I am looking for help with having multiple different types of system accessed within java as if they are the same.
For example, I have the classes
private class SystemA{
public void in(boolean input){
//do x;
}
public boolean out(){
//return x;
}
}
Say I want to have an ArrayList of different systems. These systems all implement the functions in and out like SystemA does, but they will be different objects all with different internal architectures.
I would like to for example iterate through the aformentioned arraylist, calling out() on all of the objects - how can I:
Store multiple different object types.
Ensure that I can call the in and out functions on the object in the arraylist, not needing to worry that the object is one specific type or another.
Let your system classes implement a new MySystem interface:
public interface MySystem {
void in(boolean input);
boolean out();
}
E.g.:
private class SystemA implements MySystem {
#Override
public void in(boolean input) { ... }
#Override
public boolean out() { ... }
}
Your ArrayList will then look like any of these:
List<MySystem> list = new ArrayList<MySystem>();
List<? extends MySystem> list = someFactoryMethod();
I suggest reading the Java tutorial "What Is an Interface?" for more details. Also, read up on "subtype polymorphism" in general.
That's a broad question. What you need is polymorphism. Read about Java polymorphism here: http://home.cogeco.ca/~ve3ll/jatutor5.htm
Related
I have multiple different classes (Star, Planet, Moon) each with different draw methods, and I would like to be able to call their respective draw() methods with one call, without having to cast them 3 different times.
Object solarObject = solarObjects.get(i);
if (solarObject.getClass() == Star.class) ((Star) solarObject).draw(system);
if (solarObject.getClass() == Planet.class) ((Planet) solarObject).draw(system);
if (solarObject.getClass() == Moon.class) ((Moon) solarObject).draw(system);
What I wanted to work was this
Object solarObject = solarObjects.get(i);
solarObject.draw(system);
A different attempt I made was this
solarObject.getClass().cast(solarObject).draw(system);
but it gave the error The method draw is undefined for the type
Is there any way to achieve this sort of behaviour in Java?
To achive the same job with uncluttered typecasting, you make the classes a subclass of a common abstract/concret superclass, or have them implement a common interface (whichever fits your project design). This way, you can store whichever subclass object to that interface and call the 'draw()' method on it (regardless of the type of object, since they all implement the same interface).
Code:
public interface CelestialBody {
void draw();
}
public class Star implements CelestialBody{
public void draw(){}
}
public class Planet implements CelestialBody{
public void draw(){}
}
Demo:
public class Driver {
public static void main(String[] args) {
CelestialBody solarObject1 = new Star();
CelestialBody solarObject2 = new Planet();
if (solarObject1 instanceof CelestialBody)
solarObject1.draw();
if (solarObject2 instanceof CelestialBody)
solarObject2.draw();
}
}
Notice that when accepting an unknown object, we use the 'instanceof' operator before referencing it (this is to insure that the inputted object is in fact of type 'CelestialBody').
This type of problem is solved through Inheritance. I would encourage you to read more about it.
I would like to write a generic algorithm, which can be instantiated with different objects. The objects are coming from 3rdparty and they have no common base class. In C++, I just write the generic algorithm as a template which takes the particular object as its argument. How to do it in Java?
template <class T>
class Algorithm
{
void Run(T& worker)
{
...
auto value = workder.DoSomething(someArgs);
...
}
};
In C++, I don't need to know anything about the T, because the proper types and availability of methods are checked during compilation. As far as I know,
in Java I must have a common base class for all my workers to be able to call methods on them. Is it right? Is there a way how to do similar stuff in Java?
I can't change my 3rdparty workers, and I don't want to make my own abstraction of all workers (including all types which the workers are using, etc.).
Edit:
Since I want to write the generic algorithm only once, maybe it could be a job for some templating language which is able to generate Java code (the arguments to the code template would be the workers)?
My solution:
In my situation, where I cannot change the 3rdparty workers, I have chosen Java code generation. I have exactly the same algorithm, I only need to support different workers which all provides identical interface (classes with same names, same names of methods, etc.). And in few cases, I have to do a small extra code for particular workers.
To make it more clear, my "workers" are in fact access layers to a proprietary DB, each worker for a single DB version (and they are generated).
My current plan is to use something like FreeMaker to generate multiple Java source files, one for each DB version, which will have only different imports.
The topic to look into for you: generics
You can declare a class like
public class Whatever<T> {
which uses a T that allows for any reference type. You don't need to further "specialize" that T mandatorily. But of course: in this case you can only call methods from Object on instances of T.
If you want to call a more specific method, then there is no other way but somehow describing that specification. So in your case, the reasonable approach would be to introduce at least some core interfaces.
In other words: there is no "duck typing" in Java. You can't describe an object by only saying it has this or that method. You always need a type - and that must be either a class or an interface.
Duck typing isn't supported in Java. It can be approximated but you won't get the convenience or power you're used to in C++.
As options, consider:
Full-on reflection + working with Object - syntax will be terrible and the compiler won't help you with compilation checks.
Support a pre-known set of types and use some sort of static dispatching, e.g a big switch / if-else-if block, a type -> code map, etc. New types will force changing this code.
Code generation done during annotation processing - you may be able to automate the above static-dispatch approach, or be able to create a wrapper type to each supported type that does implement a common interface. The types need to be known during compilation, new types require recompilation.
EDIT - resources for code generation and annotation processing:
Annotation processing tutorial by #sockeqwe
JavaPoet, a clean code generation tool by Square
If you really don't have any way to get it done correctly with generics you may need to use reflection.
class A {
public String doIt() {
return "Done it!";
}
}
class B {
public Date doIt() {
return Calendar.getInstance().getTime();
}
}
interface I {
public Object doIt();
}
class IAdapter implements I {
private final Object it;
public IAdapter(Object it) {
this.it = it;
}
#Override
public Object doIt() {
// What class it it.
Class<?> itsClass = it.getClass();
// Peek at it's methods.
for (Method m : itsClass.getMethods()) {
// Correct method name.
if (m.getName().equals("doIt")) {
// Expose the method.
m.setAccessible(true);
try {
// Call it.
return m.invoke(it);
} catch (Exception e) {
throw new RuntimeException("`doIt` method invocation failed", e);
}
}
}
// No method of that name found.
throw new RuntimeException("Object does not have a `doIt` method");
}
}
public void test() throws Exception {
System.out.println("Hello world!");
Object a = new IAdapter(new A()).doIt();
Object b = new IAdapter(new B()).doIt();
System.out.println("a = "+a+" b = "+b);
}
You should, however, make every effort to solve this issue using normal type-safe Java such as Generics before using reflection.
In Java all your Workers must have a method DoSomething(someArgs), which doesn't necessarily imply that they extend the same base class, they could instead implement an interface Worker with such a method. For instance:
public interface Worker {
public Double DoSomething(String arg1, String arg2);
}
and then have different classes implement the Worker interface:
One implementation of Worker:
public class WorkerImplA implements Worker{
#Override
public Double DoSomething(String arg1, String arg2) {
return null; // do something and return meaningful outcome
}
}
Another implementatin of Worker:
public class WorkerImplB implements Worker{
#Override
public Double DoSomething(String arg1, String arg2) {
return null; // do something and return meaningful outcome
}
}
The different WorkerImpl classes do not need to extend the same common base class with this approach, and as of JavaSE 8 interfaces can have a default implementation in any method they define.
Using this approach Algorithm class would look like:
public class Algorithm {
private String arg1;
private String arg2;
public Algorithm(String arg1, String arg2){
this.arg1 = arg1;
this.arg2 = arg2;
}
public void Run(Worker worker){
worker.DoSomething(arg1, arg2);
}
}
Me and one of my colleague were trying to solve the following problem:
Lets take an example of class A
One of my colleagues was facing problem of extracting one particular property from A.
Fetching one property from One particular class (in this case A) is easy. but lets
assume that you have multiple classes (A1, A2...) and you want to fetch one
particular property from the collection of these classes with more and more reusability of code.
for example
public class A {
private String name;
.
.
.
}
List<String> listOfNames = createNameList(listOfAInstances);
createNameList() method would be like following:
List<String> tempList = new ArrayList<>();
for(A a : listOfAInstances) {
tempList.add(a.getName());
}
return tempList;
now if there are multiple classes I have to do this for each class and different properties.
I suggested two approaches:
Reflection based approach.
Create an interface called "PropertyExtractable" and put a method in it called "extractProperty" in it.
As shown below:
interface PropertyExtractable {
Object extractProperty();
}
public class A implements PropertyExtractable {
private String name;
.
.
.
public Object extractProperty() {
return this.name;
}
}
For this I can write some utility method which then can be used everywhere i.e.
public Object getPropertiesOfPropertyExtractable(PropertyExtractable prExtractable) {
return prExtractable.extractProperty();
}
This was the background, one other colleague of mine had different opinion about 2nd approach, he told me it seems like anti-pattern. He tried to explain to me but I didn't get it entirely so and hence I am asking here.
I am trying to compare this example with the Comparator interface in Java. Like java allows us to use Comparator on any of the custom object class and allows us to define the logic for comparison then why can't I define the logic for extraction
Further more interfaces can be used in this way, then why shouldn't we use it
I want to know is this approach an anti-pattern? why?
You can place extracting code in separate method and reuse it:
class A {
private String name;
public String getName() {
return name;
}
}
class B {
private String surname;
public String getSurname() {
return surname;
}
}
public class SomeClass {
private <T> List<String> extractFields(List<T> list, Function<T, String> extractorFunction) {
return list.stream().map(extractorFunction).collect(Collectors.toList());
}
public void someMethod() {
List<A> listOfInstancesA = new ArrayList<>();
List<B> listOfInstancesB = new ArrayList<>();
// fill lists
List<String> fieldsA = extractFields(listOfInstancesA, A::getName);
List<String> fieldsB = extractFields(listOfInstancesB, B::getSurname);
}
}
The situation you describe is working with a legacy system which you don't want to change.
Since if you weren't you'd introduce an interface for the common properties (like your example for the Comparator interface). You introduced an interface without a meaning which may be an anti-pattern since you actually need a functional interface: PropertyExtractable vs. NamedObject=> has a method: String getName()).
If you want to implement Reflection, then your interface may be correct but I don't see it (e.g. in your case you already have Reflection built in into Java).
Usually you use the Adapter pattern to get a property/method from an object which doesn't implement the requested interface.
Code 1:
public class User1 implements MyInterface
{
#Override
public void doCalculation() { }
}
public class User2 implements MyInterface
{
#Override
public void doCalculation() { }
}
interface MyInterface
{
public void doCalculation();
}
Code 2:
public class User1
{
public void doCalculation() { }
}
public class User2
{
public void doCalculation() { }
}
Here in my Code 1 I have MyInterface which has an empty method doCalculation().
That doCalculation() is used by user1 and user2 by implementing MyInterface.
Where as in my Code 2 I have two different classes with defined doCalculation() method.
In both the cases code1 and code2 I myself have to write the implementation. My method doCalculation() is just an empty method.
So what is the use of MyInterface here?
It only provides me the method name or skeleton (is that the only advantage of interface)?
Or else would I save any memory while using MyInterface?
Is that, it only provides the empty method for an class which implements it, then why not I define it by myself as I have done in my code2.
More than that is there any more advantage on using an interface.
Interfaces are used a lot because they are basically a blueprint of what your class should be able to do.
For example, if you are writing a video game with characters, you can have an interface that holds all the methods that a character should have.
For example
public interface Character {
public void doAction();
}
And you have 2 characters, for example an ally and an enemy.
public class Ally implements Character {
public void doAction() {
System.out.println("Defend");
}
}
public class Enemy implements Character {
public void doAction() {
System.out.println("Attack");
}
}
As you can see, both classes implement the interface, but they have different actions.
Now you can create a character which implements your interface and have it perform its action. Depending on if it's an enemy or an ally, it'll perform a different action.
public Character ally = new Ally();
public Character enemy = new Enemy();
And in your main program, you can create a method that accepts any object that implements your interface and have it perform it's action without knowing what kind of character it is.
void characterDoAction(Character char) {
char.doAction();
}
If you would give ally to this method, the output would be:
Defend
If you would give enemy to this method, the output would be:
Attack
I hope this was a good enough example to help you understand the benefits of using interfaces.
There are a lot of advantages of interface driven programming.
What does "program to interfaces, not implementations" mean?
Basically you are defining a contract in an interface and all the classes which implement the interface have to abide by the contract.
Answers to your queries:
1.It only provides me the method name or skeleton (is that the only advantage of interface)?
--> Its not just about providing the method name but also defining what the class implementing the interface can do.
2.Or else would I save any memory while using MyInterface?
--> Nothing to do with the memory
Is that, it only provides the empty method for an class which implements it, then why not I define it by myself as I have done in my code2.
--> see the advantages of interface driven programming.
4.More than that is there any more advantage on using an interface.
--> Plenty,specially dependency injection , mocking , unit testing etc.
A very good explanation can be found here when-best-to-use-an-interface-in-java. It really depends on what you're building and how much scalability, code duplications, etc you want/don't want to have.
Many classes use interfaces to perform some function, relying on other programmers to implement that interface respecting the contract that an interface govern. Such classes are, for example, KeyListeners, MouseListeners, Runnable, etc.
For example: JVM knows what to do with a Thread, how to start it, stop it, manipulate it, but it does not know what your Thread should do, so you have to implement the Runnable interface.
Interfaces offer you a level of abstraction which can be leveraged in other classes. For example, if you have an interface called GemetricFigure, in a class that prints girth of a GeometricFigure you could iterate over a list of all GeometricFigures like:
public class Canvas {
private List<GeometricFigure> figures;
public void print() {
for (GeometricFigure figure : figure) {
System.out.println(figure.getGirth());
}
}
}
And if the GeometricFigure has only that method:
public interface GeometricFigure {
public Double getGirth();
}
You wouldn't care how Square or Circle implement that interface. Otherwise, if there were no interface, you could not have a list of GeometricFigures in Canvas, but a list for every figure type.
With the interface approach you can do the following:
List<MyInterface> list = new ArrayList<MyInterface();
list.add(new User1());
list.add(new User2());
for(MyInterface myInterface : list) {
myInterface.doClaculation()
}
This does not work with the second approach. Interfaces are for the code that use your classes - not for your classes themselves.
You can use interfaces in many cases. Also the situation you describes: You needn't to know, which implementation you have.
For example you have anywhere in your code a method, that returns the current singed in user even you don't know if it is User1 or User2 implementation, however that both of them can calculate something by method doCalculation. I add a really dummy example of that situation:
public void dummyExampleCalculation() {
getCurrentUser().doCalculation();
}
public MyInterface getCurrentUser() {
if(...) {
return new User1();
} else {
return new User2();
}
}
That is what Object Oriented Programming is all about.Interfaces are used to perform polymorphism. You said, you can implementations in code2 for both the classes, what if in future there is user3 who needs to doCalculation. You can just implement that interface and write your calculation in your own form.
When you want to provide a basic functionality to all your users abstract classes comes into picture where in you can declare an abstract method do calculation and provide implementation of that basic functionalities which then each user will extend and can doCalculation in their own way.
Interface is like a contract that your implementing class should satisfy. Usually, you will write an interface and make all your other class's implement it with their own implementation.
Example:
interface IExporter {
public void export();
}
public class PDFExport implements IExporter {
public void export(){
//code for PDF Exporting
}
}
public class XLSExport implements IExporter {
public void export(){
//code for XLS Exporting
}
}
public class DOCExport implements IExporter {
public void export(){
//code for DOC Exporting
}
}
Interface in Java is used to impose an implementation rule on classes. That means you can declare the signature of functions in interfaces and then implement these function in various classes by exactly following the function signature.
You can see a clear and realistic example on the following webpage
http://www.csnotes32.com/2014/10/interface-in-java.html
If I have two interfaces , both quite different in their purposes , but with same method signature , how do I make a class implement both without being forced to write a single method that serves for the both the interfaces and writing some convoluted logic in the method implementation that checks for which type of object the call is being made and invoke proper code ?
In C# , this is overcome by what is called as explicit interface implementation. Is there any equivalent way in Java ?
No, there is no way to implement the same method in two different ways in one class in Java.
That can lead to many confusing situations, which is why Java has disallowed it.
interface ISomething {
void doSomething();
}
interface ISomething2 {
void doSomething();
}
class Impl implements ISomething, ISomething2 {
void doSomething() {} // There can only be one implementation of this method.
}
What you can do is compose a class out of two classes that each implement a different interface. Then that one class will have the behavior of both interfaces.
class CompositeClass {
ISomething class1;
ISomething2 class2;
void doSomething1(){class1.doSomething();}
void doSomething2(){class2.doSomething();}
}
There's no real way to solve this in Java. You could use inner classes as a workaround:
interface Alfa { void m(); }
interface Beta { void m(); }
class AlfaBeta implements Alfa {
private int value;
public void m() { ++value; } // Alfa.m()
public Beta asBeta() {
return new Beta(){
public void m() { --value; } // Beta.m()
};
}
}
Although it doesn't allow for casts from AlfaBeta to Beta, downcasts are generally evil, and if it can be expected that an Alfa instance often has a Beta aspect, too, and for some reason (usually optimization is the only valid reason) you want to be able to convert it to Beta, you could make a sub-interface of Alfa with Beta asBeta() in it.
If you are encountering this problem, it is most likely because you are using inheritance where you should be using delegation. If you need to provide two different, albeit similar, interfaces for the same underlying model of data, then you should use a view to cheaply provide access to the data using some other interface.
To give a concrete example for the latter case, suppose you want to implement both Collection and MyCollection (which does not inherit from Collection and has an incompatible interface). You could provide a Collection getCollectionView() and MyCollection getMyCollectionView() functions which provide a light-weight implementation of Collection and MyCollection, using the same underlying data.
For the former case... suppose you really want an array of integers and an array of strings. Instead of inheriting from both List<Integer> and List<String>, you should have one member of type List<Integer> and another member of type List<String>, and refer to those members, rather than try to inherit from both. Even if you only needed a list of integers, it is better to use composition/delegation over inheritance in this case.
The "classical" Java problem also affects my Android development...
The reason seems to be simple:
More frameworks/libraries you have to use, more easily things can be out of control...
In my case, I have a BootStrapperApp class inherited from android.app.Application,
whereas the same class should also implement a Platform interface of a MVVM framework in order to get integrated.
Method collision occurred on a getString() method, which is announced by both interfaces and should have differenet implementation in different contexts.
The workaround (ugly..IMO) is using an inner class to implement all Platform methods, just because of one minor method signature conflict...in some case, such borrowed method is even not used at all (but affected major design semantics).
I tend to agree C#-style explicit context/namespace indication is helpful.
The only solution that came in my mind is using referece objects to the one you want to implent muliple interfaceces.
eg: supposing you have 2 interfaces to implement
public interface Framework1Interface {
void method(Object o);
}
and
public interface Framework2Interface {
void method(Object o);
}
you can enclose them in to two Facador objects:
public class Facador1 implements Framework1Interface {
private final ObjectToUse reference;
public static Framework1Interface Create(ObjectToUse ref) {
return new Facador1(ref);
}
private Facador1(ObjectToUse refObject) {
this.reference = refObject;
}
#Override
public boolean equals(Object obj) {
if (obj instanceof Framework1Interface) {
return this == obj;
} else if (obj instanceof ObjectToUse) {
return reference == obj;
}
return super.equals(obj);
}
#Override
public void method(Object o) {
reference.methodForFrameWork1(o);
}
}
and
public class Facador2 implements Framework2Interface {
private final ObjectToUse reference;
public static Framework2Interface Create(ObjectToUse ref) {
return new Facador2(ref);
}
private Facador2(ObjectToUse refObject) {
this.reference = refObject;
}
#Override
public boolean equals(Object obj) {
if (obj instanceof Framework2Interface) {
return this == obj;
} else if (obj instanceof ObjectToUse) {
return reference == obj;
}
return super.equals(obj);
}
#Override
public void method(Object o) {
reference.methodForFrameWork2(o);
}
}
In the end the class you wanted should something like
public class ObjectToUse {
private Framework1Interface facFramework1Interface;
private Framework2Interface facFramework2Interface;
public ObjectToUse() {
}
public Framework1Interface getAsFramework1Interface() {
if (facFramework1Interface == null) {
facFramework1Interface = Facador1.Create(this);
}
return facFramework1Interface;
}
public Framework2Interface getAsFramework2Interface() {
if (facFramework2Interface == null) {
facFramework2Interface = Facador2.Create(this);
}
return facFramework2Interface;
}
public void methodForFrameWork1(Object o) {
}
public void methodForFrameWork2(Object o) {
}
}
you can now use the getAs* methods to "expose" your class
You can use an Adapter pattern in order to make these work. Create two adapter for each interface and use that. It should solve the problem.
All well and good when you have total control over all of the code in question and can implement this upfront.
Now imagine you have an existing public class used in many places with a method
public class MyClass{
private String name;
MyClass(String name){
this.name = name;
}
public String getName(){
return name;
}
}
Now you need to pass it into the off the shelf WizzBangProcessor which requires classes to implement the WBPInterface... which also has a getName() method, but instead of your concrete implementation, this interface expects the method to return the name of a type of Wizz Bang Processing.
In C# it would be a trvial
public class MyClass : WBPInterface{
private String name;
String WBPInterface.getName(){
return "MyWizzBangProcessor";
}
MyClass(String name){
this.name = name;
}
public String getName(){
return name;
}
}
In Java Tough you are going to have to identify every point in the existing deployed code base where you need to convert from one interface to the other. Sure the WizzBangProcessor company should have used getWizzBangProcessName(), but they are developers too. In their context getName was fine. Actually, outside of Java, most other OO based languages support this. Java is rare in forcing all interfaces to be implemented with the same method NAME.
Most other languages have a compiler that is more than happy to take an instruction to say "this method in this class which matches the signature of this method in this implemented interface is it's implementation". After all the whole point of defining interfaces is to allow the definition to be abstracted from the implementation. (Don't even get me started on having default methods in Interfaces in Java, let alone default overriding.... because sure, every component designed for a road car should be able to get slammed into a flying car and just work - hey they are both cars... I'm sure the the default functionality of say your sat nav will not be affected with default pitch and roll inputs, because cars only yaw!