Can't figure out my OutOfBoundsException - java

The purpose of this was to brute force the Knights Tour by having it figure out which moves were legal before choosing one of the ones that are legal. I am new to Java but I feel like my error is in my inability to comprehend how to handle this problem:
import java.util.*;
public class KnightTour
{
public static void main( String[] args )
{
KnightTour kt = new KnightTour(8, 8);
int tries = 3;
int tryCount = 0;
while(tryCount < tries )
{
kt.makeMoves();
}
}
int rows = 0; //change to args later
int columns = 0; //change to args later
int tries = 0; //change to args later
String[][] saves;
int tryCount = 0;
int turnNr = 2;
int wait = 0;
Random rand = new Random();
int xCurrent = 1;
int yCurrent = 1;
int[] xMoves = { 1, 2, -1, -2, 1, 2, -1, -2 };
int[] yMoves = { 2, 1, 2, 1, -2, -1, -2, -1 };
public KnightTour( int x, int y)
{
rows = x;
columns = y;
saves = new String[y][x];
for (int i = 0; i < y; i++)
{
for (int j = 0; j < x; j++)
{
saves[i][j] = Integer.toString(0);
}
}
saves[0][0] = Integer.toString(1);
}
private void makeMoves()
{
int k = 0;
while( k < (rows * columns ) )
{
int[] d = { 0, 0, 0, 0, 0, 0, 0, 0 }; // holds move legality
int i = 0;
while( i < d.length ) // loop determines which moves are legal
{
if( xCurrent + xMoves[ i ] > 0 && xCurrent + xMoves[ i ] < rows )
{
if( xCurrent + yMoves[ i ] > 0 && yCurrent + yMoves[ i ] < rows )
d[ i ] = 1;
}
i++;
}
int t = 0;
int w = 0;
while( t < d.length ) // checks if no moves are legal
{
if( d[ t ] == 0 )
{
w++;
}
t++;
}
if( w == 8 )
{
writeFailures(); // fills the rest of the grid with "x"'s
k = (rows * columns); // breaks the loop
}
else
{
w = 0;
chooseMove( d );
}
k++;
}
printSolution();
}
private void chooseMove(int[] d) // chooses a move that was previously determined to be legal randomly and checks if it is available
{
System.out.println( "trace" );
Random rand = new Random();
int r = rand.nextInt(8);
switch( r )
{
case 0:
if( d[ 0 ] == 1 )
{
setX( xCurrent + xMoves[ 0 ] );
setY( yCurrent + yMoves[ 0 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 1:
if( d[ 1 ] == 1 )
{
setX( xCurrent + xMoves[ 1 ] );
setY( yCurrent + yMoves[ 1 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 2:
if( d[ 2 ] == 1 )
{
setX( xCurrent + xMoves[ 2 ] );
setY( yCurrent + yMoves[ 2 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 3:
if( d[ 3 ] == 1 )
{
setX( xCurrent + xMoves[ 3 ] );
setY( yCurrent + yMoves[ 3 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 4:
if( d[ 4 ] == 1 )
{
setX( xCurrent + xMoves[ 4 ] );
setY( yCurrent + yMoves[ 4 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr); // LINE 166
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 5:
if( d[ 5 ] == 1 )
{
setX( xCurrent + xMoves[ 5 ] );
setY( yCurrent + yMoves[ 5 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 6:
if( d[ 6 ] == 1 )
{
setX( xCurrent + xMoves[ 6 ] );
setY( yCurrent + yMoves[ 6 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
case 7:
if( d[ 7 ] == 1 )
{
setX( xCurrent + xMoves[ 7] );
setY( yCurrent + yMoves[ 7 ] );
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
turnNr++;
}
else
{
chooseMove(d);
}
break;
default:
System.out.println( "error" );
}
}
public int getX()
{
return xCurrent;
}
public void setX(int x)
{
xCurrent = x;
}
public int getY()
{
return yCurrent;
}
public void setY(int y)
{
yCurrent = y;
}
private void writeFailures() // writes an "x" to empty spots in the save array when no legal moves are found
{
for (int i = 0; i < saves.length; i++)
{
for (int j = 0; j < saves[i].length; j++)
{
if( saves[i][j] == "0");
saves[i][j] = "x";
}
}
}
private void printSolution()
{
for (int i = 0; i < saves.length; i++)
{
for (int j = 0; j < saves[i].length; j++)
{
System.out.print(saves[i][j] + " ");
}
System.out.println("");
}
System.out.println("");
}
}
The error I get is:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -2
at KnightTour.chooseMove(KnightTour.java:166)
at KnightTour.makeMoves(KnightTour.java:91)
at KnightTour.main(KnightTour.java:14)
EDIT: Now the code line numbers are OK.

Array out of bounds errors generally mean that you are attempting to call a storage location in an array which exceeds the array's size. If you declared the array with a fixed size (say, 8 data points), you would ONLY be able to set and retrieve array values from array[0] to array[7].
By default, array counting starts at 0 rather than 1, which is the cause of most out-of-bounds errors, as people will try to access the last element which they assume is, in reference to my example above, array[8].
The easiest way to avoid out-of-bounds errors is to declare your array with a nil size, which will allow it to expand to the size needed. However, this risks memory leaks in the case of runaway code.

The issue comes up when you call this line (one of the similar ones)
setY( yCurrent + yMoves[ 4 ] );
When yCurrent<0. When this happens, yCurrent becomes -2 (since yMoves[4]=-2), and you then call this line of code:
saves[yCurrent][xCurrent] = Integer.toString(turnNr);
Since yCurrent<0, you're trying to access an array index that doesn't exist; hence the exception.
Now, this error could come up a number of times (and did in my testing); a similar effect could also happen when yCurrent (or xCurrent) becomes a value greater or equal to the array size, for the same reason.

I have examined your code and from that it seems like, saves[yCurrent][xCurrent] = Integer.toString(turnNr);
is throwing an exception. The logic which is changing yCurrent and xCurrent is improper.
So that even if you increase your saves array limit to saves[100][100], its behaving the same.
I suggest you to understand the code and flow first rather than directly working on exception.

The bug is in the "loop determines which moves are legal" near the top of makeMoves()
The line
if (xCurrent + yMoves[i] > 0 && yCurrent + yMoves[i] < rows)
should instead be
if (yCurrent + yMoves[i] > 0 && yCurrent + yMoves[i] < rows)

Related

D-heap not producing correct order

My program runs, but it always gives the incorrect answer. Here are some sample runs:
Enter heap elements: 15 1 14 2 13 3 12 4 11 5 10 6 9 7 8
Enter d: 3
Output: Heap (d= 3): 1 2 3 4 5 6 7 15 11 13 10 14 9 12 8
It should be:
Enter heap elements: 15 1 14 2 13 3 12 4 11 5 10 6 9 7 8
Enter d: 3
Output: Heap (d=3): 1 3 4 2 7 15 12 14 11 5 10 6 9 13 8
import java.util.Scanner;
import java.util.Arrays;
public class D_heap<AnyType extends Comparable<? super AnyType>>
{
private int d;
private final static int DEFAULT_CAPACITY = 10;
private int currentSize;
private AnyType [ ] array; //
/**
* Construct the binary heap.
*/
public D_heap( )
{
this(2, DEFAULT_CAPACITY );
}
/**
* Construct the binary heap.
* #param capacity the capacity of the binary heap.
*/
public D_heap(int numChild )
{
this(numChild, DEFAULT_CAPACITY);
}
public D_heap(int numChild, int cap )
{
currentSize = 0;
d = numChild;
array = (AnyType[]) new Comparable[ cap + 1 ];
}
/**
* Construct the binary heap given an array of items.
*/
//public D_heap( AnyType [ ] items )
//{
// currentSize = items.length;
// array = (AnyType[]) new Comparable[ ( currentSize + 2 ) * 11 / 10 ];
// int i = 1;
// for( AnyType item : items )
// array[ i++ ] = item;
// buildHeap( );
//}
/**
* Insert into the priority queue, maintaining heap order.
* Duplicates are allowed.
* #param x the item to insert.
*/
public void insert( AnyType x )
{
if( currentSize == array.length - 1 )
enlargeArray( array.length * 2 + 1 );
// Percolate up
int hole = ++currentSize;
for( ; hole > 1 && x.compareTo( array[ getParent(hole)] ) < 0; hole = getParent(hole) )
array[ hole ] = array[getParent(hole)];
array[ hole ] = x;
}
private void enlargeArray( int newSize )
{
AnyType [] old = array;
array = (AnyType []) new Comparable[ newSize ];
for( int i = 0; i < old.length; i++ )
array[ i ] = old[ i ];
}
/**
* Find the smallest item in the priority queue.
* #return the smallest item, or throw an UnderflowException if empty.
*/
public AnyType findMin( )
{
if( isEmpty( ) )
throw new UnderflowException(" ");
return array[ 1 ];
}
/**
* Remove the smallest item from the priority queue.
* #return the smallest item, or throw an UnderflowException if empty.
*/
public AnyType deleteMin( )
{
if( isEmpty( ) )
throw new UnderflowException(" ");
AnyType minItem = findMin( );
array[ 1 ] = array[ currentSize-- ];
percolateDown( 1 );
return minItem;
}
/**
* Establish heap order property from an arbitrary
* arrangement of items. Runs in linear time.
*/
private void buildHeap( )
{
for( int i = currentSize / 2; i > 0; i-- )
percolateDown( i );
}
/**
* Test if the priority queue is logically empty.
* #return true if empty, false otherwise.
*/
public boolean isEmpty( )
{
return currentSize == 0;
}
/**
* Make the priority queue logically empty.
*/
public void makeEmpty( )
{
currentSize = 0;
}
public void print( )
{
for( int i = 0; i < currentSize; i++ )
System.out.printf("%d ", array[i+1]);
System.out.println();
}
/**
* Internal method to percolate down in the heap.
* #param hole the index at which the percolate begins.
*/
private void percolateDown( int hole )
{
int child = getChild(hole);
int tempChild = getChild (hole);
AnyType tmp = array[ hole ];
for( ; getChild(hole) <= currentSize; hole = child) {
child = getChild(hole);
tempChild = getChild(hole);
for(int i = 0; i < d && tempChild != currentSize; i++, tempChild++){
if(array[tempChild + 1].compareTo(array[child]) < 0){
child = tempChild + 1;
}
}
if (array[child].compareTo(tmp) < 0)
array[hole] = array[child];
else
break;
}
array[ hole ] = tmp;
}
// Test program
public static void main( String [ ] args )
{
Scanner in = new Scanner(System.in);
D_heap<Integer> h = new D_heap<Integer>();
System.out.print ("How many numeric values do you want to enter? ");
int num = in.nextInt();
System.out.print ("Enter heap elements: ");
for (int i = 1; i <= num; i++){
h.insert (in.nextInt());
}
System.out.print ("Enter d: ");
int d = in.nextInt();
System.out.printf ("Output: Heap (d= %d): ", d);
h.buildHeap();
h.print();
// Create the array of Strings containing the main menu options (Quit - option 0)
// Create the mainMenu object
String opts[] = {"Exit program", "Insert", "deleteMin", "Pick new d value", };
Menu mainMenu = new Menu(opts);
int opt = 0;
do {
opt = mainMenu.runMenu();
switch (opt) {
case 1:
System.out.print ("Enter element to insert: ");
int x = in.nextInt();
h.insert(x);
h.print();
break;
case 2:
h.deleteMin();
h.print();
break;
case 3:
System.out.print ("Enter new d: ");
d = in.nextInt();
h.buildHeap();
h.print();
break;
default:
System.out.println ("Thank you - Have a nice day!");
}
} while (opt != 0);
}
public int getChild( int p){
return d * (p - 1) + 2;
}
public int getParent (int c){
return (c - 2)/d + 1;
}
}

bSearch java program

I don't know what it wrong with my code. Im supposed to put in an input file and sort the numbers from lowest to greatest. When i run the program it returns:Sorted array of 25 ints from P4input.txt after insertInOrder:
31 5 8 8 19 23 25 27 27 31 69 70 71 75 90 98 103 103 109 140 145 145 153 157 162
I don't know why the first number is out of order.
/* Project4.java InsertInOrder with bSearch optimization to compute insertion index */
import java.util.*;
import java.io.*;
public class Project4
{
static final int INITIAL_CAPACITY = 5;
public static void main( String args[] ) throws Exception
{
// ALWAYS TEST FIRST TO VERIFY USER PUT REQUIRED INPUT FILE NAME ON THE COMMAND LINE
if (args.length < 1 )
{
System.out.println("\nusage: C:\\> java Project4 <input filename>\n\n"); // i.e. C:\> java Project4 P4input.txt
System.exit(0);
}
// LOAD FILE INTO ARR USING INSERINORDER
Scanner infile = new Scanner( new File( args[0] ) );
int[] arr = new int[INITIAL_CAPACITY];
int count= 0;
while (infile.hasNextInt())
{
if ( count==arr.length )
arr = upSizeArr(arr);
insertInOrder( arr, count++, infile.nextInt() );
}
infile.close();
arr=trimArr(arr,count); // Now count == .length
System.out.println( "Sorted array of " + arr.length + " ints from " + args[0] + " after insertInOrder:" );
printArray( arr ); // we trimmed it thus count == length so we don't bother to pass in count
} // END MAIN
// ############################################################################################################
// USE AS IS - DO NOT MODIFY
static void printArray( int[] arr )
{
for( int i=0 ; i<arr.length ;++i )
System.out.print(arr[i] + " " );
System.out.println();
}
// USE AS IS - DO NOT MODIFY
static int[] upSizeArr( int[] fullArr )
{
int[] upSizedArr = new int[ fullArr.length * 2 ];
for ( int i=0; i<fullArr.length ; ++i )
upSizedArr[i] = fullArr[i];
return upSizedArr;
}
// USE AS IS - DO NOT MODIFY
static int[] trimArr( int[] oldArr, int count )
{
int[] trimmedArr = new int[ count ];
for ( int i=0; i<count ; ++i )
trimmedArr[i] = oldArr[i];
return trimmedArr;
}
// ############################################################################################################
static void insertInOrder( int[] arr, int count, int key )
{
int index=bSearch( arr, count, key ); // LEAVE THIS HERE
if (arr[arr.length - 1] == 0)
{
for (int i = count; i >= index + 1; i--)
{
arr[i] = arr[i - 1];
}
arr[index]=key; // LEAVE THIS HERE
}
}
static int bSearch(int[] a, int count, int key)
{
int hi = count-1;
int lo = 0;
int mid = 0;
if(hi == -1)
{
return lo;
}
else
{
mid = (hi+lo)/2;
}
while (lo <= hi)
{
if (key==a[mid])
{
return (mid+1);
}
else if (key < a[mid])
{
hi = mid-1;
mid = (hi+lo)/2;
}
else
{
lo = mid +1;
mid = (hi+lo)/2;
}
}
return (mid +1);
}
} // END PROJECT4

I need assistance with my intro to Java assignment

I have successfully compiled this java program (which generates 100 random numbers between 0 and 25, puts them in an array, and sorts them into two different arrays based on whether each is even or odd), although it does not run. I suspect I have made a mistake with one of the while loops, although I don't know for sure. Also, I struggled to get the code in properly formatted in the question, so the tabs are somewhat off, but it is still mostly legible. Here is the .java text:
public class Assignment8
{
public static void main( String [] args )
{
int storage [] = new int[100];
int j = 0;
while ( storage.length < 100 ) {
int testVariable = 0 + (int) (Math.random() * ((25 - 0) + 1));
storage[j] = testVariable;
j++;
}
int oddArray[] = OddNumbers( storage );
int evenArray[] = EvenNumbers( storage );
int currentNumber = 0;
System.out.println( "The odd numbers are: " + "\n" );
while ( currentNumber <= 99 ) {
System.out.println( oddArray[currentNumber] + "\n" );
currentNumber++;
}
System.out.println( "\n" + "The even numbers are: " + "\n" );
currentNumber = 0;
while ( currentNumber <= 99 ) {
System.out.println( evenArray[currentNumber] + "\n" );
currentNumber++;
}
}
public static int[] OddNumbers( int storage[] )
{
int currentNumber = 0;
int currentValue = storage[currentNumber];
int oddArray[] = new int[100];
while ( currentNumber <= 99 ) {
if ( storage[currentNumber] % 2 != 0 ) {
oddArray[currentNumber] = currentValue;
} else {
continue;
}
currentNumber++;
}
return oddArray;
}
public static int[] EvenNumbers( int storage[] )
{
int currentNumber = 0;
int currentValue = storage[currentNumber];
int evenArray[] = new int[100];
while ( currentNumber <= 99 ) {
if ( storage[currentNumber] % 2 == 0 ) {
evenArray[currentNumber] = currentValue;
} else {
continue;
}
currentNumber++;
}
return evenArray;
}
}
storage.length does not change throughout the program's execution, as the array is already allocated. You first while loop is thus wrong, as 100 is not less than 100, it will never execute. Instead, you could use a simple for loop:
for (int j = 0; j < storage.length; ++j) {
int testVariable = 0 + (int) (Math.random() * ((25 - 0) + 1));
storage[j] = testVariable;
}
although it does not run
Yes it does. It's just that the execution can get stuck in the infinite loops in the OddNumbers and EvenNumbers methods.
Take a closer look at this:
while ( currentNumber <= 99 ) {
if ( storage[currentNumber] % 2 != 0 ) {
oddArray[currentNumber] = currentValue;
}
else {
continue;
}
The problem is that when storage[currentNumber] is even,
the program executes the else branch with the continue statement,
and since currentNumber hasn't changed, and so storage[currentNumber] hasn't changed either, it's still even, and the else branch will be executed again, and again, and again, forever. EvenNumber has the same problem too.
Here's a fix for OddNumbers:
public static int[] OddNumbers(int[] storage) {
int[] oddArray = new int[storage.length];
int oddIndex = 0;
for (int num : storage) {
if (num % 2 != 0) {
oddArray[oddIndex++] = num;
}
}
return Arrays.copyOf(oddArray, oddIndex);
}
An extra touch I did in this method is the Arrays.copyOf call,
chopping off the excess elements of the array that would be otherwise 0.
Then when you print the content of this array in main, write like this:
System.out.println("The odd numbers are: " + "\n");
for (int num : oddArray) {
System.out.println(num);
}
Follow the same pattern to fix EvenNumbers.
As #Mureinik pointed out,
the loop in main populating storage is also broken.
And you have several other coding issues,
for example the random number generation is particularly ugly and using an obsolete technique.
The complete improved implementation:
import java.util.Arrays;
import java.util.Random;
public class Assignment8 {
public static void main(String[] args) {
Random random = new Random();
int[] storage = new int[100];
for (int i = 0; i < storage.length; i++) {
storage[i] = random.nextInt(25);
}
System.out.println("The odd numbers are: " + "\n");
int oddArray[] = OddNumbers(storage);
for (int num : oddArray) {
System.out.println(num);
}
System.out.println("\n" + "The even numbers are: " + "\n");
int evenArray[] = EvenNumbers(storage);
for (int num : evenArray) {
System.out.println(num);
}
}
public static int[] OddNumbers(int[] storage) {
int index = 0;
int[] result = new int[storage.length];
for (int num : storage) {
if (num % 2 != 0) {
result[index++] = num;
}
}
return Arrays.copyOf(result, index);
}
public static int[] EvenNumbers(int storage[]) {
int index = 0;
int[] result = new int[storage.length];
for (int num : storage) {
if (num % 2 == 0) {
result[index++] = num;
}
}
return Arrays.copyOf(result, index);
}
}

Turn a recursive method into an iterative method

I have to create two methods that do the same thing. The methods have to calculate the L(n) of the numbers from 0 - 30 where L(n) is defined as
L(0) = 1
L(1) = 1
L(n) = L(n - 1) + L(n - 2) + 1;
when n > 1
The first method has to be written using recursion which I successfully did and the second one has to be made using iteration ( arrays and for loops )
First method)
public static int rec(int x) {
if (x == 0) return 1;
if (x == 1) return 1;
else return rec(x - 1) + rec(x - 2) + 1;
}
and i added this in main for the first method
int x = 0;
while (x <= 30) {
System.out.println(rec(x));
x++;
}
and this is all i have been able to do with the second method , while i know it is wrong , bare in mind im a beginner , be gentle
Second method)
public static long iter(long [] x){
long result = 0 ;
int length = x.length;
for ( int i = 0 ; i < length ; i++){
if ( i == 0 ) result = 1;
if ( i == 1 ) result = 1;
else result += x[i-1]+x[i-2]+1;
}
return result ;
}
Think about what your code here is doing -
for ( int i = 0 ; i < x.length ; i++){
long returnvalue = x[i-1]+x[i-2]+1; // every iteration you are resetting returnvalue.
}
In every iteration you are creating a new variable and then losing what you have just computed.
You need to add this result from each iteration so you will have to do this -
for ( int i = 0 ; i < x.length ; i++){
returnvalue = returnvalue + x[i-1]+x[i-2]+1;
}
Or you can also do this -
returnvalue += x[i-1]+x[i-2]+1;
Notice that in the iterative version returnValue is defined only once before your loop starts.
How about treating L as an array, then performing the following assignments:
L(0) = 1
L(1) = 1
For the 3rd step, you will have to write a loop calculating and storing the values of L[2] to L[30]. At each iteration of the loop, the previous 2 values will already be in L, so you can just use them.
You are very close - you need to hold a history in your iterating solution:
public static long iter(long x) {
long result = 0;
// Make a 2-length array for my history.
long[] history = new long[2];
for (int i = 0; i <= x; i++) {
if (i < 2) {
result = 1;
} else {
result = history[0] + history[1] + 1;
}
// Maintain my history.
history[0] = history[1];
history[1] = result;
}
return result;
}
So I was able to finally solve it : ( Thanks for all the help , really really appreciate it )
public class Aufgabe1 {
// invokes iter as well as rec with all integers from 0 to 30 and prints the results
// (without empty lines or other output)
public static void main(String[] args) {
// TODO: Implementation is your task
int x = 0;
while (x <= 30) {
System.out.println(rec(x));
x++;
}
long [] longArr = new long[31];
iter(longArr);
}
public static int rec(int x) {
if (x == 0) return 1;
if (x == 1) return 1;
else return rec(x - 1) + rec(x - 2) + 1;
}
public static void iter(long[] n) {
for (int i = 0; i < n.length; i++) {
if (i == 0 || i == 1) {
n[i] = 1;
} else {
n[i] = n[i - 1] + n[i - 2] + 1;
}
System.out.println(n[i]);
}
}
}

java codility training Genomic-range-query

The task is:
A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper-case English letters A, C, G, T.
This string actually represents a DNA sequence, and the upper-case letters represent single nucleotides.
You are also given non-empty zero-indexed arrays P and Q consisting of M integers. These arrays represent queries about minimal nucleotides. We represent the letters of string S as integers 1, 2, 3, 4 in arrays P and Q, where A = 1, C = 2, G = 3, T = 4, and we assume that A < C < G < T.
Query K requires you to find the minimal nucleotide from the range (P[K], Q[K]), 0 ≤ P[i] ≤ Q[i] < N.
For example, consider string S = GACACCATA and arrays P, Q such that:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
The minimal nucleotides from these ranges are as follows:
(0, 8) is A identified by 1,
(0, 2) is A identified by 1,
(4, 5) is C identified by 2,
(7, 7) is T identified by 4.
Write a function:
class Solution { public int[] solution(String S, int[] P, int[] Q); }
that, given a non-empty zero-indexed string S consisting of N characters and two non-empty zero-indexed arrays P and Q consisting of M integers, returns an array consisting of M characters specifying the consecutive answers to all queries.
The sequence should be returned as:
a Results structure (in C), or
a vector of integers (in C++), or
a Results record (in Pascal), or
an array of integers (in any other programming language).
For example, given the string S = GACACCATA and arrays P, Q such that:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
the function should return the values [1, 1, 2, 4], as explained above.
Assume that:
N is an integer within the range [1..100,000];
M is an integer within the range [1..50,000];
each element of array P, Q is an integer within the range [0..N − 1];
P[i] ≤ Q[i];
string S consists only of upper-case English letters A, C, G, T.
Complexity:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N),
beyond input storage
(not counting the storage required for input arguments).
Elements of input arrays can be modified.
My solution is:
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
final char c[] = S.toCharArray();
final int answer[] = new int[P.length];
int tempAnswer;
char tempC;
for (int iii = 0; iii < P.length; iii++) {
tempAnswer = 4;
for (int zzz = P[iii]; zzz <= Q[iii]; zzz++) {
tempC = c[zzz];
if (tempC == 'A') {
tempAnswer = 1;
break;
} else if (tempC == 'C') {
if (tempAnswer > 2) {
tempAnswer = 2;
}
} else if (tempC == 'G') {
if (tempAnswer > 3) {
tempAnswer = 3;
}
}
}
answer[iii] = tempAnswer;
}
return answer;
}
}
It is not optimal, I believe it's supposed to be done within one loop, any hint how can I achieve it?
You can check quality of your solution here https://codility.com/train/ test name is Genomic-range-query.
Here is the solution that got 100 out of 100 in codility.com. Please read about prefix sums to understand the solution:
public static int[] solveGenomicRange(String S, int[] P, int[] Q) {
//used jagged array to hold the prefix sums of each A, C and G genoms
//we don't need to get prefix sums of T, you will see why.
int[][] genoms = new int[3][S.length()+1];
//if the char is found in the index i, then we set it to be 1 else they are 0
//3 short values are needed for this reason
short a, c, g;
for (int i=0; i<S.length(); i++) {
a = 0; c = 0; g = 0;
if ('A' == (S.charAt(i))) {
a=1;
}
if ('C' == (S.charAt(i))) {
c=1;
}
if ('G' == (S.charAt(i))) {
g=1;
}
//here we calculate prefix sums. To learn what's prefix sums look at here https://codility.com/media/train/3-PrefixSums.pdf
genoms[0][i+1] = genoms[0][i] + a;
genoms[1][i+1] = genoms[1][i] + c;
genoms[2][i+1] = genoms[2][i] + g;
}
int[] result = new int[P.length];
//here we go through the provided P[] and Q[] arrays as intervals
for (int i=0; i<P.length; i++) {
int fromIndex = P[i];
//we need to add 1 to Q[i],
//because our genoms[0][0], genoms[1][0] and genoms[2][0]
//have 0 values by default, look above genoms[0][i+1] = genoms[0][i] + a;
int toIndex = Q[i]+1;
if (genoms[0][toIndex] - genoms[0][fromIndex] > 0) {
result[i] = 1;
} else if (genoms[1][toIndex] - genoms[1][fromIndex] > 0) {
result[i] = 2;
} else if (genoms[2][toIndex] - genoms[2][fromIndex] > 0) {
result[i] = 3;
} else {
result[i] = 4;
}
}
return result;
}
Simple, elegant, domain specific, 100/100 solution in JS with comments!
function solution(S, P, Q) {
var N = S.length, M = P.length;
// dictionary to map nucleotide to impact factor
var impact = {A : 1, C : 2, G : 3, T : 4};
// nucleotide total count in DNA
var currCounter = {A : 0, C : 0, G : 0, T : 0};
// how many times nucleotide repeats at the moment we reach S[i]
var counters = [];
// result
var minImpact = [];
var i;
// count nucleotides
for(i = 0; i <= N; i++) {
counters.push({A: currCounter.A, C: currCounter.C, G: currCounter.G});
currCounter[S[i]]++;
}
// for every query
for(i = 0; i < M; i++) {
var from = P[i], to = Q[i] + 1;
// compare count of A at the start of query with count at the end of equry
// if counter was changed then query contains A
if(counters[to].A - counters[from].A > 0) {
minImpact.push(impact.A);
}
// same things for C and others nucleotides with higher impact factor
else if(counters[to].C - counters[from].C > 0) {
minImpact.push(impact.C);
}
else if(counters[to].G - counters[from].G > 0) {
minImpact.push(impact.G);
}
else { // one of the counters MUST be changed, so its T
minImpact.push(impact.T);
}
}
return minImpact;
}
Java, 100/100, but with no cumulative/prefix sums! I stashed the last occurrence index of lower 3 nucelotides in a array "map". Later I check if the last index is between P-Q. If so it returns the nuclotide, if not found, it's the top one (T):
class Solution {
int[][] lastOccurrencesMap;
public int[] solution(String S, int[] P, int[] Q) {
int N = S.length();
int M = P.length;
int[] result = new int[M];
lastOccurrencesMap = new int[3][N];
int lastA = -1;
int lastC = -1;
int lastG = -1;
for (int i = 0; i < N; i++) {
char c = S.charAt(i);
if (c == 'A') {
lastA = i;
} else if (c == 'C') {
lastC = i;
} else if (c == 'G') {
lastG = i;
}
lastOccurrencesMap[0][i] = lastA;
lastOccurrencesMap[1][i] = lastC;
lastOccurrencesMap[2][i] = lastG;
}
for (int i = 0; i < M; i++) {
int startIndex = P[i];
int endIndex = Q[i];
int minimum = 4;
for (int n = 0; n < 3; n++) {
int lastOccurence = getLastNucleotideOccurrence(startIndex, endIndex, n);
if (lastOccurence != 0) {
minimum = n + 1;
break;
}
}
result[i] = minimum;
}
return result;
}
int getLastNucleotideOccurrence(int startIndex, int endIndex, int nucleotideIndex) {
int[] lastOccurrences = lastOccurrencesMap[nucleotideIndex];
int endValueLastOccurenceIndex = lastOccurrences[endIndex];
if (endValueLastOccurenceIndex >= startIndex) {
return nucleotideIndex + 1;
} else {
return 0;
}
}
}
Here is the solution, supposing someone is still interested.
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
int[] answer = new int[P.length];
char[] chars = S.toCharArray();
int[][] cumulativeAnswers = new int[4][chars.length + 1];
for (int iii = 0; iii < chars.length; iii++) {
if (iii > 0) {
for (int zzz = 0; zzz < 4; zzz++) {
cumulativeAnswers[zzz][iii + 1] = cumulativeAnswers[zzz][iii];
}
}
switch (chars[iii]) {
case 'A':
cumulativeAnswers[0][iii + 1]++;
break;
case 'C':
cumulativeAnswers[1][iii + 1]++;
break;
case 'G':
cumulativeAnswers[2][iii + 1]++;
break;
case 'T':
cumulativeAnswers[3][iii + 1]++;
break;
}
}
for (int iii = 0; iii < P.length; iii++) {
for (int zzz = 0; zzz < 4; zzz++) {
if ((cumulativeAnswers[zzz][Q[iii] + 1] - cumulativeAnswers[zzz][P[iii]]) > 0) {
answer[iii] = zzz + 1;
break;
}
}
}
return answer;
}
}
In case anyone cares about C:
#include <string.h>
struct Results solution(char *S, int P[], int Q[], int M) {
int i, a, b, N, *pA, *pC, *pG;
struct Results result;
result.A = malloc(sizeof(int) * M);
result.M = M;
// calculate prefix sums
N = strlen(S);
pA = malloc(sizeof(int) * N);
pC = malloc(sizeof(int) * N);
pG = malloc(sizeof(int) * N);
pA[0] = S[0] == 'A' ? 1 : 0;
pC[0] = S[0] == 'C' ? 1 : 0;
pG[0] = S[0] == 'G' ? 1 : 0;
for (i = 1; i < N; i++) {
pA[i] = pA[i - 1] + (S[i] == 'A' ? 1 : 0);
pC[i] = pC[i - 1] + (S[i] == 'C' ? 1 : 0);
pG[i] = pG[i - 1] + (S[i] == 'G' ? 1 : 0);
}
for (i = 0; i < M; i++) {
a = P[i] - 1;
b = Q[i];
if ((pA[b] - pA[a]) > 0) {
result.A[i] = 1;
} else if ((pC[b] - pC[a]) > 0) {
result.A[i] = 2;
} else if ((pG[b] - pG[a]) > 0) {
result.A[i] = 3;
} else {
result.A[i] = 4;
}
}
return result;
}
Here is my solution Using Segment Tree O(n)+O(log n)+O(M) time
public class DNAseq {
public static void main(String[] args) {
String S="CAGCCTA";
int[] P={2, 5, 0};
int[] Q={4, 5, 6};
int [] results=solution(S,P,Q);
System.out.println(results[0]);
}
static class segmentNode{
int l;
int r;
int min;
segmentNode left;
segmentNode right;
}
public static segmentNode buildTree(int[] arr,int l,int r){
if(l==r){
segmentNode n=new segmentNode();
n.l=l;
n.r=r;
n.min=arr[l];
return n;
}
int mid=l+(r-l)/2;
segmentNode le=buildTree(arr,l,mid);
segmentNode re=buildTree(arr,mid+1,r);
segmentNode root=new segmentNode();
root.left=le;
root.right=re;
root.l=le.l;
root.r=re.r;
root.min=Math.min(le.min,re.min);
return root;
}
public static int getMin(segmentNode root,int l,int r){
if(root.l>r || root.r<l){
return Integer.MAX_VALUE;
}
if(root.l>=l&& root.r<=r) {
return root.min;
}
return Math.min(getMin(root.left,l,r),getMin(root.right,l,r));
}
public static int[] solution(String S, int[] P, int[] Q) {
int[] arr=new int[S.length()];
for(int i=0;i<S.length();i++){
switch (S.charAt(i)) {
case 'A':
arr[i]=1;
break;
case 'C':
arr[i]=2;
break;
case 'G':
arr[i]=3;
break;
case 'T':
arr[i]=4;
break;
default:
break;
}
}
segmentNode root=buildTree(arr,0,S.length()-1);
int[] result=new int[P.length];
for(int i=0;i<P.length;i++){
result[i]=getMin(root,P[i],Q[i]);
}
return result;
} }
Here is a C# solution, the basic idea is pretty much the same as the other answers, but it may be cleaner:
using System;
class Solution
{
public int[] solution(string S, int[] P, int[] Q)
{
int N = S.Length;
int M = P.Length;
char[] chars = {'A','C','G','T'};
//Calculate accumulates
int[,] accum = new int[3, N+1];
for (int i = 0; i <= 2; i++)
{
for (int j = 0; j < N; j++)
{
if(S[j] == chars[i]) accum[i, j+1] = accum[i, j] + 1;
else accum[i, j+1] = accum[i, j];
}
}
//Get minimal nucleotides for the given ranges
int diff;
int[] minimums = new int[M];
for (int i = 0; i < M; i++)
{
minimums[i] = 4;
for (int j = 0; j <= 2; j++)
{
diff = accum[j, Q[i]+1] - accum[j, P[i]];
if (diff > 0)
{
minimums[i] = j+1;
break;
}
}
}
return minimums;
}
}
Here is my solution. Got %100 . Of course I needed to first check and study a little bit prefix sums.
public int[] solution(String S, int[] P, int[] Q){
int[] result = new int[P.length];
int[] factor1 = new int[S.length()];
int[] factor2 = new int[S.length()];
int[] factor3 = new int[S.length()];
int[] factor4 = new int[S.length()];
int factor1Sum = 0;
int factor2Sum = 0;
int factor3Sum = 0;
int factor4Sum = 0;
for(int i=0; i<S.length(); i++){
switch (S.charAt(i)) {
case 'A':
factor1Sum++;
break;
case 'C':
factor2Sum++;
break;
case 'G':
factor3Sum++;
break;
case 'T':
factor4Sum++;
break;
default:
break;
}
factor1[i] = factor1Sum;
factor2[i] = factor2Sum;
factor3[i] = factor3Sum;
factor4[i] = factor4Sum;
}
for(int i=0; i<P.length; i++){
int start = P[i];
int end = Q[i];
if(start == 0){
if(factor1[end] > 0){
result[i] = 1;
}else if(factor2[end] > 0){
result[i] = 2;
}else if(factor3[end] > 0){
result[i] = 3;
}else{
result[i] = 4;
}
}else{
if(factor1[end] > factor1[start-1]){
result[i] = 1;
}else if(factor2[end] > factor2[start-1]){
result[i] = 2;
}else if(factor3[end] > factor3[start-1]){
result[i] = 3;
}else{
result[i] = 4;
}
}
}
return result;
}
If someone is still interested in this exercise, I share my Python solution (100/100 in Codility)
def solution(S, P, Q):
count = []
for i in range(3):
count.append([0]*(len(S)+1))
for index, i in enumerate(S):
count[0][index+1] = count[0][index] + ( i =='A')
count[1][index+1] = count[1][index] + ( i =='C')
count[2][index+1] = count[2][index] + ( i =='G')
result = []
for i in range(len(P)):
start = P[i]
end = Q[i]+1
if count[0][end] - count[0][start]:
result.append(1)
elif count[1][end] - count[1][start]:
result.append(2)
elif count[2][end] - count[2][start]:
result.append(3)
else:
result.append(4)
return result
This is my JavaScript solution that got 100% across the board on Codility:
function solution(S, P, Q) {
let total = [];
let min;
for (let i = 0; i < P.length; i++) {
const substring = S.slice(P[i], Q[i] + 1);
if (substring.includes('A')) {
min = 1;
} else if (substring.includes('C')) {
min = 2;
} else if (substring.includes('G')) {
min = 3;
} else if (substring.includes('T')) {
min = 4;
}
total.push(min);
}
return total;
}
import java.util.Arrays;
import java.util.HashMap;
class Solution {
static HashMap<Character, Integer > characterMapping = new HashMap<Character, Integer>(){{
put('A',1);
put('C',2);
put('G',3);
put('T',4);
}};
public static int minimum(int[] arr) {
if (arr.length ==1) return arr[0];
int smallestIndex = 0;
for (int index = 0; index<arr.length; index++) {
if (arr[index]<arr[smallestIndex]) smallestIndex=index;
}
return arr[smallestIndex];
}
public int[] solution(String S, int[] P, int[] Q) {
final char[] characterInput = S.toCharArray();
final int[] integerInput = new int[characterInput.length];
for(int counter=0; counter < characterInput.length; counter++) {
integerInput[counter] = characterMapping.get(characterInput[counter]);
}
int[] result = new int[P.length];
//assuming P and Q have the same length
for(int index =0; index<P.length; index++) {
if (P[index]==Q[index]) {
result[index] = integerInput[P[index]];
break;
}
final int[] subArray = Arrays.copyOfRange(integerInput, P[index], Q[index]+1);
final int minimumValue = minimum(subArray);
result[index]= minimumValue;
}
return result;
}
}
Here's 100% Scala solution:
def solution(S: String, P: Array[Int], Q: Array[Int]): Array[Int] = {
val resp = for(ind <- 0 to P.length-1) yield {
val sub= S.substring(P(ind),Q(ind)+1)
var factor = 4
if(sub.contains("A")) {factor=1}
else{
if(sub.contains("C")) {factor=2}
else{
if(sub.contains("G")) {factor=3}
}
}
factor
}
return resp.toArray
}
And performance: https://codility.com/demo/results/trainingEUR4XP-425/
Hope this helps.
public int[] solution(String S, int[] P, int[] K) {
// write your code in Java SE 8
char[] sc = S.toCharArray();
int[] A = new int[sc.length];
int[] G = new int[sc.length];
int[] C = new int[sc.length];
int prevA =-1,prevG=-1,prevC=-1;
for(int i=0;i<sc.length;i++){
if(sc[i]=='A')
prevA=i;
else if(sc[i] == 'G')
prevG=i;
else if(sc[i] =='C')
prevC=i;
A[i] = prevA;
G[i] = prevG;
C[i] = prevC;
//System.out.println(A[i]+ " "+G[i]+" "+C[i]);
}
int[] result = new int[P.length];
for(int i=0;i<P.length;i++){
//System.out.println(A[P[i]]+ " "+A[K[i]]+" "+C[P[i]]+" "+C[K[i]]+" "+P[i]+" "+K[i]);
if(A[K[i]] >=P[i] && A[K[i]] <=K[i]){
result[i] =1;
}
else if(C[K[i]] >=P[i] && C[K[i]] <=K[i]){
result[i] =2;
}else if(G[K[i]] >=P[i] && G[K[i]] <=K[i]){
result[i] =3;
}
else{
result[i]=4;
}
}
return result;
}
Python Solution with explanation
The idea is to hold an auxiliary array per nucleotide X, with position i (ignoring zero) is how many times X has occurred as of now. And so if we need the number of occurrences of X from position f to position t, we could take the following equation:
aux(t) - aux(f)
Time complexity is:
O(N+M)
def solution(S, P, Q):
n = len(S)
m = len(P)
aux = [[0 for i in range(n+1)] for i in [0,1,2]]
for i,c in enumerate(S):
aux[0][i+1] = aux[0][i] + ( c == 'A' )
aux[1][i+1] = aux[1][i] + ( c == 'C' )
aux[2][i+1] = aux[2][i] + ( c == 'G' )
result = []
for i in range(m):
fromIndex , toIndex = P[i] , Q[i] +1
if aux[0][toIndex] - aux[0][fromIndex] > 0:
r = 1
elif aux[1][toIndex] - aux[1][fromIndex] > 0:
r = 2
elif aux[2][toIndex] - aux[2][fromIndex] > 0:
r = 3
else:
r = 4
result.append(r)
return result
This is a Swift 4 solution to the same problem. It is based on #codebusta's solution above:
public func solution(_ S : inout String, _ P : inout [Int], _ Q : inout [Int]) -> [Int] {
var impacts = [Int]()
var prefixSum = [[Int]]()
for _ in 0..<3 {
let array = Array(repeating: 0, count: S.count + 1)
prefixSum.append(array)
}
for (index, character) in S.enumerated() {
var a = 0
var c = 0
var g = 0
switch character {
case "A":
a = 1
case "C":
c = 1
case "G":
g = 1
default:
break
}
prefixSum[0][index + 1] = prefixSum[0][index] + a
prefixSum[1][index + 1] = prefixSum[1][index] + c
prefixSum[2][index + 1] = prefixSum[2][index] + g
}
for tuple in zip(P, Q) {
if prefixSum[0][tuple.1 + 1] - prefixSum[0][tuple.0] > 0 {
impacts.append(1)
}
else if prefixSum[1][tuple.1 + 1] - prefixSum[1][tuple.0] > 0 {
impacts.append(2)
}
else if prefixSum[2][tuple.1 + 1] - prefixSum[2][tuple.0] > 0 {
impacts.append(3)
}
else {
impacts.append(4)
}
}
return impacts
}
Here is python solution with little explanation hope it helps some one.
Python codility 100%
def solution(S, P, Q):
"""
https://app.codility.com/demo/results/training8QBVFJ-EQB/
100%
Idea is consider solution as single dimensional array and use concept of prefix some ie.
stores the value in array for p,c and g based on frequency
array stores the frequency of p,c and g for all positions
Example -
# [0, 0, 1, 1, 1, 1, 1, 2] - prefix some of A - represents the max occurrence of A as 2 in array
# [0, 1, 1, 1, 2, 3, 3, 3] - prefix some of C - represents the max occurrence of A as 3 in array
# [0, 0, 0, 1, 1, 1, 1, 1] - prefix some of G - represents the max occurrence of A as 1 in array
# To find the query answers we can just use prefix some and find the distance between position
S = CAGCCTA
P[0] = 2 Q[0] = 4
P[1] = 5 Q[1] = 5
P[2] = 0 Q[2] = 6
Given a non-empty zero-indexed string S consisting of N characters and two non-empty zero-indexed arrays P and Q consisting
of M integers, returns an array consisting of M integers specifying the consecutive answers to all queries.
The part of the DNA between positions 2 and 4 contains nucleotide G and C (twice), whose impact factors are 3 and 2 respectively, so the answer is 2.
The part between positions 5 and 5 contains a single nucleotide T, whose impact factor is 4, so the answer is 4.
The part between positions 0 and 6 (the whole string) contains all nucleotide, in particular nucleotide A whose impact factor is 1, so the answer is 1.
N is an integer within the range [1..100,000];
M is an integer within the range [1..50,000];
each element of arrays P, Q is an integer within the range [0..N − 1];
P[K] ≤ Q[K], where 0 ≤ K < M;
string S consists only of upper-case English letters A, C, G, T.
Ref - https://github.com/ghanan94/codility-lesson-solutions/blob/master/Lesson%2005%20-%20Prefix%20Sums/PrefixSums.pdf
:return: return the values [2, 4, 1]
"""
# two d array - column size is 3 for a,c,g - not taking size 4 since that will be part of else ie. don`t need to calculate
# row size is the length of DNA sequence
prefix_sum_two_d_array = [[0 for i in range(len(S) + 1)] for j in range(3)]
# find the prefix some of all nucleotide in given sequence
for i, nucleotide in enumerate(S):
# store prefix some of each
# nucleotide == 'A -> 1 if true 0 if false
# [0, 0, 1, 1, 1, 1, 1, 2] - prefix some of A - represents the max occurrence of A as 2 in array
prefix_sum_two_d_array[0][i + 1] = prefix_sum_two_d_array[0][i] + (nucleotide == 'A')
# store prefix some of c
# [0, 1, 1, 1, 2, 3, 3, 3] - prefix some of C - represents the max occurrence of A as 3 in array
prefix_sum_two_d_array[1][i + 1] = prefix_sum_two_d_array[1][i] + (nucleotide == 'C')
# store prefix some of g
# [0, 0, 0, 1, 1, 1, 1, 1] - prefix some of G - represents the max occurrence of A as 1 in array
prefix_sum_two_d_array[2][i + 1] = prefix_sum_two_d_array[2][i] + (nucleotide == 'G')
#print(prefix_sum_two_d_array)
# now to find the query answers we can just use prefix some and find the distance between position
query_answers = []
for position in range(len(P)):
# for each query of p
# find the start index from p
start_index = P[position]
# find the end index from Q
end_index = Q[position] + 1
# find the value from prefix some array - just subtract end index and start index to find the value
if prefix_sum_two_d_array[0][end_index] - prefix_sum_two_d_array[0][start_index]:
query_answers.append(1)
elif prefix_sum_two_d_array[1][end_index] - prefix_sum_two_d_array[1][start_index]:
query_answers.append(2)
elif prefix_sum_two_d_array[2][end_index] - prefix_sum_two_d_array[2][start_index]:
query_answers.append(3)
else:
query_answers.append(4)
return query_answers
result = solution("CAGCCTA", [2, 5, 0], [4, 5, 6])
print("Sol " + str(result))
# Sol [2, 4, 1]
My 100% JavaScript solution with O(N + M) time complexity and no use of advanced built-in methods such as .includes, .substring, etc:
function solution(S, P, Q) {
// initialize prefix sums for A, C, G (you don't need T)
const A = [0];
const C = [0];
const G = [0];
// calculate prefix sums for A, C, G
for (let i = 0, len = S.length; i < len; i++) {
A.push(A[i] + Number("A" === S[i]));
C.push(C[i] + Number("C" === S[i]));
G.push(G[i] + Number("G" === S[i]));
}
// calculate the result using prefix sums
const result = [];
for (let i = 0, len = P.length; i < len; i++) {
const from = P[i];
const to = Q[i] + 1;
if (A[to] - A[from] > 0) {
result.push(1);
} else if (C[to] - C[from] > 0) {
result.push(2);
} else if (G[to] - G[from] > 0) {
result.push(3);
} else {
result.push(4); // this is why you don't need T
}
}
return result;
}
pshemek's solution constrains itself to the space complexity (O(N)) - even with the 2-d array and the answer array because a constant (4) is used for the 2-d array. That solution also fits in with the computational complexity - whereas mine is O (N^2) - though the actual computational complexity is much lower because it skips over entire ranges that include minimal values.
I gave it a try - but mine ends up using more space - but makes more intuitive sense to me (C#):
public static int[] solution(String S, int[] P, int[] Q)
{
const int MinValue = 1;
Dictionary<char, int> stringValueTable = new Dictionary<char,int>(){ {'A', 1}, {'C', 2}, {'G', 3}, {'T', 4} };
char[] inputArray = S.ToCharArray();
int[,] minRangeTable = new int[S.Length, S.Length]; // The meaning of this table is [x, y] where x is the start index and y is the end index and the value is the min range - if 0 then it is the min range (whatever that is)
for (int startIndex = 0; startIndex < S.Length; ++startIndex)
{
int currentMinValue = 4;
int minValueIndex = -1;
for (int endIndex = startIndex; (endIndex < S.Length) && (minValueIndex == -1); ++endIndex)
{
int currentValue = stringValueTable[inputArray[endIndex]];
if (currentValue < currentMinValue)
{
currentMinValue = currentValue;
if (currentMinValue == MinValue) // We can stop iterating - because anything with this index in its range will always be minimal
minValueIndex = endIndex;
else
minRangeTable[startIndex, endIndex] = currentValue;
}
else
minRangeTable[startIndex, endIndex] = currentValue;
}
if (minValueIndex != -1) // Skip over this index - since it is minimal
startIndex = minValueIndex; // We would have a "+ 1" here - but the "auto-increment" in the for statement will get us past this index
}
int[] result = new int[P.Length];
for (int outputIndex = 0; outputIndex < result.Length; ++outputIndex)
{
result[outputIndex] = minRangeTable[P[outputIndex], Q[outputIndex]];
if (result[outputIndex] == 0) // We could avoid this if we initialized our 2-d array with 1's
result[outputIndex] = 1;
}
return result;
}
In pshemek's answer - the "trick" in the second loop is simply that once you've determined you've found a range with the minimal value - you don't need to continue iterating. Not sure if that helps.
The php 100/100 solution:
function solution($S, $P, $Q) {
$S = str_split($S);
$len = count($S);
$lep = count($P);
$arr = array();
$result = array();
$clone = array_fill(0, 4, 0);
for($i = 0; $i < $len; $i++){
$arr[$i] = $clone;
switch($S[$i]){
case 'A':
$arr[$i][0] = 1;
break;
case 'C':
$arr[$i][1] = 1;
break;
case 'G':
$arr[$i][2] = 1;
break;
default:
$arr[$i][3] = 1;
break;
}
}
for($i = 1; $i < $len; $i++){
for($j = 0; $j < 4; $j++){
$arr[$i][$j] += $arr[$i - 1][$j];
}
}
for($i = 0; $i < $lep; $i++){
$x = $P[$i];
$y = $Q[$i];
for($a = 0; $a < 4; $a++){
$sub = 0;
if($x - 1 >= 0){
$sub = $arr[$x - 1][$a];
}
if($arr[$y][$a] - $sub > 0){
$result[$i] = $a + 1;
break;
}
}
}
return $result;
}
This program has got score 100 and performance wise has got an edge over other java codes listed above!
The code can be found here.
public class GenomicRange {
final int Index_A=0, Index_C=1, Index_G=2, Index_T=3;
final int A=1, C=2, G=3, T=4;
public static void main(String[] args) {
GenomicRange gen = new GenomicRange();
int[] M = gen.solution( "GACACCATA", new int[] { 0,0,4,7 } , new int[] { 8,2,5,7 } );
System.out.println(Arrays.toString(M));
}
public int[] solution(String S, int[] P, int[] Q) {
int[] M = new int[P.length];
char[] charArr = S.toCharArray();
int[][] occCount = new int[3][S.length()+1];
int charInd = getChar(charArr[0]);
if(charInd!=3) {
occCount[charInd][1]++;
}
for(int sInd=1; sInd<S.length(); sInd++) {
charInd = getChar(charArr[sInd]);
if(charInd!=3)
occCount[charInd][sInd+1]++;
occCount[Index_A][sInd+1]+=occCount[Index_A][sInd];
occCount[Index_C][sInd+1]+=occCount[Index_C][sInd];
occCount[Index_G][sInd+1]+=occCount[Index_G][sInd];
}
for(int i=0;i<P.length;i++) {
int a,c,g;
if(Q[i]+1>=occCount[0].length) continue;
a = occCount[Index_A][Q[i]+1] - occCount[Index_A][P[i]];
c = occCount[Index_C][Q[i]+1] - occCount[Index_C][P[i]];
g = occCount[Index_G][Q[i]+1] - occCount[Index_G][P[i]];
M[i] = a>0? A : c>0 ? C : g>0 ? G : T;
}
return M;
}
private int getChar(char c) {
return ((c=='A') ? Index_A : ((c=='C') ? Index_C : ((c=='G') ? Index_G : Index_T)));
}
}
Here's a simple javascript solution which got 100%.
function solution(S, P, Q) {
var A = [];
var C = [];
var G = [];
var T = [];
var result = [];
var i = 0;
S.split('').forEach(function(a) {
if (a === 'A') {
A.push(i);
} else if (a === 'C') {
C.push(i);
} else if (a === 'G') {
G.push(i);
} else {
T.push(i);
}
i++;
});
function hasNucl(typeArray, start, end) {
return typeArray.some(function(a) {
return a >= P[j] && a <= Q[j];
});
}
for(var j=0; j<P.length; j++) {
if (hasNucl(A, P[j], P[j])) {
result.push(1)
} else if (hasNucl(C, P[j], P[j])) {
result.push(2);
} else if (hasNucl(G, P[j], P[j])) {
result.push(3);
} else {
result.push(4);
}
}
return result;
}
perl 100/100 solution:
sub solution {
my ($S, $P, $Q)=#_; my #P=#$P; my #Q=#$Q;
my #_A = (0), #_C = (0), #_G = (0), #ret =();
foreach (split //, $S)
{
push #_A, $_A[-1] + ($_ eq 'A' ? 1 : 0);
push #_C, $_C[-1] + ($_ eq 'C' ? 1 : 0);
push #_G, $_G[-1] + ($_ eq 'G' ? 1 : 0);
}
foreach my $i (0..$#P)
{
my $from_index = $P[$i];
my $to_index = $Q[$i] + 1;
if ( $_A[$to_index] - $_A[$from_index] > 0 )
{
push #ret, 1;
next;
}
if ( $_C[$to_index] - $_C[$from_index] > 0 )
{
push #ret, 2;
next;
}
if ( $_G[$to_index] - $_G[$from_index] > 0 )
{
push #ret, 3;
next;
}
push #ret, 4
}
return #ret;
}
Java 100/100
class Solution {
public int[] solution(String S, int[] P, int[] Q) {
int qSize = Q.length;
int[] answers = new int[qSize];
char[] sequence = S.toCharArray();
int[][] occCount = new int[3][sequence.length+1];
int[] geneImpactMap = new int['G'+1];
geneImpactMap['A'] = 0;
geneImpactMap['C'] = 1;
geneImpactMap['G'] = 2;
if(sequence[0] != 'T') {
occCount[geneImpactMap[sequence[0]]][0]++;
}
for(int i = 0; i < sequence.length; i++) {
occCount[0][i+1] = occCount[0][i];
occCount[1][i+1] = occCount[1][i];
occCount[2][i+1] = occCount[2][i];
if(sequence[i] != 'T') {
occCount[geneImpactMap[sequence[i]]][i+1]++;
}
}
for(int j = 0; j < qSize; j++) {
for(int k = 0; k < 3; k++) {
if(occCount[k][Q[j]+1] - occCount[k][P[j]] > 0) {
answers[j] = k+1;
break;
}
answers[j] = 4;
}
}
return answers;
}
}
In ruby (100/100)
def interval_sum x,y,p
p[y+1] - p[x]
end
def solution(s,p,q)
#Hash of arrays with prefix sums
p_sums = {}
respuesta = []
%w(A C G T).each do |letter|
p_sums[letter] = Array.new s.size+1, 0
end
(0...s.size).each do |count|
%w(A C G T).each do |letter|
p_sums[letter][count+1] = p_sums[letter][count]
end if count > 0
case s[count]
when 'A'
p_sums['A'][count+1] += 1
when 'C'
p_sums['C'][count+1] += 1
when 'G'
p_sums['G'][count+1] += 1
when 'T'
p_sums['T'][count+1] += 1
end
end
(0...p.size).each do |count|
x = p[count]
y = q[count]
if interval_sum(x, y, p_sums['A']) > 0 then
respuesta << 1
next
end
if interval_sum(x, y, p_sums['C']) > 0 then
respuesta << 2
next
end
if interval_sum(x, y, p_sums['G']) > 0 then
respuesta << 3
next
end
if interval_sum(x, y, p_sums['T']) > 0 then
respuesta << 4
next
end
end
respuesta
end
simple php 100/100 solution
function solution($S, $P, $Q) {
$result = array();
for ($i = 0; $i < count($P); $i++) {
$from = $P[$i];
$to = $Q[$i];
$length = $from >= $to ? $from - $to + 1 : $to - $from + 1;
$new = substr($S, $from, $length);
if (strpos($new, 'A') !== false) {
$result[$i] = 1;
} else {
if (strpos($new, 'C') !== false) {
$result[$i] = 2;
} else {
if (strpos($new, 'G') !== false) {
$result[$i] = 3;
} else {
$result[$i] = 4;
}
}
}
}
return $result;
}
Here's my Java (100/100) Solution:
class Solution {
private ImpactFactorHolder[] mHolder;
private static final int A=0,C=1,G=2,T=3;
public int[] solution(String S, int[] P, int[] Q) {
mHolder = createImpactHolderArray(S);
int queriesLength = P.length;
int[] result = new int[queriesLength];
for (int i = 0; i < queriesLength; ++i ) {
int value = 0;
if( P[i] == Q[i]) {
value = lookupValueForIndex(S.charAt(P[i])) + 1;
} else {
value = calculateMinImpactFactor(P[i], Q[i]);
}
result[i] = value;
}
return result;
}
public int calculateMinImpactFactor(int P, int Q) {
int minImpactFactor = 3;
for (int nucleotide = A; nucleotide <= T; ++nucleotide ) {
int qValue = mHolder[nucleotide].mOcurrencesSum[Q];
int pValue = mHolder[nucleotide].mOcurrencesSum[P];
// handling special cases when the less value is assigned on the P index
if( P-1 >= 0 ) {
pValue = mHolder[nucleotide].mOcurrencesSum[P-1] == 0 ? 0 : pValue;
} else if ( P == 0 ) {
pValue = mHolder[nucleotide].mOcurrencesSum[P] == 1 ? 0 : pValue;
}
if ( qValue - pValue > 0) {
minImpactFactor = nucleotide;
break;
}
}
return minImpactFactor + 1;
}
public int lookupValueForIndex(char nucleotide) {
int value = 0;
switch (nucleotide) {
case 'A' :
value = A;
break;
case 'C' :
value = C;
break;
case 'G':
value = G;
break;
case 'T':
value = T;
break;
default:
break;
}
return value;
}
public ImpactFactorHolder[] createImpactHolderArray(String S) {
int length = S.length();
ImpactFactorHolder[] holder = new ImpactFactorHolder[4];
holder[A] = new ImpactFactorHolder(1,'A', length);
holder[C] = new ImpactFactorHolder(2,'C', length);
holder[G] = new ImpactFactorHolder(3,'G', length);
holder[T] = new ImpactFactorHolder(4,'T', length);
int i =0;
for(char c : S.toCharArray()) {
int nucleotide = lookupValueForIndex(c);
++holder[nucleotide].mAcum;
holder[nucleotide].mOcurrencesSum[i] = holder[nucleotide].mAcum;
holder[A].mOcurrencesSum[i] = holder[A].mAcum;
holder[C].mOcurrencesSum[i] = holder[C].mAcum;
holder[G].mOcurrencesSum[i] = holder[G].mAcum;
holder[T].mOcurrencesSum[i] = holder[T].mAcum;
++i;
}
return holder;
}
private static class ImpactFactorHolder {
public ImpactFactorHolder(int impactFactor, char nucleotide, int length) {
mImpactFactor = impactFactor;
mNucleotide = nucleotide;
mOcurrencesSum = new int[length];
mAcum = 0;
}
int mImpactFactor;
char mNucleotide;
int[] mOcurrencesSum;
int mAcum;
}
}
Link: https://codility.com/demo/results/demoJFB5EV-EG8/
I'm looking forward to implement a Segment Tree similar to #Abhishek Kumar solution
My C++ solution
vector<int> solution(string &S, vector<int> &P, vector<int> &Q) {
vector<int> impactCount_A(S.size()+1, 0);
vector<int> impactCount_C(S.size()+1, 0);
vector<int> impactCount_G(S.size()+1, 0);
int lastTotal_A = 0;
int lastTotal_C = 0;
int lastTotal_G = 0;
for (int i = (signed)S.size()-1; i >= 0; --i) {
switch(S[i]) {
case 'A':
++lastTotal_A;
break;
case 'C':
++lastTotal_C;
break;
case 'G':
++lastTotal_G;
break;
};
impactCount_A[i] = lastTotal_A;
impactCount_C[i] = lastTotal_C;
impactCount_G[i] = lastTotal_G;
}
vector<int> results(P.size(), 0);
for (int i = 0; i < P.size(); ++i) {
int pIndex = P[i];
int qIndex = Q[i];
int numA = impactCount_A[pIndex]-impactCount_A[qIndex+1];
int numC = impactCount_C[pIndex]-impactCount_C[qIndex+1];
int numG = impactCount_G[pIndex]-impactCount_G[qIndex+1];
if (numA > 0) {
results[i] = 1;
}
else if (numC > 0) {
results[i] = 2;
}
else if (numG > 0) {
results[i] = 3;
}
else {
results[i] = 4;
}
}
return results;
}
/* 100/100 solution C++.
Using prefix sums. Firstly converting chars to integer in nuc variable. Then in a bi-dimensional vector we account the occurrence in S of each nucleoside x in it's respective prefix_sum[s][x]. After we just have to find out the lower nucluoside that occurred in each interval K.
*/
.
vector solution(string &S, vector &P, vector &Q) {
int n=S.size();
int m=P.size();
vector<vector<int> > prefix_sum(n+1,vector<int>(4,0));
int nuc;
//prefix occurrence sum
for (int s=0;s<n; s++) {
nuc = S.at(s) == 'A' ? 1 : (S.at(s) == 'C' ? 2 : (S.at(s) == 'G' ? 3 : 4) );
for (int u=0;u<4;u++) {
prefix_sum[s+1][u] = prefix_sum[s][u] + ((u+1)==nuc?1:0);
}
}
//find minimal impact factor in each interval K
int lower_impact_factor;
for (int k=0;k<m;k++) {
lower_impact_factor=4;
for (int u=2;u>=0;u--) {
if (prefix_sum[Q[k]+1][u] - prefix_sum[P[k]][u] != 0)
lower_impact_factor = u+1;
}
P[k]=lower_impact_factor;
}
return P;
}
static public int[] solution(String S, int[] P, int[] Q) {
// write your code in Java SE 8
int A[] = new int[S.length() + 1], C[] = new int[S.length() + 1], G[] = new int[S.length() + 1];
int last_a = 0, last_c = 0, last_g = 0;
int results[] = new int[P.length];
int p = 0, q = 0;
for (int i = S.length() - 1; i >= 0; i -= 1) {
switch (S.charAt(i)) {
case 'A': {
last_a += 1;
break;
}
case 'C': {
last_c += 1;
break;
}
case 'G': {
last_g += 1;
break;
}
}
A[i] = last_a;
G[i] = last_g;
C[i] = last_c;
}
for (int i = 0; i < P.length; i++) {
p = P[i];
q = Q[i];
if (A[p] - A[q + 1] > 0) {
results[i] = 1;
} else if (C[p] - C[q + 1] > 0) {
results[i] = 2;
} else if (G[p] - G[q + 1] > 0) {
results[i] = 3;
} else {
results[i] = 4;
}
}
return results;
}
scala solution 100/100
import scala.annotation.switch
import scala.collection.mutable
object Solution {
def solution(s: String, p: Array[Int], q: Array[Int]): Array[Int] = {
val n = s.length
def arr = mutable.ArrayBuffer.fill(n + 1)(0L)
val a = arr
val c = arr
val g = arr
val t = arr
for (i <- 1 to n) {
def inc(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1) + 1L
def shift(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1)
val char = s(i - 1)
(char: #switch) match {
case 'A' => inc(a); shift(c); shift(g); shift(t);
case 'C' => shift(a); inc(c); shift(g); shift(t);
case 'G' => shift(a); shift(c); inc(g); shift(t);
case 'T' => shift(a); shift(c); shift(g); inc(t);
}
}
val r = mutable.ArrayBuffer.fill(p.length)(0)
for (i <- p.indices) {
val start = p(i)
val end = q(i) + 1
r(i) =
if (a(start) != a(end)) 1
else if (c(start) != c(end)) 2
else if (g(start) != g(end)) 3
else if (t(start) != t(end)) 4
else 0
}
r.toArray
}
}

Categories

Resources