Is this a proper implementation of mergesort? - java

I'm worried that the creation of 3 arrays for every recursion step might take up too much space, but I really couldn't figure out another way of doing it. Please tell me whatever is wrong with it.
public static int[] split(int [] vector){
if(vector.length <= 1 || vector == null)
return vector;
int len = vector.length;
int[] list1 = new int[len / 2];
// If the number of elements is odd the second list will be bigger
int[] list2 = new int[len / 2 + (len % 2)];
// Here we assign the elements to 2 separate lists
for(int x = 0; x < len / 2; x++)
list1[x] = vector[x];
for(int j = 0, i = len / 2; j < list2.length; i++, j++)
list2[j]=vector[i];
// Apply the recursion, this will eventually order the lists
list1 = split(list1);
list2 = split(list2);
// Here we take the 2 ordered lists and merge them into 1
int i = 0, a = 0, b = 0;
int[] listfinal = new int[len];
while(i < len){
if(a >= list1.length){
listfinal[i] = list2[b];
b++;
} else if(b >= list2.length){
listfinal[i] = list1[a];
a++;
} else if(list1[a] <= list2[b]){
listfinal[i] = list1[a];
a++;
} else if(list1[a] > list2[b]){
listfinal[i] = list2[b];
b++;
}
i++;
}
return listfinal; // Return the merged and ordered list
}

You shouldn't need to create more than one temporary array to do mergesort. What you're doing wrong is copying the arrays to pass to the recursive invocation; you should instead pass the original array.
It may be informative to look at the implementation of mergesort in the JDK - look on line 1146 of Arrays.java.

Here is code that allocates a single array equal to the input size at the top level and re-uses it for all the recursion. On a million integers, this takes about 300 ms on my machine and the Java library sort takes 230 ms. Okay for no tuning effort, I guess...
// Sort the elements of a between lo and hi inclusive.
private static void sortImpl(int [] a, int lo, int hi, int [] tmp) {
if (hi <= lo) return;
// Recur on sublists.
int mid = (hi + lo) / 2;
sortImpl(a, lo, mid, tmp);
sortImpl(a, mid + 1, hi, tmp);
// Move past items already in the right place.
int t1 = lo;
while (a[t1] < a[mid + 1]) t1++;
// Merge sublists into result.
int p1 = t1;
int p2 = mid + 1;
int i = t1;
System.arraycopy(a, t1, tmp, t1, mid - t1 + 1);
while (p1 <= mid)
a[i++] = (p2 > hi || tmp[p1] < a[p2]) ? tmp[p1++] : a[p2++];
}
public static void sort(int [] a) {
sortImpl(a, 0, a.length - 1, new int[a.length]);
}

Related

Multiply numbers represented as arrays in Java?

I have to write a function that multiplies two numbers represented by two int arrays (so I can't use ArrayLists or something).
Each digit of a number is represented by an int between 0 and 9 in the array, no element should be greater than that.
The first element of the array represents the last digit of the number and so on, therefore the number 1234 would be {4,3,2,1} as an array in this function.
I thought multiplying those arrays that way would be similar to long multiplication, so I tried to implement it in a similar way: You multiply every digit of the first array with every digit of the second one and store the rest if the result is equal or greater to 10 and then add it to the next digit. However, I seem to have done something wrong in the code (maybe the calculation of the rest??) because the result of my function is not correct: I tested it with 190 times 86 (represented by the arrays {0,9,1} and {6,8}) and get 15342 ({2,4,3,5,1}) instead of the actual result 16340 (which would be {0,4,3,6,1}).
Can somebody here help me out with this please? This is my code:
import java.util.Arrays;
public class MultiplyArrays {
static int[ ] times(int[ ] a, int[ ] b) {
int[] arr = new int[a.length + b.length - 1];//arr should be the result of a*b. The result shouldn't be shorter than that
int tmp = 0;//stores the rest of two-digit numbers
for(int i = b.length - 1; i >= 0; i--){
for(int j = 0; j < a.length; j++){//should multiply all digits of a with the current index of b
arr[i + j] = (arr[i + j] + (b[i] * a[j] + tmp)) % 10;//sets the value of the (i+j)th index in arr to the multiplication of two numbers from a and b adding the rest tmp.
if((arr[i + j] + b[i] * a[j] + tmp) < 10){//if this number is less than 10, there is no rest
tmp = 0;
}
else{//otherwise, the rest should be the second digit
tmp = (((arr[i + j] + (b[i] * a[j] + tmp))) - ((arr[i + j] + (b[i] * a[j] + tmp)) % 10)) / 10;//something in the formula for the rest is wrong, I guess
}
}
}
if(tmp != 0){//if the last number of the array containing the result is calculated and there still is a rest, a new array with one more digit is created
int[] arr2 = new int[arr.length + 1];
for(int i = arr.length - 1; i >= 0; i--){//the new array copies all numbers from the old array
arr2[i] = arr[i];
arr2[arr2.length - 1] = tmp;//the last space is the rest now
}
return arr2;
}
else{//if there is no rest after calculating the last number of arr, a new array isn't needed
return arr;
}
}
public static void main(String[] args) {//test the function with 190 * 86
int[] a = {0,9,1};
int[] b = {6,8};
System.out.println(Arrays.toString(times(a,b)));
}
}
Maybe this comes from the fact that your indices in the for-loops of the times()-method are incrementing AND decrementing.
The i is going down and the j is going up.
Also, in the second for loop, you should only increment to 'a.length - 1', not to 'a.length'.
Arbitrary precision multiplication is more complex than it seems, and contains corner cases (like one and zero). Fortunately, Java has an arbitrary precision type; BigInteger. In order to use it here, you would need to create two additional methods; one for converting an int[] to a BigInteger, and the second the convert a BigInteger to an int[].
The first can be done with a single loop adding each digit at index i (multiplied by 10i) to a running total. Like,
private static BigInteger fromArray(int[] arr) {
BigInteger bi = BigInteger.ZERO;
for (int i = 0, pow = 1; i < arr.length; pow *= 10, i++) {
bi = bi.add(BigInteger.valueOf(arr[i] * pow));
}
return bi;
}
And the second can be done a number of ways, but the easiest is simply to convert the BigInteger to a String to get the length() - once you've done that, you know the length of the output array - and can populate the digits in it. Like,
private static int[] toArray(BigInteger bi) {
String s = bi.toString();
int len = s.length();
int[] r = new int[len];
for (int i = 0; i < len; i++) {
r[i] = s.charAt(len - i - 1) - '0';
}
return r;
}
Finally, call those two methods and let BigInteger perform the multiplication. Like,
static int[] times(int[] a, int[] b) {
BigInteger ba = fromArray(a), bb = fromArray(b);
return toArray(ba.multiply(bb));
}
Running your original main with those changes outputs (as expected)
[0, 4, 3, 6, 1]
Well, your thought would work with addition, but on multiplication you multiply each digit of one with the whole number of the other and step one digit to the left (*10) each time you change the multiplication digit of the first number.
So you might brought something into confusion.
I just solved it in a more structured way, running the debugger will hopefully explain the process. In the solutions you can remove the trailing / leading zero by checking the digit if 0 and replace the array with one of length - 1.
The solutions are:
With conditions mentioned (numbers in reverse order):
public static void main(String[] args) {
int[] a = {3,2,1};
int[] b = {9,8};
System.out.println("Result is: " + Arrays.toString(calculate(a, b)));
}
private static int[] calculate(int[] a, int[] b) {
// final result will be never longer than sum of number lengths + 1
int[] finalResult = new int[a.length + b.length + 1];
int position = 0;
for(int i = 0; i < a.length; i++) {
int[] tempResult = multiplyWithOther(a[i], b);
addToFinalResult(finalResult, tempResult, position);
position++;
}
return finalResult;
}
private static int[] multiplyWithOther(int number, int[] otherArray) {
// The number cannot be more digits than otherArray.length + 1, so create a temp array with size +1
int[] temp = new int[otherArray.length + 1];
// Iterate through the seconds array and multiply with current number from first
int remainder = 0;
for(int i = 0; i < otherArray.length; i++) {
int result = number * otherArray[i];
result += remainder;
remainder = result / 10;
temp[i] = result % 10;
}
// Add remainder (even if 0) to start
temp[temp.length - 1] = remainder;
return temp;
}
private static void addToFinalResult(int[] finalResult, int[] tempResult, int position) {
int remainder = 0;
for(int i = 0; i < tempResult.length; i++) {
int currentValue = tempResult[i];
int storedValue = finalResult[i + position];
int sum = storedValue + currentValue + remainder;
remainder = sum / 10;
finalResult[i + position] = sum % 10;
}
finalResult[position + tempResult.length] = remainder;
}
And with numbers in normal order in array:
public static void main(String[] args) {
int[] a = {1,2,3,6};
int[] b = {8, 9, 1};
System.out.println("Result is: " + Arrays.toString(calculate(a, b)));
}
private static int[] calculate(int[] a, int[] b) {
// final result will be never longer than sum of number lengths + 1
int[] finalResult = new int[a.length + b.length + 1];
int positionFromEnd = 0;
for(int i = 1; i <= a.length; i++) {
int[] tempResult = multiplyWithOther(a[a.length-i], b);
addToFinalResult(finalResult, tempResult, positionFromEnd);
positionFromEnd++;
}
return finalResult;
}
private static int[] multiplyWithOther(int number, int[] otherArray) {
// The number cannot be more digits than otherArray.length + 1, so create a temp array with size +1
int[] temp = new int[otherArray.length + 1];
// Iterate through the seconds array and multiply with current number from first
int remainder = 0;
for(int i = 1; i <= otherArray.length; i++) {
int result = number * otherArray[otherArray.length - i];
result += remainder;
remainder = result / 10;
temp[otherArray.length - i +1] = result % 10;
}
// Add remainder (even if 0) to start
temp[0] = remainder;
return temp;
}
private static void addToFinalResult(int[] finalResult, int[] tempResult, int positionFromEnd) {
int remainder = 0;
for(int i = 1; i <= tempResult.length; i++) {
int currentValue = tempResult[tempResult.length - i];
int storedValue = finalResult[finalResult.length - positionFromEnd - i];
int sum = storedValue + currentValue + remainder;
remainder = sum / 10;
finalResult[finalResult.length - positionFromEnd - i] = sum % 10;
}
finalResult[finalResult.length - positionFromEnd - tempResult.length - 1] = remainder;
}

Ripple out integer array optimisation in Java

I am trying to write a function that will accept an array length, and return a "ripple out" array.
For example:
rippleOut(3) would return [0,1,0]
rippleOut(6) would return [0,1,2,2,1,0]
This is what I've got so far. It works, but I'm sure that there is a more efficient way to do it:
public int[] rippleOut(int size){
int[] output = new int[size];
int middle = 0;
boolean even = false;
if(size%2==0){
middle = (size/2-1);
even = true;
} else {
middle = (int)Math.floor(size/2);
}
for(int i = middle; i>0; i--){
output[i] = middle - (middle-i);
if (even){
output[middle+(middle - i+1)] = middle - (middle-i);
} else {
output[middle+(middle - i)] = middle - (middle-i);
}
}
return output;
}
This is a Java 8 version:
int size = 11;
int odd = (size % 2 == 0) ? 0 : 1;
int mid = (size / 2) - 1;
int[] output = IntStream.range(0, size - 1)
.map(i -> (i > mid) ? mid + (mid - i) + odd : i).toArray();
IntStream.of(output).forEach(System.out::print);
There is at least a simpler way to write it, I haven't compared the performance:
public static int[] rippleOut(int x) {
int[] r = new int[x];
// everything except the middle of an odd array
for (int i = 0; i < (x >> 1); i++) {
r[i] = i;
r[x - i - 1] = i;
}
// fix middle
if ((x & 1) == 1)
r[x >> 1] = x >> 1;
return r;
}
Feel free to replace the bitmath with "normal" math if you're more comfortable with that, it's not integral to the solution. I just like it this way, that's all.

Java Array Manipulation and Recursion

So I have spent a considerable amount of time struggling to comprehend what is wrong with my code. I have an example program that I compared mine to, which works. My code is structured differently (it's all in one method, as requested by my professor) than the example (which uses two methods). I'm supposed to create a a recursive, divide-and-conquer solution to count inversions in an int array.
I am lost on why the example program maintains the manipulations to the input array throughout the recursion, while mine does not. I know Java is pass-by-value, so I am confused why the example works. Any help with me understanding the differences in these solutions would be greatly appreciated! Thanks!
Example code with two methods - merge and invCounter:
public static long merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, count = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
arr[i+j] = right[j];
j++;
} else if (j == right.length) {
arr[i+j] = left[i];
i++;
} else if (left[i] <= right[j]) {
arr[i+j] = left[i];
i++;
} else {
arr[i+j] = right[j];
count += left.length-i;
j++;
}
}
return count;
}
//the recursive function
public static long invCounter(int[] arr) {
int sum = 0;
if (arr.length < 2)
return 0;
int m = (arr.length + 1) / 2;
int left[] = Arrays.copyOfRange(arr, 0, m);
int right[] = Arrays.copyOfRange(arr, m, arr.length);
sum += invCounter(left);
sum += invCounter(right);
sum += merge(arr, left, right);
return sum;
}
My single-method implementation (attempt):
public static int invCounter(int ranking[]) {
int sum = 0;
int result[] = new int[ranking.length];
int resIndx = 0;
if (ranking.length < 2) {
return 0; //base case
}
//divide
int left[] = Arrays.copyOfRange(ranking, 0, ranking.length/2);
int right[] = Arrays.copyOfRange(ranking, ranking.length/2,
ranking.length);
sum += invCounter(left);
sum += invCounter(right);
int i = 0, j = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
//i empty, just add j
result[resIndx++] = right[j++];
}
else if (j == right.length) {
//j empty, just add i
result[resIndx++] = left[i++];
}
else if (right[j] < left[i]) {
//inversion
result[resIndx++] = right[j++];
sum += left.length - i;
}
else {
//no inversion
result[resIndx++] = left[i++];
}
}
ranking = Arrays.copyOf(result, result.length);
return sum;
}
Why is the example program able to maintain an updated array through the recursion while mine is not?
UPDATE (10/22/15):
So I discovered that I am able to get the correct results if I replace result with ranking and just modify this array directly. My question now though is why can't I use the result array to temporarily store the results and then copy them into the ranking (argument) array at the end? This seems to me like it would be doing the same exact thing as putting the values in earlier, however the changes to ranking aren't reflected if I change it at the end.
Your method doesn't modify the rankings parameter, instead it creates a new int array (result), and you work on it. Try directly set value on the rankings array, not on result array, or simply set the result variable to the rankings.
public static int invCounter(int ranking[]) {
int sum = 0;
int result[] = ranking;
//other code...
Edit: Or you can copy it's content, but not with Arrays.copyOf, because it first CREATES a new array and then copy into it. Use instead System.arrayCopy which copies into an EXISTING array:
System.arrayCopy(result, 0, rankings, 0, result.length();

HeapSort Algorithm Indexed 1 through n, and actual code has to be from 0 to n-1

I'm kind of new to algorithms and wanted to implement heap sort algorithm.
The algorithm is given as follows:
Parent(i)
return Math.floor(i/2)
Left(i)
return 2i
Right(i)
return 2i+1
Then there is HEAPIFY method that restores the heep property. Algorithm is as follows:
HEAPIFY(A, i)
l = Left(i)
r = Right(i)
if (l <= heap-size[A] and A[l] > A[i]
then largest = l
else largest = i
if r <= heap-size[A] and A[r] > A[largest]
then largest = r
if largest != i
then exchange A[i] <-> A[largest]
HEAPIFY(A, largest)
My Code that implements this method is:
public static void HEAPIFY(int[] A, int i) {
int l = LEFT(i);
int r = RIGHT(i);
int largest = 0;
if (l < A.length && A[l] > A[i]) {
largest = l;
} else {
largest = i;
}
if (r < A.length && A[r] > A[largest]) {
largest = r;
}
if (largest != i) {
int temp = A[i];
A[i] = A[largest];
A[largest] = temp;
HEAPIFY(A, largest);
}
}
Now My question is in the book algorithm is shown by drawing the tree of heap and array
so for example array is: [16,14,10,8,7,9,3,2,4,1] and for the tree and also for array it is indexed starting from 1 to n, so Array[1] = 16 and in coding Array[0] = 16. Now i can not adjust the heapify method to start either from index 1 and go up to 1 or somehow make it start from 0 and let the heap be indexed from 0 to n-1.
Sorry if its kind of confusing i'm still confused but i would really appreciate some help.
Thank you guys
Now HEAPIFY works and the following code is code to build the heap:
public static void BUILD_HEAP(int[] A) {
heapSize = A.length;
for (int i = (int) Math.floor(A.length / 2.0); i >= 0; i--) {
HEAPIFY(A, i);
}
}
build heap also works and the only method that doesnot work is heapsort.
public static void HEAPSORT(int[] A) {
BUILD_HEAP(A);
for (int i = A.length-1; i >= 1; i--) {
int temp = A[0];
A[0] = A[i];
A[i] = temp;
heapSize = heapSize-1;
HEAPIFY(A,0);
}
}
this has to sort but when i try to traverse the array after the call of heapsort it does not give the sorted array.
any ideas how to fix heapsort?
Parent(i) return Math.floor(i/2)
=> Parent(i) return Math.floor((i - 1) / 2)
Left(i) return 2i
=> Left(i) return 2i + 1
Right(i) return 2i+1
=> Right(i) return 2i + 2
You can work this out either by fiddling around (which is what I actually did) or considering j = i - 1.
If i' = 2 i and j = i - 1 so i = j + 1
j' = i' - 1 = (2i) - 1 = (2(j + 1)) - 1 = 2j + 1
if you want to start form index 1,then you can initialize the array like this:
[-x,16,14,10,8,7,9,3,2,4,1] -x is the array[0],in other words,you can ignore the element which is in array[0].
if you want to start form index 0,then you have to modify the function LEFT(i) and RIGHT(i).
LEFT(i) return 2*i+1;
RIGHT(i) return 2*i+2;

How to merge two sorted arrays into a sorted array? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
This was asked of me in an interview and this is the solution I provided:
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = 0, j = 0, k = 0;
while (i < a.length && j < b.length)
{
if (a[i] < b[j])
{
answer[k] = a[i];
i++;
}
else
{
answer[k] = b[j];
j++;
}
k++;
}
while (i < a.length)
{
answer[k] = a[i];
i++;
k++;
}
while (j < b.length)
{
answer[k] = b[j];
j++;
k++;
}
return answer;
}
Is there a more efficient way to do this?
Edit: Corrected length methods.
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = 0, j = 0, k = 0;
while (i < a.length && j < b.length)
answer[k++] = a[i] < b[j] ? a[i++] : b[j++];
while (i < a.length)
answer[k++] = a[i++];
while (j < b.length)
answer[k++] = b[j++];
return answer;
}
Is a little bit more compact but exactly the same!
I'm surprised no one has mentioned this much more cool, efficient and compact implementation:
public static int[] merge(int[] a, int[] b) {
int[] answer = new int[a.length + b.length];
int i = a.length - 1, j = b.length - 1, k = answer.length;
while (k > 0)
answer[--k] =
(j < 0 || (i >= 0 && a[i] >= b[j])) ? a[i--] : b[j--];
return answer;
}
Points of Interests
Notice that it does same or less number of operations as any other O(n) algorithm but in literally single statement in a single while loop!
If two arrays are of approximately same size then constant for O(n) is same. However if arrays are really imbalanced then versions with System.arraycopy would win because internally it can do this with single x86 assembly instruction.
Notice a[i] >= b[j] instead of a[i] > b[j]. This guarantees "stability" that is defined as when elements of a and b are equal, we want elements from a before b.
A minor improvement, but after the main loop, you could use System.arraycopy to copy the tail of either input array when you get to the end of the other. That won't change the O(n) performance characteristics of your solution, though.
Any improvements that could be made would be micro-optimizations, the overall algorithm is correct.
This solution also very similar to other posts except that it uses System.arrayCopy to copy the remaining array elements.
private static int[] sortedArrayMerge(int a[], int b[]) {
int result[] = new int[a.length +b.length];
int i =0; int j = 0;int k = 0;
while(i<a.length && j <b.length) {
if(a[i]<b[j]) {
result[k++] = a[i];
i++;
} else {
result[k++] = b[j];
j++;
}
}
System.arraycopy(a, i, result, k, (a.length -i));
System.arraycopy(b, j, result, k, (b.length -j));
return result;
}
Here is updated function. It removes duplicates, hopefully someone will find this usable:
public static long[] merge2SortedAndRemoveDublicates(long[] a, long[] b) {
long[] answer = new long[a.length + b.length];
int i = 0, j = 0, k = 0;
long tmp;
while (i < a.length && j < b.length) {
tmp = a[i] < b[j] ? a[i++] : b[j++];
for ( ; i < a.length && a[i] == tmp; i++);
for ( ; j < b.length && b[j] == tmp; j++);
answer[k++] = tmp;
}
while (i < a.length) {
tmp = a[i++];
for ( ; i < a.length && a[i] == tmp; i++);
answer[k++] = tmp;
}
while (j < b.length) {
tmp = b[j++];
for ( ; j < b.length && b[j] == tmp; j++);
answer[k++] = tmp;
}
return Arrays.copyOf(answer, k);
}
It can be done in 4 statements as below
int a[] = {10, 20, 30};
int b[]= {9, 14, 11};
int res[]=new int[a.legth+b.length];
System.arraycopy(a,0, res, 0, a.length);
System.arraycopy(b,0,res,a.length, b.length);
Array.sort(res)
GallopSearch Merge: O(log(n)*log(i)) rather than O(n)
I went ahead and implemented greybeard suggestion in the comments. Mostly because I needed a highly efficient mission critical version of this code.
The code uses a gallopSearch which is O(log(i)) where i is the
distance from the current index the relevant index exists.
The code uses a binarySearch for after the gallop search has
identified the proper,range. Since gallop limited this to a smaller
range the resulting binarySearch is also O(log(i))
The gallop and merge are performed backwards. This doesn't seem
mission critical but it allows in place merging of arrays. If one of
your arrays has enough room to store the results values, you can
simply use it as the merging array and the results array. You must specify the valid range within the array in such a case.
It does not require memory allocation in that case (big savings in critical operations). It simply makes sure it doesn't and cannot overwrite any unprocessed values (which can only be done backwards). In fact, you use the same array for both of the inputs and the results. It will suffer no ill effects.
I consistently used Integer.compare() so this could be switched out for other purposes.
There's some chance I might have goofed a little and not utilized information I have previously proven. Such as binary searching into a range of two values, for which one value was already checked. There might also be a better way to state the main loop, the flipping c value wouldn't be needed if they were combined into two operations in sequence. Since you know you will do one then the other everytime. There's room for for some polish.
This should be the most efficient way to do this, with time complexity of O(log(n)*log(i)) rather than O(n). And worst case time complexity of O(n). If your arrays are clumpy and have long strings of values together, this will dwarf any other way to do it, otherwise it'll just be better than them.
It has two read values at the ends of the merging array and the write value within the results array. After finding out which is end value is less, it does a gallop search into that array. 1, 2, 4, 8, 16, 32, etc. When it finds the range where the the other array's read value is bigger. It binary searches into that range (cuts the range in half, search the correct half, repeat until single value). Then it array copies those values into the write position. Keeping in mind that the copy is, by necessity, moved such that it cannot overwrite the same values from the either reading array (which means the write array and read array can be the same). It then performs the same operation for the other array which is now known to be less than the new read value of the other array.
static public int gallopSearch(int current, int[] array, int v) {
int d = 1;
int seek = current - d;
int prevIteration = seek;
while (seek > 0) {
if (Integer.compare(array[seek], v) <= 0) {
break;
}
prevIteration = seek;
d <<= 1;
seek = current - d;
if (seek < 0) {
seek = 0;
}
}
if (prevIteration != seek) {
seek = binarySearch(array, seek, prevIteration, v);
seek = seek >= 0 ? seek : ~seek;
}
return seek;
}
static public int binarySearch(int[] list, int fromIndex, int toIndex, int v) {
int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = list[mid];
int cmp = Integer.compare(midVal, v);
if (cmp < 0) {
low = mid + 1;
} else if (cmp > 0) {
high = mid - 1;
} else {
return mid;// key found
}
}
return -(low + 1);// key not found.
}
static public int[] sortedArrayMerge(int[] a, int[] b) {
return sortedArrayMerge(null, a, a.length, b, b.length);
}
static public int[] sortedArrayMerge(int[] results, int[] a, int aRead, int b[], int bRead) {
int write = aRead + bRead, length, gallopPos;
if ((results == null) || (results.length < write)) {
results = new int[write];
}
if (aRead > 0 && bRead > 0) {
int c = Integer.compare(a[aRead - 1], b[bRead - 1]);
while (aRead > 0 && bRead > 0) {
switch (c) {
default:
gallopPos = gallopSearch(aRead, a, b[bRead-1]);
length = (aRead - gallopPos);
write -= length;
aRead = gallopPos;
System.arraycopy(a, gallopPos--, results, write, length);
c = -1;
break;
case -1:
gallopPos = gallopSearch(bRead, b, a[aRead-1]);
length = (bRead - gallopPos);
write -= length;
bRead = gallopPos;
System.arraycopy(b, gallopPos--, results, write, length);
c = 1;
break;
}
}
}
if (bRead > 0) {
if (b != results) {
System.arraycopy(b, 0, results, 0, bRead);
}
} else if (aRead > 0) {
if (a != results) {
System.arraycopy(a, 0, results, 0, aRead);
}
}
return results;
}
This should be the most efficient way to do it.
Some answers had a duplicate remove ability. That'll require an O(n) algorithm because you must actually compare each item. So here's a stand-alone for that, to be applied after the fact. You can't gallop through multiple entries all the way through if you need to look at all of them, though you could gallop through the duplicates, if you had a lot of them.
static public int removeDuplicates(int[] list, int size) {
int write = 1;
for (int read = 1; read < size; read++) {
if (list[read] == list[read - 1]) {
continue;
}
list[write++] = list[read];
}
return write;
}
Update: Previous answer, not horrible code but clearly inferior to the above.
Another needless hyper-optimization. It not only invokes arraycopy for the end bits, but also for the beginning. Processing any introductory non-overlap in O(log(n)) by a binarySearch into the data. O(log(n) + n) is O(n) and in some cases the effect will be pretty pronounced especially things like where there is no overlap between the merging arrays at all.
private static int binarySearch(int[] array, int low, int high, int v) {
high = high - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int midVal = array[mid];
if (midVal > v)
low = mid + 1;
else if (midVal < v)
high = mid - 1;
else
return mid; // key found
}
return low;//traditionally, -(low + 1); // key not found.
}
private static int[] sortedArrayMerge(int a[], int b[]) {
int result[] = new int[a.length + b.length];
int k, i = 0, j = 0;
if (a[0] > b[0]) {
k = i = binarySearch(b, 0, b.length, a[0]);
System.arraycopy(b, 0, result, 0, i);
} else {
k = j = binarySearch(a, 0, a.length, b[0]);
System.arraycopy(a, 0, result, 0, j);
}
while (i < a.length && j < b.length) {
result[k++] = (a[i] < b[j]) ? a[i++] : b[j++];
}
if (j < b.length) {
System.arraycopy(b, j, result, k, (b.length - j));
} else {
System.arraycopy(a, i, result, k, (a.length - i));
}
return result;
}
I had to write it in javascript, here it is:
function merge(a, b) {
var result = [];
var ai = 0;
var bi = 0;
while (true) {
if ( ai < a.length && bi < b.length) {
if (a[ai] < b[bi]) {
result.push(a[ai]);
ai++;
} else if (a[ai] > b[bi]) {
result.push(b[bi]);
bi++;
} else {
result.push(a[ai]);
result.push(b[bi]);
ai++;
bi++;
}
} else if (ai < a.length) {
result.push.apply(result, a.slice(ai, a.length));
break;
} else if (bi < b.length) {
result.push.apply(result, b.slice(bi, b.length));
break;
} else {
break;
}
}
return result;
}
Apache collections supports collate method since version 4; you can do this using the collate method in:
org.apache.commons.collections4.CollectionUtils
Here quote from javadoc:
collate(Iterable<? extends O> a, Iterable<? extends O> b, Comparator<? super O> c)
Merges two sorted Collections, a and b, into a single,
sorted List such that the ordering of the elements according to
Comparator c is retained.
Do not re-invent the wheel! Document reference:
http://commons.apache.org/proper/commons-collections/apidocs/org/apache/commons/collections4/CollectionUtils.html
Here's a shortened form written in javascript:
function sort( a1, a2 ) {
var i = 0
, j = 0
, l1 = a1.length
, l2 = a2.length
, a = [];
while( i < l1 && j < l2 ) {
a1[i] < a2[j] ? (a.push(a1[i]), i++) : (a.push( a2[j]), j++);
}
i < l1 && ( a = a.concat( a1.splice(i) ));
j < l2 && ( a = a.concat( a2.splice(j) ));
return a;
}
public class Merge {
// stably merge a[lo .. mid] with a[mid+1 .. hi] using aux[lo .. hi]
public static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
// precondition: a[lo .. mid] and a[mid+1 .. hi] are sorted subarrays
assert isSorted(a, lo, mid);
assert isSorted(a, mid+1, hi);
// copy to aux[]
for (int k = lo; k <= hi; k++) {
aux[k] = a[k];
}
// merge back to a[]
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) {
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
// postcondition: a[lo .. hi] is sorted
assert isSorted(a, lo, hi);
}
// mergesort a[lo..hi] using auxiliary array aux[lo..hi]
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge(a, aux, lo, mid, hi);
}
public static void sort(Comparable[] a) {
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length-1);
assert isSorted(a);
}
/***********************************************************************
* Helper sorting functions
***********************************************************************/
// is v < w ?
private static boolean less(Comparable v, Comparable w) {
return (v.compareTo(w) < 0);
}
// exchange a[i] and a[j]
private static void exch(Object[] a, int i, int j) {
Object swap = a[i];
a[i] = a[j];
a[j] = swap;
}
/***********************************************************************
* Check if array is sorted - useful for debugging
***********************************************************************/
private static boolean isSorted(Comparable[] a) {
return isSorted(a, 0, a.length - 1);
}
private static boolean isSorted(Comparable[] a, int lo, int hi) {
for (int i = lo + 1; i <= hi; i++)
if (less(a[i], a[i-1])) return false;
return true;
}
/***********************************************************************
* Index mergesort
***********************************************************************/
// stably merge a[lo .. mid] with a[mid+1 .. hi] using aux[lo .. hi]
private static void merge(Comparable[] a, int[] index, int[] aux, int lo, int mid, int hi) {
// copy to aux[]
for (int k = lo; k <= hi; k++) {
aux[k] = index[k];
}
// merge back to a[]
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) {
if (i > mid) index[k] = aux[j++];
else if (j > hi) index[k] = aux[i++];
else if (less(a[aux[j]], a[aux[i]])) index[k] = aux[j++];
else index[k] = aux[i++];
}
}
// return a permutation that gives the elements in a[] in ascending order
// do not change the original array a[]
public static int[] indexSort(Comparable[] a) {
int N = a.length;
int[] index = new int[N];
for (int i = 0; i < N; i++)
index[i] = i;
int[] aux = new int[N];
sort(a, index, aux, 0, N-1);
return index;
}
// mergesort a[lo..hi] using auxiliary array aux[lo..hi]
private static void sort(Comparable[] a, int[] index, int[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, index, aux, lo, mid);
sort(a, index, aux, mid + 1, hi);
merge(a, index, aux, lo, mid, hi);
}
// print array to standard output
private static void show(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
StdOut.println(a[i]);
}
}
// Read strings from standard input, sort them, and print.
public static void main(String[] args) {
String[] a = StdIn.readStrings();
Merge.sort(a);
show(a);
}
}
I think introducing the skip list for the larger sorted array can reduce the number of comparisons and can speed up the process of copying into the third array. This can be good if the array is too huge.
public int[] merge(int[] a, int[] b) {
int[] result = new int[a.length + b.length];
int aIndex, bIndex = 0;
for (int i = 0; i < result.length; i++) {
if (aIndex < a.length && bIndex < b.length) {
if (a[aIndex] < b[bIndex]) {
result[i] = a[aIndex];
aIndex++;
} else {
result[i] = b[bIndex];
bIndex++;
}
} else if (aIndex < a.length) {
result[i] = a[aIndex];
aIndex++;
} else {
result[i] = b[bIndex];
bIndex++;
}
}
return result;
}
public static int[] merge(int[] a, int[] b) {
int[] mergedArray = new int[(a.length + b.length)];
int i = 0, j = 0;
int mergedArrayIndex = 0;
for (; i < a.length || j < b.length;) {
if (i < a.length && j < b.length) {
if (a[i] < b[j]) {
mergedArray[mergedArrayIndex] = a[i];
i++;
} else {
mergedArray[mergedArrayIndex] = b[j];
j++;
}
} else if (i < a.length) {
mergedArray[mergedArrayIndex] = a[i];
i++;
} else if (j < b.length) {
mergedArray[mergedArrayIndex] = b[j];
j++;
}
mergedArrayIndex++;
}
return mergedArray;
}
Algorithm could be enhanced in many ways. For instance, it is reasonable to check, if a[m-1]<b[0] or b[n-1]<a[0].
In any of those cases, there is no need to do more comparisons.
Algorithm could just copy source arrays in the resulting one in the right order.
More complicated enhancements may include searching for interleaving parts and run merge algorithm for them only.
It could save up much time, when sizes of merged arrays differ in scores of times.
This problem is related to the mergesort algorithm, in which two sorted sub-arrays are combined into a single sorted sub-array. The CLRS book gives an example of the algorithm and cleans up the need for checking if the end has been reached by adding a sentinel value (something that compares and "greater than any other value") to the end of each array.
I wrote this in Python, but it should translate nicely to Java too:
def func(a, b):
class sentinel(object):
def __lt__(*_):
return False
ax, bx, c = a[:] + [sentinel()], b[:] + [sentinel()], []
i, j = 0, 0
for k in range(len(a) + len(b)):
if ax[i] < bx[j]:
c.append(ax[i])
i += 1
else:
c.append(bx[j])
j += 1
return c
You could use 2 threads to fill the resulting array, one from front, one from back.
This can work without any synchronization in the case of numbers, e.g. if each thread inserts half of the values.
//How to merge two sorted arrays into a sorted array without duplicates?
//simple C Coding
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
main()
{
int InputArray1[] ={1,4,5,7,8,9,12,13,14,17,40};
int InputArray2[] ={4,5,11,14,15,17,18,19,112,122,122,122,122};
int n=10;
int OutputArray[30];
int i=0,j=0,k=0;
//k=OutputArray
while(i<11 && j<13)
{
if(InputArray1[i]<InputArray2[j])
{
if (k == 0 || InputArray1[i]!= OutputArray[k-1])
{
OutputArray[k++] = InputArray1[i];
}
i=i+1;
}
else if(InputArray1[i]>InputArray2[j])
{
if (k == 0 || InputArray2[j]!= OutputArray[k-1])
{
OutputArray[k++] = InputArray2[j];
}
j=j+1;
}
else
{
if (k == 0 || InputArray1[i]!= OutputArray[k-1])
{
OutputArray[k++] = InputArray1[i];
}
i=i+1;
j=j+1;
}
};
while(i<11)
{
if(InputArray1[i]!= OutputArray[k-1])
OutputArray[k++] = InputArray1[i++];
else
i++;
}
while(j<13)
{
if(InputArray2[j]!= OutputArray[k-1])
OutputArray[k++] = InputArray2[j++];
else
j++;
}
for(i=0; i<k; i++)
{
printf("sorted data:%d\n",OutputArray[i]);
};
}
var arrCombo = function(arr1, arr2){
return arr1.concat(arr2).sort(function(x, y) {
return x - y;
});
};
My favorite programming language is JavaScript
function mergeSortedArrays(a, b){
var result = [];
var sI = 0;
var lI = 0;
var smallArr;
var largeArr;
var temp;
if(typeof b[0] === 'undefined' || a[0]<b[0]){
smallArr = a;
largeArr = b;
} else{
smallArr = b;
largeArr = a;
}
while(typeof smallArr[sI] !== 'undefined'){
result.push(smallArr[sI]);
sI++;
if(smallArr[sI]>largeArr[lI] || typeof smallArr[sI] === 'undefined'){
temp = smallArr;
smallArr = largeArr;
largeArr = temp;
temp = sI;
sI = lI;
lI = temp;
}
}
return result;
}
Maybe use System.arraycopy
public static byte[] merge(byte[] first, byte[] second){
int len = first.length + second.length;
byte[] full = new byte[len];
System.arraycopy(first, 0, full, 0, first.length);
System.arraycopy(second, 0, full, first.length, second.length);
return full;
}
public static void main(String[] args) {
int[] arr1 = {2,4,6,8,10,999};
int[] arr2 = {1,3,5,9,100,1001};
int[] arr3 = new int[arr1.length + arr2.length];
int temp = 0;
for (int i = 0; i < (arr3.length); i++) {
if(temp == arr2.length){
arr3[i] = arr1[i-temp];
}
else if (((i-temp)<(arr1.length)) && (arr1[i-temp] < arr2[temp])){
arr3[i] = arr1[i-temp];
}
else{
arr3[i] = arr2[temp];
temp++;
}
}
for (int i : arr3) {
System.out.print(i + ", ");
}
}
Output is :
1, 2, 3, 4, 5, 6, 8, 9, 10, 100, 999, 1001,
You can use ternary operators for making the code a bit more compact
public static int[] mergeArrays(int[] a1, int[] a2) {
int[] res = new int[a1.length + a2.length];
int i = 0, j = 0;
while (i < a1.length && j < a2.length) {
res[i + j] = a1[i] < a2[j] ? a1[i++] : a2[j++];
}
while (i < a1.length) {
res[i + j] = a1[i++];
}
while (j < a2.length) {
res[i + j] = a2[j++];
}
return res;
}
public static int[] mergeSorted(int[] left, int[] right) {
System.out.println("merging " + Arrays.toString(left) + " and " + Arrays.toString(right));
int[] merged = new int[left.length + right.length];
int nextIndexLeft = 0;
int nextIndexRight = 0;
for (int i = 0; i < merged.length; i++) {
if (nextIndexLeft >= left.length) {
System.arraycopy(right, nextIndexRight, merged, i, right.length - nextIndexRight);
break;
}
if (nextIndexRight >= right.length) {
System.arraycopy(left, nextIndexLeft, merged, i, left.length - nextIndexLeft);
break;
}
if (left[nextIndexLeft] <= right[nextIndexRight]) {
merged[i] = left[nextIndexLeft];
nextIndexLeft++;
continue;
}
if (left[nextIndexLeft] > right[nextIndexRight]) {
merged[i] = right[nextIndexRight];
nextIndexRight++;
continue;
}
}
System.out.println("merged : " + Arrays.toString(merged));
return merged;
}
Just a small different from the original solution
To marge two sorted array in O(m+n) time complexity use below approach with one loop only.
m and n is length of first array and second array.
public class MargeSortedArray {
public static void main(String[] args) {
int[] array = new int[]{1,3,4,7};
int[] array2 = new int[]{2,5,6,8,12,45};
int[] newarry = margeToSortedArray(array, array2);
//newarray is marged array
}
// marge two sorted array with o(a+n) time complexity
public static int[] margeToSortedArray(int[] array, int[] array2) {
int newarrlen = array.length+array2.length;
int[] newarr = new int[newarrlen];
int pos1=0,pos2=0;
int len1=array.length, len2=array2.length;
for(int i =0;i<newarrlen;i++) {
if(pos1>=len1) {
newarr[i]=array2[pos2];
pos2++;
continue;
}
if(pos2>=len2) {
newarr[i]=array[pos1];
pos1++;
continue;
}
if(array[pos1]>array2[pos2]) {
newarr[i]=array2[pos2];
pos2++;
} else {
newarr[i]=array[pos1];
pos1++;
}
}
return newarr;
}
}
var arr1 = [2,10,20,30,100];
var arr2 = [2,4,5,6,7,8,9];
var j = 0;
var i =0;
var newArray = [];
for(var x=0;x< (arr1.length + arr2.length);x++){
if(arr1[i] >= arr2[j]){ //check if element arr2 is equal and less than arr1 element
newArray.push(arr2[j]);
j++;
}else if(arr1[i] < arr2[j]){ //check if element arr1 index value is less than arr2 element
newArray.push(arr1[i]);
i++;
}
else if(i == arr1.length || j < arr2.length){ // add remaining arr2 element
newArray.push(arr2[j]);
j++
}else{ // add remaining arr1 element
newArray.push(arr1[i]);
i++
}
}
console.log(newArray);
Since the question doesn't assume any specific language. Here is the solution in Python.
Assuming the arrays are already sorted.
Approach 1 - using numpy arrays:
import numpy
arr1 = numpy.asarray([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 55])
arr2 = numpy.asarray([11, 32, 43, 45, 66, 76, 88])
array = numpy.concatenate((arr1,arr2), axis=0)
array.sort()
Approach 2 - Using list, assuming lists are sorted.
list_new = list1.extend(list2)
list_new.sort()
Here is my java implementation that remove duplicate.
public static int[] mergesort(int[] a, int[] b) {
int[] c = new int[a.length + b.length];
int i = 0, j = 0, k = 0, duplicateCount = 0;
while (i < a.length || j < b.length) {
if (i < a.length && j < b.length) {
if (a[i] == b[j]) {
c[k] = a[i];
i++;j++;duplicateCount++;
} else {
c[k] = a[i] < b[j] ? a[i++] : b[j++];
}
} else if (i < a.length) {
c[k] = a[i++];
} else if (j < a.length) {
c[k] = b[j++];
}
k++;
}
return Arrays.copyOf(c, c.length - duplicateCount);
}
import java.util.Arrays;
public class MergeTwoArrays {
static int[] arr1=new int[]{1,3,4,5,7,7,9,11,13,15,17,19};
static int[] arr2=new int[]{2,4,6,8,10,12,14,14,16,18,20,22};
public static void main(String[] args){
int FirstArrayLocation =0 ;
int SecondArrayLocation=0;
int[] mergeArr=new int[arr1.length + arr2.length];
for ( int i=0; i<= arr1.length + arr2.length; i++){
if (( FirstArrayLocation < arr1.length ) && (SecondArrayLocation < arr2.length)){
if ( arr1[FirstArrayLocation] <= arr2[SecondArrayLocation]){
mergeArr[i]=arr1[FirstArrayLocation];
FirstArrayLocation++;
}else{
mergeArr[i]=arr2[SecondArrayLocation];
SecondArrayLocation++;
}
}
else if(SecondArrayLocation < arr2.length){
mergeArr[i]=arr2[SecondArrayLocation];
SecondArrayLocation++;
}else if ( FirstArrayLocation < arr1.length ){
mergeArr[i]=arr1[FirstArrayLocation];
FirstArrayLocation++;
}
}
}
}

Categories

Resources