Java Timer Scheduled Tasks Execution Speed - java

Suppose that I have the general scheduled task shown below
Timer t = new Timer();
TimerTask listenHandover = new TimerTask() {
public void run()
{
// Some methods that can possibly take more than 1 second to execute
}
};
t.schedule(listenHandover, 1000 , 1000);
As the comment says, what happens if the task takes more than 1 second to execute ? Will the currentlly running one will be restarted when the next one is scheduled ? or do the tasks have their own threads ? Hope it was clear. Thanks

If task takes more than 1 second, subsequent tasks will be queued up until offending one completes.
As per javadoc
If a timer task takes excessive time to complete, it "hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may "bunch up" and execute in rapid succession when (and if) the offending task finally completes.

Related

Does Java Timer create a new thread?

I created a Timer object scheduled to run every 1 second and the run method takes 20 seconds to complete. The
Timer.schedule method works as expected: it starts the task immediately after the first task is completed in 20 seconds.
But the Timer.scheduleAtFixedRate method also behaves in the same way. This is what is in the documentation:
In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial execution. If an execution is delayed for any reason (such as garbage collection or other background activity), two or more executions will occur in rapid succession to "catch up.".
I expect that multiple threads will be spun to catch up, but this is not happening.
How can this be explained? What is a good example to demonstrate the difference between these methods?
Java documentation for the Timer class:
Corresponding to each Timer object is a single background thread that is used to execute all of the timer's tasks, sequentially. Timer tasks should complete quickly. If a timer task takes excessive time to complete, it "hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may "bunch up" and execute in rapid succession when (and if) the offending task finally completes.
The expectation that additional threads will be created to catch up is incorrect. According to the documentation, Timer tasks should complete quickly. A Timer task should not take 20 seconds to complete. An alternative is the ScheduledThreadPoolExecutor class:
A ThreadPoolExecutor that can additionally schedule commands to run after a given delay, or to execute periodically. This class is preferable to Timer when multiple worker threads are needed, or when the additional flexibility or capabilities of ThreadPoolExecutor (which this class extends) are required.
To answer the second question: The difference is that the schedule method "schedules the specified task for repeated fixed-delay execution" and the
scheduleAtFixedRate method "schedules the specified task for repeated fixed-rate execution". This answer explains this difference well.
yes,Java Timer object can be created to run the associated tasks as a daemon thread.
https://www.geeksforgeeks.org/java-util-timer-class-java/

Timer schedule vs scheduleAtFixedRate?

public class MyTimerTask extends TimerTask{
#Override
public void run() {
int i = 0;
try {
Thread.sleep(100000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("Run Me ~" + ++i);
System.out.println("Test");
}
}
Case 1 :-
TimerTask task = new MyTimerTask();
Timer timer = new Timer();
timer.schedule(task, 1000,6000); // line 1
System.out.println("End"); // here is bebug point.
My Expectation of schedule() method (as per my understanding given in javadocs where each execution is scheduled once previous task execution is completed)
that two threads should be
created after line 1.
One for timer which spawns another thread for tasks. Once first task thread dies
another will be created and son on. But at debug point , i just see one thread corresponding to Timer. Why
not thread for tasks which implement Runnable?
Case 2 :-
TimerTask task = new MyTimerTask();
Timer timer = new Timer();
timer.scheduleAtFixedRate(task, 1000,6000); // line 1
System.out.println("End"); // here is bebug point.
My Expectation of scheduleAtFixedRate() method(as per my understanding given in javadocs where each execution is scheduled relative to the scheduled
execution time of the initial execution) that around 17 threads(dont pay much attention
to 17. It can be more or less to that. But it should be greater than 2 ) should be
created after line 1.
One for timer which should spawn 16 other thread corresponding two each task. At first task sleeps
for 100 second, Timer should create another thread corresponding to next task and similarly for other task.
But at debug point , i just see one thread corresponding to Timer. Here also i can see sequential execution of task. Why not 17 threads?
UPDATE :- As per ScheduleAtFixedRate javadocs , each execution is scheduled relative to the scheduled execution time of the initial execution. If an execution is delayed for any reason (such as garbage collection or other background activity), two or more executions will occur in rapid succession to "catch up. what does that mean? To me it gives impression, if second task is due even first task is not completed, then timer will create new thread for due task. Is n't it?
Timer uses the Active Object pattern under the hood, so there is only ever a single thread being used and scheduling a new task on the timer adds that task to the thread's tasks queue.
The timer thread keeps track of all the tasks in it's queue and sleeps until the next task is scheduled. Then, it wakes up and executes the task itself by invoking task.run() directly, meaning that it does not spawn another thread to execute the code.
This also means that if you schedule two tasks to execute at the same time then, true to the Active Object pattern, they will be executed sequentially (one after another) on the same thread of control. This means the second task will execute after it's scheduled time (but probably not by much).
Now, to unequivocally answer your question, here is the scheduling logic from Timer.class that schedules the next time that the task should be run again (from lines 262-272 here):
// set when the next task should be launched
if (task.fixedRate) {
// task is scheduled at fixed rate
task.when = task.when + task.period;
} else {
// task is scheduled at fixed delay
task.when = System.currentTimeMillis()
+ task.period;
}
// insert this task into queue
insertTask(task);
task.fixedRate is set to true if you use one of the timer.scheduleAtFixedRate() methods and is set to false if you use one of the timer.schedule() methods.
task.when is the "time" (ticks) that the task was scheduled to run.
task.period is the interval you passed to the timer.schedule*() method.
So, from the code we can see that if you use a fixed rate then a repeating task will be scheduled to run relative to when it was first started. If you don't use a fixed rate, then it is scheduled to run relative to when it was last run (which will drift relative to a fixed rate, unless your task is never delayed and takes less than one tick to execute).
This also means that if a task falls behind and it is on a fixed rate, then Timer will keep rescheduling the task for immediate execution until it catches up to the total number of times it should have ran over a given period.
So if you have a task, say a ping() that you schedule to run at a fixed rate every 10ms and there is temporary blocking in the ping() method to where it takes 20ms to execute, then the Timer will call ping() again immediately after the previous call finished, and it will keep doing so until the given rate is achieved.
The javadoc for Timer says
Corresponding to each Timer object is a single background thread that
is used to execute all of the timer's tasks, sequentially.
Basically it holds a queue of tasks to which it adds when you schedule them. It uses one thread to iterate over the queue and execute the tasks.
The timer class creates one thread per instance of the timer class and this thread do all tasks scheduled Timer#schedule or Timer#scheduleAtFixRate.
So, as you ovserved, the timer creates only one thread.
A task would have came start time before the preciding task has finished, then the follwing task has waited until the preciding task has finished.
So, Timer "never" create another thread although the preciding task hasn't finished and the time the following task has to start has come.
So, I advise you that:
if you want to schedule tasks and do the tasks on time whether a preciding task has finished or not, use ScheduledThreadPoolExecutor instead of Timer.
And though if you do not want, it's prefer to use ScheduledThreadPoolExecutor than Timer because for one thing, tasks scheduled by Timer would never have done if a task would have threw RuntimeException or Error.
Schedule will not execute the missed task if the start time is in the past.
scheduleAtFixedRate will execute the missed tasks if the start time is in the past.For the missed tasks, the start time will be calculated based last task's end time. When missed tasks are executed fully, the new normal tasks' start time will be calculated based on last task's start time.
BR Sanchez

Is timer instance can be reused in java?

In the following code is it possible to reuse the same timer1 object again instead of timer2 for invoking timertask?
Timer timer1 = new Timer();
timer1.scheduleAtFixedRate(new TimerTask() {
int counter = 0;
#Override
public void run() {
PriorityQueueHandler.getQueueInstance().addToQueue(passengers.get(counter));
counter++;
if(counter == passengers.size()){
counter = 0;
}
}
}, DELAY, ARRIVAL_INTERVAL);
PriorityQueueHandler.getQueueInstance().print();
Timer timer2 = new Timer();
timer2.scheduleAtFixedRate(new TimerTask() {
#Override
public void run() {
PriorityQueueHandler.getQueueInstance().print();
}
}, DELAY, BOOKING_INTERVAL);
You can reuse a timer instance for several tasks. Notice that a timer executes all tasks in one single thread synchronous which means that if one task is stalled this will affect the other tasks scheduled on the same timer, i.e. the other task will not be executed.
Yes, that should be fine - if you're happy with the tasks running sequentially. From the docs:
Corresponding to each Timer object is a single background thread that is used to execute all of the timer's tasks, sequentially. Timer tasks should complete quickly. If a timer task takes excessive time to complete, it "hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may "bunch up" and execute in rapid succession when (and if) the offending task finally completes.
It's fine to have many scheduled tasks:
Implementation note: This class scales to large numbers of concurrently scheduled tasks (thousands should present no problem). Internally, it uses a binary heap to represent its task queue, so the cost to schedule a task is O(log n), where n is the number of concurrently scheduled tasks.
Personally I'd probably use a ScheduledExecutorService to give more control over the threads created and concurrency between tasks, but that's a slightly different matter.

Android Timer schedule vs scheduleAtFixedRate

I'm writing an Android application that records audio every 10 minutes. I am using a Timer to do that. But what is the difference between schedule and scheduleAtFixedRate? Is there any performance benefit in using one over the other?
The difference is best explained by this non-Android documentation:
Fixed-rate timers (scheduleAtFixedRate()) are based on the starting time (so each iteration will execute at startTime + iterationNumber * delayTime).
In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial execution. If an execution is delayed for any reason (such as garbage collection or other background activity), two or more executions will occur in rapid succession to "catch up."
Fixed-delay timers (schedule()) are based on the previous execution (so each iteration will execute at lastExecutionTime + delayTime).
In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous execution. If an execution is delayed for any reason (such as garbage collection or other background activity), subsequent executions will be delayed as well.
Aside from this, there is no difference. You will not find a significance performance difference, either.
If you are using this in a case where you want to stay synchronized with something else, you'll want to use scheduleAtFixedRate(). The delay from schedule() can drift and introduce error.
A simple schedule() method will execute at once while scheduleAtFixedRate() method takes and extra parameter which is for repetition of the task again & again on specific time interval.
by looking at syntax :
Timer timer = new Timer();
timer.schedule( new performClass(), 30000 );
This is going to perform once after the 30 Second Time Period Interval is over. A kind of timeoput-action.
Timer timer = new Timer();
//timer.schedule(task, delay, period)
//timer.schedule( new performClass(), 1000, 30000 );
// or you can write in another way
//timer.scheduleAtFixedRate(task, delay, period);
timer.scheduleAtFixedRate( new performClass(), 1000, 30000 );
This is going to start after 1 second and will repeat on every 30 seconds time interval.
According to java.util.Timer.TimerImpl.TimerHeap code
// this is a repeating task,
if (task.fixedRate) {
// task is scheduled at fixed rate
task.when = task.when + task.period;
} else {
// task is scheduled at fixed delay
task.when = System.currentTimeMillis() + task.period;
}
--
java.util.Timer.schedule(TimerTask task, long delay, long period)
will set task.fixedRate = false;
java.util.Timer.scheduleAtFixedRate(TimerTask task, long delay, long period)
will set task.fixedRate = true;
btw Timer doesn't work when screen is off.
You should use AlarmManager.
There is sample:http://developer.android.com/training/scheduling/alarms.html
In case of schedule it only executes once when the appropriate times came. On the other hand scheduleAtFixedRate has an extra parameter period which contains amount of time in milliseconds between subsequent executions.
More info can be find here
http://developer.android.com/reference/java/util/Timer.html#schedule(java.util.TimerTask, long)

What happens if a TimerTask takes longer to execute than the specified interval?

When using
Timer.schedule(TimerTask task, long delay, long period)
(i.e. with fixed-delay execution), what happens if the specified TimerTask's run() method takes longer than period to complete? Is it possible that two concurrent TimerTask threads will be running because of this?
And if so, is there a way to avoid it?
Timer's documentation says the following:
Timer tasks should complete quickly. If a timer task takes excessive time to complete, it "hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may "bunch up" and execute in rapid succession when (and if) the offending task finally completes.
That is, concurrent TimerTask threads will not be running. The tasks will accumulate into a queue. This may or may not be appropriate (more likely, not).
Timer and TimerTask don't handle this sort of situation well. If you want to handle it better, then don't use those classes.
java.util.concurrent.ScheduledExecutorService provides two scheduling methods, scheduleAtFixedRate and scheduledWithFixedDelay, which govern what happens when tasks "bunch up".
scheduleAtFixedRate:
Creates and executes a periodic action
that becomes enabled first after the
given initial delay, and subsequently
with the given period; that is
executions will commence after
initialDelay then initialDelay+period,
then initialDelay + 2 * period, and so
on. If any execution of the task
encounters an exception, subsequent
executions are suppressed. Otherwise,
the task will only terminate via
cancellation or termination of the
executor. If any execution of this
task takes longer than its period,
then subsequent executions may start
late, but will not concurrently
execute.
scheduleWithFixedDelay:
Creates and executes a periodic action
that becomes enabled first after the
given initial delay, and subsequently
with the given delay between the
termination of one execution and the
commencement of the next. If any
execution of the task encounters an
exception, subsequent executions are
suppressed. Otherwise, the task will
only terminate via cancellation or
termination of the executor.
You can create ScheduledExecutorService instances using the Executors factory class.

Categories

Resources