonal one is a bit trickier as now it would require board[i][i+k] for the main diagonal and board[i][k-i] for the secondary; and it may not be obvious which values k and i must traverse. Here's my attempt (variable required as in horizontal case):
Note: everything from here down has been completely rewritten on 2015-12-16. The previous versions didn't work and the algorithm was not explained.
After two failed attempts I decided to do my homework and actually sort things out instead of doing everything in my head thinking I can keep track of all variables. The result is this picture:
Main diagonals are painted in blue, secondary diagonals in green.
Each diagonal is identified by a value of k, with k=0 being always being the longest diagonal of each set. Values of k grow as diagonals move down, so diagonals above the longest one have negative k while diagonals below the longest one have positive k.
Things that hold for both diagonals:
Diagonal contains size-abs(k) elements. Diagonals in which size-abs(k) is less than required need not be searched. This means that, for board size size and required length required, we'll search values of k from required-size to size-required. Notice that these have the same absolute value, with the first being <=0 and the second >=0. These values are both zero only when required==size, i.e. when we need the full diagonal to claim a win, i.e. when we only need to search k=0.
For k<=0, possible values of i (row) go from 0 to size+k. Values greater than or equal to size+k cross the right edge of the board and are thus outside the board.
For k>=0, possible values of i (row) go from k to size. Values below k cross the left edge of the board and are thus outside the board.
Only for main (blue) diagonals:
Value of j (column) is k+i.
Only for secondary (green) diagonals:
Value of j (column) is size-1+k-i. In case this is not obvious, just pick the top right corner (k=0,i=0) and notice j=size-1. Then notice that adding 1 to k (keeping i constant) always moves j by 1 right (it would go out of the board if done from k=0,i=0, just think about the intersection of horizontal line i=0 with diagonal k=1), and adding 1 to i (keeping k constant) always moves j by 1 to the left.
The ressulting code would be:
// Main diagonal
for (int k = required - size; k < size - required; k++)
{
int currentScore = 0;
startI = Math.max (0, k);
endI = Math.min (size, size+k);
for (int i = startI, i < endI; i++)
{
if (board[i][k+i].equals (playerMark))
{
currentScore++;
if (currentScore >= required)
return true;
}
else
currentScore = 0;
}
}
// Secondary diagonal
for (int k = required - size; k < size - required; k++)
{
int currentScore = 0;
startI = Math.max (0, k);
endI = Math.min (size, size+k);
for (int i = startI, i < endI; i++)
{
if (board[i][size-1+k-i].equals (playerMark))
{
currentScore++;
if (currentScore >= required)
return true;
}
else
currentScore = 0;
}
}
At this point, the code is nearly identical in both cases, changing only the j index in board[i][j]. In fact, both loops could be merged, taking care only of keeping two currentScore variables, one for the main (blue) diagonal and the other for the secondary (green) diagonal.

Connect4 in Libgdx

Ok so I've been following this tutorial on Connect4 in java and I've tried to modify it to fit what I already had and to fit into libgdx. After implementing it, i have a few odd problems.
Problem 1: After i make the first move, the computer fills the entire bottom row with his chips and then makes his first move.
Problem 2: The computer isn't displaying any A.I. and simply starts at the first column and first row available and places a chip there. The computer will keep following this pattern.
Problem 3: My winning checker no longer realizes if I have won the game but does realize when the computer has won. When I first designed the game I started by having the computer place chips at random (for testing) and my winning checker worked for the computer and for myself.
The article I followed was here: Connect4 in Java
Here is my code.
ConnectFour.java
package com.comp452.tme31;
import com.badlogic.gdx.ApplicationAdapter;
import com.badlogic.gdx.Gdx;
import com.badlogic.gdx.Input;
import com.badlogic.gdx.InputProcessor;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.graphics.GL20;
import com.badlogic.gdx.graphics.Texture;
import com.badlogic.gdx.graphics.g2d.BitmapFont;
import com.badlogic.gdx.graphics.g2d.SpriteBatch;
public class ConnectFour extends ApplicationAdapter implements InputProcessor {
// Create final ints for number of columns and rows in game.
protected final static int COLUMNS = 7;
protected final static int ROWS = 6;
protected final static int TILESIZE = 64;
// Create boolean to determine if player can take a turn.
protected boolean playersTurn = true;
// Create boolean for gameover.
protected boolean gameOver = false;
// Create boolean for winners.
private boolean winner = false;
// Sprite batch for texture drawing.
SpriteBatch batch;
// Create textures to represent board and player pieces.
Texture drawingTile, empty, player, computer;
// Create 2D array to hold game board.
private final static int[][] gameBoard = new int[COLUMNS][ROWS];
public static int[][] getGameBoard() {
return gameBoard;
}
// Create variables to display status message.
BitmapFont mainStatusDisplay;
public static String mainStatusString;
public static String winningString;
// Create and set max depth for tree search
private final int MAX_DEPTH = 4;
// Create win, loss and nothing for zero sum game.
private final float WIN = 1f;
private final float LOSE = -1f;
private final float TIE = 0f;
#Override
public void create () {
batch = new SpriteBatch();
empty = new Texture("empty.jpg");
player = new Texture("player.jpg");
computer = new Texture("computer.jpg");
Gdx.input.setInputProcessor(this);
// Initialize display for status messages.
mainStatusDisplay = new BitmapFont();
mainStatusString = "Player's Turn";
winningString = "";
}
#Override
public void render () {
update();
Gdx.gl.glClearColor(0, 0, 0, 1);
Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);
batch.begin();
drawBoard();
mainStatusDisplay.setColor(Color.YELLOW);
mainStatusDisplay.draw(batch, mainStatusString, 32, 416);
batch.end();
}
public void drawBoard() {
for (int i = 0; i < COLUMNS; i ++) {
for (int j = 0; j < ROWS; j++) {
if (gameBoard[i][j] == 0) {
drawingTile = empty;
}
else if (gameBoard[i][j] == 1) {
drawingTile = player;
}
else if (gameBoard[i][j] == 2) {
drawingTile = computer;
}
batch.draw(drawingTile, i * 64, j * 64);
}
}
}
// Method update handles updates to game logic.
public void update() {
// If it's gameover, end the game.
if (gameOver) {
// Set players turn to true to prevent computer from taking another turn.
playersTurn = true;
// Set status message to winning message;
mainStatusString = winningString;
// Disable input processor to prevent player from taking another turn.
Gdx.input.setInputProcessor(null);
}
// If it's not players turn, call computersTurn.
else if (!playersTurn) {
mainStatusString = "Computer's Turn";
computersTurn();
}
if (checkForWin(1) && checkForWin(2)) {
gameOver = true;
}
}
public void computersTurn() {
double maxScore = 2. * Integer.MIN_VALUE;
int xValue = 0;
// Search the gameboard and find the best move.
for (int x = 0; x < COLUMNS; x++) {
// If x column is a value move...
if (canMove(x)) {
// Set score of move from function.
double score = moveScore(x);
// If score is greater than max score...
if (score > maxScore) {
// Set score to max score and xValue to column.
maxScore = score;
xValue = x;
// If the score is a win, break from loop.
if (score == WIN) {
break;
}
}
}
}
// Set the piece for player at column as x.
setPiece(2, xValue);
// Set players turn and string status.
playersTurn = true;
mainStatusString = "Player's Turn";
}
// Method moveScore determines the value of a move and returns it.
public double moveScore(int xValue) {
// Set the piece in place.
setPiece(2, xValue);
// Get the score and check it's value with alpha beta pruning.
double score = alphaBetaPrune(MAX_DEPTH, Integer.MIN_VALUE, Integer.MAX_VALUE, 1);
// Remove the piece.
takeAwayPiece(xValue);
return score;
}
public double alphaBetaPrune(int depth, double alpha, double beta, int whoPlayed) {
winner = checkForWin(1) || checkForWin(2);
// If we've reached the max depth of the tree or there is a winner...
if (depth == 0 || winner) {
double score;
// If there is a winner...
if (winner) {
// If player is the winner...
if (checkForWin(1)) {
// Set a losing score (Computer does not want player to win).
score = LOSE;
}
// Else this is a win for the computer...
else {
// Set score to a win.
score = WIN;
}
}
// Otherwise there is no winner...
else {
// Set score to TIE (0).
score = TIE;
}
// Return score and remove depth level.
return score / (MAX_DEPTH - depth +1);
}
// If computer is making the move...
if (whoPlayed == 2) {
// Iterate through gameboard.
for (int x = 0; x < COLUMNS; x++) {
// Check and see if next move can be made.
if (canMove(x)) {
// Make move for computer to x.
setPiece(2, x);
// Set alpha equal to return from recursion step minus one depth level.
alpha = Math.max(alpha, alphaBetaPrune(depth - 1, alpha, beta, 1));
// Remove piece.
takeAwayPiece(x);
// Check returned alpha against beta and break from loop if beta is less than alpha.
if (beta <= alpha) {
break;
}
}
}
// We're here if alpha is larger and we didn't break from loop.
return alpha;
}
// Else if player is making move...
else {
// Iterate through gameboard.
for (int x = 0; x < COLUMNS; x++) {
// Check and see if next move can be made.
if (canMove(x)) {
// Make move for player to x.
setPiece(1, x);
// Set beta equal to return from recursion step minus one depth level for beta.
beta = Math.min(beta, alphaBetaPrune(depth - 1, alpha, beta, 2));
// Remove piece.
takeAwayPiece(x);
// Check returned alpha against beta and break from loop if beta is less than alpha.
if (beta <= alpha) {
break;
}
}
}
// We're here if alpha is larger than beta and we didn't break from loop.
return beta;
}
}
// Method setPiece takes two int values as parameters and places a piece on the game board.
public void setPiece(int whoPlayed, int xValue) {
// For loop to iterate through each row.
for (int i = 0; i < ROWS; i++) {
// If row is empty...
if (gameBoard[xValue][i] == 0) {
// Place piece on the board.
gameBoard[xValue][i] = whoPlayed;
break;
}
}
}
// Method takeAwayPiece takes two int values as parameters and removes a piece from the board.
public void takeAwayPiece(int xValue) {
// For loop to iterate through each row.
for (int i = ROWS - 1; i > 0; i--) {
// If row contains a piece..
if (gameBoard[xValue][i] != 0) {
// Remove piece.
gameBoard[xValue][i] = 0;
break;
}
}
}
// Method to determine if a move is valid
public boolean canMove(int xValue) {
// If the top spot in the given column is 0, return true.
return (gameBoard[xValue][ROWS-1] == 0);
}
// Method checkForWin takes a flag and checks to see if that player has won the game.
public boolean checkForWin(int whoPlayed) {
// Create counter to check for 4 in a row.
int win = 0;
// Iterate through gameboard and count pieces in a row.
for (int y = 0; y < ROWS; y++) {
for (int x = 0; x < COLUMNS; x++) {
// If piece is player who is checking, increment counter.
if (gameBoard[x][y] == whoPlayed) {
win++;
}
// Not in a row, set counter to 0.
else {
win = 0;
}
if (win == 4) {
break;
}
}
// If win counter is 4, winner.
if (win == 4) {
winningString = "Horizontal Win for Player " + whoPlayed;
return true;
}
// Else, reset win counter and check next column.
else {
win = 0;
}
}
// Iterate through gameboard and count pieces in a column.
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
// If piece is player who is checking, increment counter.
if (gameBoard[x][y] == whoPlayed) {
win++;
}
// Not in a row, set counter to 0.
else {
win = 0;
}
if (win == 4) {
break;
}
}
// If win counter is 4, player won.
if (win == 4) {
winningString = "Vertical Win for Player " + whoPlayed;
return true;
}
// Else, reset win counter and check next column.
else {
win = 0;
}
}
// Iterate through gameboard and count pieces in a diagonal row, left to right.
for (int x = 0; x < 3; x++) {
for (int y = 0; y < 2; y++) {
// If piece is player who is checking, check next piece diagonally.
if (gameBoard[x][y] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x+1][y+1] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x+2][y+2] == whoPlayed) {
// Then check last diagonal piece.
if (gameBoard[x+3][y+3] == whoPlayed) {
// Set winning message to player won and set gameover flag.
winningString = "Diagonal Win (LR) for Player " + whoPlayed;
// Exit function.
return true;
}
}
}
}
}
}
// Iterate through gameboard and count pieces in a diagonal row, right to left.
for (int x = 3; x < COLUMNS; x++) {
for (int y = 0; y < 2; y++) {
// If piece is player who is checking, check next piece diagonally.
if (gameBoard[x][y] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x-1][y+1] == whoPlayed) {
// Then check next diagonal piece.
if (gameBoard[x-2][y+2] == whoPlayed) {
// Then check last diagonal piece.
if (gameBoard[x-3][y+3] == whoPlayed) {
// Set winning message to player won and set gameover flag.
winningString = "Diagonal Win (RL) for Player " + whoPlayed;
// Exit function.
return true;
}
}
}
}
}
}
// Iterate through gameboard and if no 0 slots remain, game is a tie.
for (int x = 0; x < COLUMNS; x++) {
for (int y = 0; y < ROWS; y++) {
// If a 0 slot remains, return.
if (gameBoard[x][y] == 0) {
return false;
}
}
}
// If we're here, then there was no winners and no slots left.
winningString = "Tie Game";
return false;
}
#Override
public boolean touchDown(int x, int y, int pointer, int button) {
if (playersTurn) {
if (button == Input.Buttons.LEFT) {
if (canMove(x / TILESIZE)) {
setPiece(1, x / TILESIZE);
playersTurn = false;
return true;
}
}
}
return false;
}
#Override
public boolean touchUp(int i, int i1, int i2, int i3) {
return false;
}
#Override
public boolean touchDragged(int i, int i1, int i2) {
return false;
}
#Override
public boolean mouseMoved(int i, int i1) {
return false;
}
#Override
public boolean scrolled(int i) {
return false;
}
#Override
public boolean keyDown(int i) {
return false;
}
#Override
public boolean keyUp(int i) {
return false;
}
#Override
public boolean keyTyped(char c) {
return false;
}
}
Thanks!
So after the first fix, it was fairly easy to narrow down what the problem was for the other problem. In my takeAwayPiece method, it wasn't removing anything on the bottom row so when the A.I calculated it's next move, its testpieces it was placing at the bottom didn't work.
So in the takeAwayPiece method, i changed it to the following
// Method takeAwayPiece takes two int values as parameters and removes a piece from the board.
public void takeAwayPiece(int xValue) {
// For loop to iterate through each row.
for (int i = ROWS; i > 0; i--) {
System.out.println(i);
// If row contains a piece..
if (gameBoard[xValue][i-1] != 0) {
// Remove piece.
//System.out.println("Piece at column " + xValue + " " + i);
gameBoard[xValue][i-1] = 0;
break;
}
}
}
You might notice that the difference is that i starts = to ROWS instead of ROWS -1 and then i was checking against x-1 instead of x (Previously i just tried changing the condition from i > 0 to i = 0 but that had some crazy strange results).

Array programming - check winner in a Tic Tac Toe game for an nxn board with n players

I am making a tic tac toe game for n number of players on a nxn board, but the winning condition is aways 3 on a row. My so far solution to the problem is: when a move is made the program will check the following square for 3 on a row.
(x-1,y+1) (x,y+1) (x+1,y+1)
(x-1,y) (x,y) (x+1,y)
(x-1,y-1) (x,y-1) (x+1,y-1)
It will check the top (x-1,y+1) (x,y+1) (x+1,y+1) bottom(x-1,y-1) (x,y-1) (x+1,y-1)
sides(x+1,y+1) (x+1,y) (x+1,y-1) , (x-1,y+1) (x-1,y) (x-1,y-1) , the diagonals and the ones going through the middle(x,y).
my code so far is:
public int checkWinning() {
for(int a = 1; a < size-1; a++){
for(int b = 1; b < size-1; b++){
if (board[a][b] == board[a+1][b] && board[a][b] == board[a-1][b]){
return board[a][b];
}else if(board[a][b] == board[a][b+1] && board[a][b] == board[a][b-1]){
return board[a][b];
}else if(board[a][b] == board[a+1][b-1] && board[a][b] == board[a-1][b+1]){
return board[a][b];
}else if(board[a][b] == board[a+1][b+1] && board[a][b] == board[a-1][b-1]){
return board[a][b];
}
}
}
for(int d = 1; d < size-1; d++){
if (board[0][d] == board[0][d-1] && board[0][d] == board[0][d+1]){
return board[0][d];
} else if (board[size-1][d] == board[size-1][d-1] && board[size-1][d] == board[size-1][d+1]){
return board[size-1][d];
}
}
for(int c = 1; c < size-1; c++){
if (board[c][0] == board[c-1][0] && board[c][0] == board[c+1][0]){
return board[c][0];
}else if(board[c][size-1] == board[c-1][size-1] && board[c][size-1] == board[c+1][size-1]){
return board[c][size-1];
}
}
return 0;
}
where the first section is where I check the ones through the middle and diagonals. the second section I check the top an bottom and the top and the thrid section checks the sides.
When it returns 0 is means that there are no winner yet.
#override
public void checkResult() {
int winner = this.board.checkWinning();
if (winner > 0) {
this.ui.showResult("Player "+winner+" wins!");
}
if (this.board.checkFull()) {
this.ui.showResult("This is a DRAW!");
}
}
Board[x][y] -> 2-dimensional array representing the board, The coordinates are counted from top-left (0,0) to bottom-right (size-1, size-1), board[x][y] == 0 signifies free at position (x,y), board[x][y] == i for i > 0 signifies that Player i made a move on (x,y), just so you know it.
my problem is that when i expands the board to a size larger than 3x3 the program somehow overwrites it self or a does not check every thing sides top and bottom every time, and I can't seem too se why.
EDIT:
played with the app for a few minutes... interesting results
java -jar tic-tac-toe.jar 5 20
It was a cats game!!
|1|1|5|5|1|3|5|3|1|5|2|5|1|1|2|
|2|3|2|3|1|5|3|5|3|2|3|1|5|2|2|
|5|4|5|4|1|5|5|4|2|1|4|5|4|2|2|
|3|2|1|5|5|5|2|4|5|3|4|1|2|4|2|
|3|4|1|2|5|4|1|1|4|5|1|3|3|4|1|
|1|5|4|4|3|2|5|1|3|5|1|3|5|3|4|
|2|5|1|4|3|3|3|5|3|1|1|4|3|4|4|
|1|4|5|1|1|5|4|5|2|4|1|1|5|4|3|
|1|3|2|1|4|2|4|3|3|4|5|2|4|3|3|
|5|1|1|3|3|4|4|4|2|2|1|4|3|2|5|
|2|2|3|1|5|5|4|1|3|5|3|2|3|3|2|
|2|4|2|4|4|1|3|1|1|3|1|2|1|2|2|
|2|5|5|1|4|3|4|5|5|4|5|3|3|5|2|
|4|5|2|1|5|3|2|1|3|2|2|2|2|4|4|
|4|1|1|4|5|4|5|4|2|2|3|3|2|2|3|
Played 100 games:
Number wins by Player1: 0
Number wins by Player2: 0
Number wins by Player3: 0
Number wins by Player4: 0
Number wins by Player5: 0
Number of ties: 100
didn't scroll through all 100 games to find the winning board, but I thought this was interesting:
java -jar tic-tac-toe.jar 2 10
Player2 won the game!
|1|1|2|1|2|2| |2|1|2|
|2|2|2|2|2|2|2|2|2|2|
|2|1|2|2|2|1|1|1|1|1|
|1|1|1|1|2|1|2|1|1|1|
|2|2| |1|2|1|1|1|1|2|
|2|2|2|1|1|1| |1|2|2|
|2|2|1|2|2|2|2|2|1|1|
| | |2|2|2|2| |1|1|1|
|1|1|2|2|2|1|1|1|1| |
| | |1|1|1|1|1|2|1| |
Played 100 games:
Number wins by Player1: 0
Number wins by Player2: 1
Number of ties: 99
This does answer your question... but I took it a bit far... decided to implement the solution.
Instead of counting matches... I just check from teh point the last player plays, if all marks in a row column and diagnal match the players, he wins.
package com.clinkworks.example;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class TicTacToe {
private static final String TIE = "TIE";
private static final Map<String, Integer> gamesToWinsMap = new HashMap<String, Integer>();
/**
* accepts input in the following format:
*
* playerCount rowCount columnCount (sets the game with the n players, n columns, and n rows)
* - java -jar tic-tac-toe.jar 2 3 3
* PlayerCount squareSize (defaults to a game with rows and cols the same as squareSize and the player count given)
* - java -jar tic-tac-toe.jar 2 3
* PlayerCount (defaults to a 3 by 3 game)
* - java -jar tic-tac-toe.jar 2
* no input (defaults to a 3 by 3 game with 2 players)
* - java -jar tic-tac-toe.jar
* #param args
*/
public static void main(String[] args) {
int playerCount = 2;
int rows = 3;
int cols = 3;
if(args.length == 3){
playerCount = Integer.valueOf(args[0]);
rows = Integer.valueOf(args[1]);
cols = Integer.valueOf(args[2]);
}
if(args.length == 2){
playerCount = Integer.valueOf(args[0]);
rows = Integer.valueOf(args[1]);
cols = rows;
}
if(args.length == 1){
playerCount = Integer.valueOf(args[0]);
}
for(int i = 1; i <= playerCount; i++){
gamesToWinsMap.put("Player" + i, 0);
}
//lets play 100 games and see the wins and ties
playGames(100, playerCount, rows, cols);
for(int i = 1; i <= playerCount; i++){
System.out.println("Number wins by Player" + i + ": " + gamesToWinsMap.get("Player" + i));
}
System.out.println("Number of ties: " + gamesToWinsMap.get(TIE));
}
public static void playGames(int gamesToPlay, int playerCount, int rows, int cols) {
//play a new game each iteration, in our example, count = 100;
for (int i = 0; i < gamesToPlay; i++) {
playGame(playerCount, rows, cols);
}
}
public static void playGame(int playerCount, int rows, int cols) {
//create a new game board. this initalizes our 2d array and lets the complexity of handling that
// array be deligated to the board object.
Board board = new Board(playerCount, rows, cols);
//we are going to generate a random list of moves. Heres where we are goign to store it
List<Move> moves = new ArrayList<Move>();
//we are creating moves for each space on the board.
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
moves.add(new Move(row, col));
}
}
//randomize the move list
Collections.shuffle(moves);
//do each move
for (Move move : moves) {
board.play(move);
if(gameOver(board)){
break;
}
}
}
public static boolean gameOver(Board board){
if (board.whoWon() != null) {
System.out.println(board.whoWon() + " won the game!");
System.out.println(board);
Integer winCount = gamesToWinsMap.get(board.whoWon());
winCount = winCount == null ? 1 : winCount + 1;
gamesToWinsMap.put(board.whoWon(), winCount);
return true;
} else if (board.movesLeft() == 0) {
System.out.println("It was a cats game!!");
System.out.println(board);
Integer tieCount = gamesToWinsMap.get(TIE);
tieCount = tieCount == null ? 1 : tieCount + 1;
gamesToWinsMap.put(TIE, tieCount);
return true;
}
return false;
}
public static class Move {
private int row;
private int column;
public Move(int row, int column) {
this.row = row;
this.column = column;
}
public int getRow() {
return row;
}
public int getColumn() {
return column;
}
}
public static class Board {
private final int rowSize;
private final int columnSize;
private final Integer[][] gameBoard;
private int playerCount;
private int currentPlayer;
private String winningPlayer;
public Board() {
gameBoard = new Integer[3][3];
currentPlayer = 1;
winningPlayer = null;
this.rowSize = 3;
this.columnSize = 3;
playerCount = 2;
}
public Board(int players) {
gameBoard = new Integer[3][3];
currentPlayer = 1;
winningPlayer = null;
this.rowSize = 3;
this.columnSize = 3;
playerCount = players;
}
public Board(int rowSize, int columnSize) {
gameBoard = new Integer[rowSize][columnSize];
currentPlayer = 1;
winningPlayer = null;
playerCount = 2;
this.rowSize = rowSize;
this.columnSize = columnSize;
}
public Board(int players, int rowSize, int columnSize) {
gameBoard = new Integer[rowSize][columnSize];
currentPlayer = 1;
winningPlayer = null;
playerCount = players;
this.rowSize = rowSize;
this.columnSize = columnSize;
}
/**
*
* #return the amount of empty spaces remaining on the game board, or if theres a winning player, zero.
*/
public int movesLeft() {
if(whoWon() != null){
return 0;
}
int moveCount = 0;
for (int x = 0; x < getRowSize(); x++) {
for (int y = 0; y < getColumnSize(); y++) {
moveCount += getMoveAt(x, y) == null ? 1 : 0;
}
}
return moveCount;
}
/**
* If someone won, this will return the winning player.
*
* #return the winning player
*/
public String whoWon() {
return winningPlayer;
}
/**
* This move allows the next player to choose where to place their mark.
*
* #param row
* #param column
* #return if the game is over, play will return true, otherwise false.
*/
public boolean play(Move move) {
if (!validMove(move)) {
// always fail early
throw new IllegalStateException("Player " + getCurrentPlayer() + " cannot play at " + move.getRow() + ", " + move.getColumn() + "\n" + toString());
}
doMove(move);
boolean playerWon = isWinningMove(move);
if (playerWon) {
winningPlayer = "Player" + getCurrentPlayer();
return true;
}
shiftPlayer();
boolean outOfMoves = movesLeft() <= 0;
return outOfMoves;
}
public int getRowSize() {
return rowSize;
}
public int getColumnSize() {
return columnSize;
}
public int getCurrentPlayer() {
return currentPlayer;
}
public Integer getMoveAt(int row, int column) {
return gameBoard[row][column];
}
private void doMove(Move move) {
gameBoard[move.getRow()][move.getColumn()] = getCurrentPlayer();
}
private void shiftPlayer() {
if(getCurrentPlayer() == getPlayerCount()){
currentPlayer = 1;
}else{
currentPlayer++;
}
}
private int getPlayerCount() {
return playerCount;
}
private boolean validMove(Move move) {
boolean noMoveAtIndex = false;
boolean indexesAreOk = move.getRow() >= 0 || move.getRow() < getRowSize();
indexesAreOk = indexesAreOk && move.getColumn() >= 0 || move.getColumn() < getColumnSize();
if (indexesAreOk) {
noMoveAtIndex = getMoveAt(move.getRow(), move.getColumn()) == null;
}
return indexesAreOk && noMoveAtIndex;
}
private boolean isWinningMove(Move move) {
// since we check to see if the player won on each move
// we are safe to simply check the last move
return winsDown(move) || winsAcross(move) || winsDiagnally(move);
}
private boolean winsDown(Move move) {
boolean matchesColumn = true;
for (int i = 0; i < getColumnSize(); i++) {
Integer moveOnCol = getMoveAt(move.getRow(), i);
if (moveOnCol == null || getCurrentPlayer() != moveOnCol) {
matchesColumn = false;
break;
}
}
return matchesColumn;
}
private boolean winsAcross(Move move) {
boolean matchesRow = true;
for (int i = 0; i < getRowSize(); i++) {
Integer moveOnRow = getMoveAt(i, move.getColumn());
if (moveOnRow == null || getCurrentPlayer() != moveOnRow) {
matchesRow = false;
break;
}
}
return matchesRow;
}
private boolean winsDiagnally(Move move) {
// diagnals we only care about x and y being teh same...
// only perfect squares can have diagnals
// so we check (0,0)(1,1)(2,2) .. etc
boolean matchesDiagnal = false;
if (isOnDiagnal(move.getRow(), move.getColumn())) {
matchesDiagnal = true;
for (int i = 0; i < getRowSize(); i++) {
Integer moveOnDiagnal = getMoveAt(i, i);
if (moveOnDiagnal == null || moveOnDiagnal != getCurrentPlayer()) {
matchesDiagnal = false;
break;
}
}
}
return matchesDiagnal;
}
private boolean isOnDiagnal(int x, int y) {
if (boardIsAMagicSquare()) {
return x == y;
} else {
return false;
}
}
private boolean boardIsAMagicSquare() {
return getRowSize() == getColumnSize();
}
public String toString() {
StringBuffer stringBuffer = new StringBuffer();
for(int y = 0; y < getColumnSize(); y++) {
for(int x = 0; x < getRowSize(); x++) {
Integer move = getMoveAt(x, y);
String moveToPrint = "";
if (move == null) {
moveToPrint = " ";
} else {
moveToPrint = move.toString();
}
stringBuffer.append("|").append(moveToPrint);
}
stringBuffer.append("|\n");
}
return stringBuffer.toString();
}
}
}
I have to revise my answer. If you want to have three in a row regardless of your board size, your loop code might be sufficient, but you are always checking whether the values of the fields are the same but never make a difference between empty and non-empty fields.
So “empty” can win too, which would effectively hide a possible win of a player. In other words, your code does not work correctly, even for a field size of three. You didn’t test it enough.
If I initialize the board as
int[][] board={
{ 1, 1, 1 },
{ 0, 0, 0 },
{ 0, 0, 0 },
};
your code returns 0 as the second row contains three zeros. I assumed that 0 represents the empty field but the actual value for “empty” doesn’t matter. You have to exclude empty fields from the three-in-a-row check.
You can simplify this a fair amount by breaking the logic up a bit.
First realize that you only need to check for a win around the piece you just placed.
Now we need a way to check whether that move is a winner.
First we need a simple function to check whether a cell matches a given value, returning true if its within bounds and matches.
private boolean cellMatches(int x, int y, int val) {
if (x<0||x>boardWidth)
return false;
if (y<0||y>boardHeight)
return false;
return board[x][y]==val;
}
Now a function that you give a starting position (x and y) and a delta (dx, dy) and it checks up to two cells in that direction returning a count of how many in a row matched value. The for loop may be overkill for two checks but it would easily allow you to expand up to longer lines being used.
private int countMatches(int x, int y, int dx, int dy, int val) {
int count = 0;
for (int step=1;step<=2;step++) {
if (cellMatches(x+dx*step, y+dy*step, val) {
count++;
} else {
return count;
}
}
return count;
}
Now we can use the previous method. When we place a new piece we can just count out in each matching pair of directions. The combined count is the total number in a row. (i.e. two in a row top + 1 bot = a total run length of 4). If any of those run lengths is three then it is a winning move.
private boolean makeMove(int x, int y, int val) {
board[x][y] = val;
int runlength=countMatches(x,y,0,1,val) + countMatches(x,y,0,-1,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,0,val) + countMatches(x,y,-1,0,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,1,val) + countMatches(x,y,-1,-1,val);
if (runLength >= 2)
return true;
int runlength=countMatches(x,y,1,-1,val) + countMatches(x,y,-1,1,val);
if (runLength >= 2)
return true;
return false;
}
Note that because we need to count the center piece that we placed we just need a run length of two or more.

Strange Stack Overflow Error in Sudoko Backtracker

(Disclaimer: There are maybe 20 different versions of this question on SO, but a reading through most of them still hasn't solved my issue)
Hello all, (relatively) beginner programmer here. So I've been trying to build a Sudoku backtracker that will fill in an incomplete puzzle. It seems to works perfectly well even when 1-3 rows are completely empty (i.e. filled in with 0's), but when more boxes start emptying (specifically around the 7-8 column in the fourth row, where I stopped writing in numbers) I get a Stack Overflow Error. Here's the code:
import java.util.ArrayList;
import java.util.HashSet;
public class Sudoku
{
public static int[][] puzzle = new int[9][9];
public static int filledIn = 0;
public static ArrayList<Integer> blankBoxes = new ArrayList<Integer>();
public static int currentIndex = 0;
public static int runs = 0;
/**
* Main method.
*/
public static void main(String args[])
{
//Manual input of the numbers
int[] completedNumbers = {0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,3,4,
8,9,1,2,3,4,5,6,7,
3,4,5,6,7,8,9,1,2,
6,7,8,9,1,2,3,4,5,
9,1,2,3,4,5,6,7,8};
//Adds the numbers manually to the puzzle array
ArrayList<Integer> completeArray = new ArrayList<>();
for(Integer number : completedNumbers) {
completeArray.add(number);
}
int counter = 0;
for(int i = 0; i < 9; i++) {
for(int j = 0; j < 9; j++) {
puzzle[i][j] = completeArray.get(counter);
counter++;
}
}
//Adds all the blank boxes to an ArrayList.
//The index is stored as 10*i + j, which can be retrieved
// via modulo and integer division.
boolean containsEmpty = false;
for(int i = 0; i < 9; i++) {
for(int j = 0; j < 9; j++) {
if(puzzle[i][j] == 0) {
blankBoxes.add(10*i + j);
containsEmpty = true;
}
}
}
filler(blankBoxes.get(currentIndex));
}
/**
* A general method for testing whether an array contains a
* duplicate, via a (relatively inefficient) sort.
* #param testArray The int[] that is being tested for duplicates
* #return True if there are NO duplicate, false if there
* are ANY duplicates.
*/
public static boolean checkDupl(int[] testArray) {
for(int i = 0; i < 8; i++) {
int num = testArray[i];
for(int j = i + 1; j < 9; j++) {
if(num == testArray[j] && num != 0) {
return false;
}
}
}
return true;
}
/**
* If the puzzle is not full, the filler will be run. The filler is my attempt at a backtracker.
* It stores every (i,j) for which puzzle[i][j] == 0. It then adds 1 to it's value. If the value
* is already somewhere else, it adds another 1. If it is 9, and that's already there, it loops to
* 0, and the index beforehand is rechecked.
*/
public static void filler(int indexOfBlank) {
//If the current index is equal to the size of blankBoxes, meaning that we
//went through every index of blankBoxes, meaning the puzzle is full and correct.
runs++;
if(currentIndex == blankBoxes.size()) {
System.out.println("The puzzle is full!" + "\n");
for(int i = 0; i < 9; i++) {
System.out.println();
for(int j = 0; j < 9; j++) {
System.out.print(puzzle[i][j]);
}
}
System.out.println("\n" + "The filler method was run " + runs + " times");
return;
}
//Assuming the puzzle isn't full, find the row/column of the blankBoxes index.
int row = blankBoxes.get(currentIndex) / 10;
int column = blankBoxes.get(currentIndex) % 10;
//Adds one to the value of that box.
puzzle[row][column] = (puzzle[row][column] + 1);
//Just used as a breakpoint for a debugger.
if(row == 4 && column == 4){
int x = 0;
}
//If the value is 10, meaning it went through all the possible values:
if(puzzle[row][column] == 10) {
//Do filler() on the previous box
puzzle[row][column] = 0;
currentIndex--;
filler(currentIndex);
}
//If the number is 1-9, but there are duplicates:
else if(!(checkSingleRow(row) && checkSingleColumn(column) && checkSingleBox(row, column))) {
//Do filler() on the same box.
filler(currentIndex);
}
//If the number is 1-9, and there is no duplicate:
else {
currentIndex++;
filler(currentIndex);
}
}
/**
* Used to check if a single row has any duplicates or not. This is called by the
* filler method.
* #param row
* #return
*/
public static boolean checkSingleRow(int row) {
return checkDupl(puzzle[row]);
}
/**
* Used to check if a single column has any duplicates or not.
* filler method, as well as the checkColumns of the checker.
* #param column
* #return
*/
public static boolean checkSingleColumn(int column) {
int[] singleColumn = new int[9];
for(int i = 0; i < 9; i++) {
singleColumn[i] = puzzle[i][column];
}
return checkDupl(singleColumn);
}
public static boolean checkSingleBox(int row, int column) {
//Makes row and column be the first row and the first column of the box in which
//this specific cell appears. So, for example, the box at puzzle[3][7] will iterate
//through a box from rows 3-6 and columns 6-9 (exclusive).
row = (row / 3) * 3;
column = (column / 3) * 3;
//Iterates through the box
int[] newBox = new int[9];
int counter = 0;
for(int i = row; i < row + 3; i++) {
for(int j = row; j < row + 3; j++) {
newBox[counter] = puzzle[i][j];
counter++;
}
}
return checkDupl(newBox);
}
}
Why am I calling it a weird error? A few reasons:
The box that the error occurs on changes randomly (give or take a box).
The actual line of code that the error occurs on changes randomly (it seems to usually happen in the filler method, but that's probably just because that's the biggest one.
Different compilers have different errors in different boxes (probably related to 1)
What I assume is that I just wrote inefficient code, so though it's not an actual infinite recursion, it's bad enough to call a Stack Overflow Error. But if anyone that sees a glaring issue, I'd love to hear it. Thanks!
Your code is not backtracking. Backtracking implies return back on failure:
if(puzzle[row][column] == 10) {
puzzle[row][column] = 0;
currentIndex--;
filler(currentIndex);// but every fail you go deeper
}
There are must be something like:
public boolean backtrack(int currentIndex) {
if (NoBlankBoxes())
return true;
for (int i = 1; i <= 9; ++i) {
if (NoDuplicates()) {
puzzle[row][column] = i;
++currentIndex;
if (backtrack(currentIndex) == true) {
return true;
}
puzzle[row][column] = 0;
}
}
return false;
}

Categories

Resources