Coding style when using abstract classes in Java - java

When inheriting from a base class in a scenario when not all methods will be implemented, is it better to put empty methods in the base class so that sub-classes that don't require that method can ignore it totally, while other classes must override the method if they want to implement it... e.g:
Base class:
public void myMethod() {
}
Sub-class that doesn't implement:
<nothing!>
Or is it better to leave the base class cleaner and just put an abstract method in and force the sub-class to flesh out a blank method if it doesn't implement that method?
Base class:
public abstract void myMethod();
Sub-class that doesn't implement:
public void myMethod() {
}

It's up to you and it really depends on the situation.
You can use abstract methods when you have an abstract class and you want classes which extend it to implement that method (because the abstract parent class uses the abstract method - it may be something like print()). It's similar to interface's methods but it's usually used in different scenarios. But I would use interface in most cases...
I would use abstract method only in case that myMethod() does a different thing in each class that extends the abstract parent... Otherwise, if myMethod() does usually the same thing and one or two classes need to override it, I will use the first solution.
Also look at the template method pattern. I don't know which case is yours so I can't answer this question in an exact way...

It is your design decision . If you want to force your developers to override myMethod and developed the logic. You should go for abstract class.

Both are not the most elegant solutions, though both can get the job done. Use the design pattern strategy design pattern http://www.newthinktank.com/2012/08/strategy-design-pattern-tutorial/

Coding style is up to you, depends on your requirement and everything has it own pros and cons.
In case of abstract class, it is not necessary to put only abstract method. I would recommend you, better to use Interface.

Whenever it is possible you should
Prefer interfaces to abstract classes
Because interfaces do not permit to contain method implementations, there is the
so called Abstract*Interface*, which is a combination of both technics:
In that case the Interface defines the type, while the abstract class provides a skeletal implementation.
An example are the Collection Framework which provides skeletal implemantations: AbstractCollection, AbstractList, AbstractSet and AbstractMap.
Further info see Josh Bloch, Effective Java 2nd Edition, Item 18

I think it comes down to whether there is a meaningful default implementation for myMethod(). If there is, put it in the base class and subclasses only override if they need something different.
If there is no meaningful default, and in practice every non-abstract subclass should either implement the method itself or inherit an implementation from an intermediate class, it is a very bad idea to provide a fake implementation in the base class. It converts an error the compiler could have detected to one that can only be found by testing.
One option to consider in some cases is providing a default implementation that throws UnsupportedOperationException.

The differenct in an abstract class is that you can but must not override that function.
So public void nothing() {} can be overridden and public abstract void nothing2(); must be overriden.

Related

Is it possible to overload abstract methods in an abstract Java class, but implement only one of the overloaded methods in subclass?

I have an abstract class (showing only the relevant parts) with two overloaded methods.
abstract public class Component {
...
abstract protected void createPhysics();
abstract protected void createPhysics(Comp1D[] comp1DS);
...
}
In the subclasses which extend this abstract class I only want to use either the one with arguments or the one without, but never both of them. For example
public class Comp1D extends Component{
...
protected void createPhysics(Comp1D[] comp1Ds){
...
}
}
and
public class Comp3D extends Component{
...
protected void createPhysics(){
...
}
}
Of course this won't compile this way since the other createPhysics method is not implemented in the subclass. My quick and dirty solution would be to implement both methods in subclasses, but the unused method would have empty body.
Is there a more elegant way to solve it in Java 8?
With abstract methods, there is not. And on a syntactical level, it would not be sound either. If one has a Component, one can call both methods. How should one know which one is implemented and which one is not?
One could define both method in the abstract class and let them throw, for example, an UnsupportedOperationException, thus forcing sublcasses to override (at least one of) those methods if they wish to not throw such an exception. This, however, seems like a workaround for another problem.
I would suggest re-evaluating the overall architecture of that section and find another solution to the problem. For example, maybe two separated classes and handler for those classes would yield a cleaner architecture.
The question is, why do you want to use an Abstract class here. What if you plan to use an interface, with default implementations. You can implement the interface and override only the required method
The idea of using abstract class is when you want to define common method signatures in the class and force sub-classes to provide implementation for such methods. From this point of view the way you are trying to implement abstract class doesn't make much sense.
You can also use abstract class to define a base type to support O-O features like polymorphism and inheritance and i think this is what are you trying to do .
If this is the case i suggest to declare an abstract class without abstract methods or declare an interface with default implementation for both methods and then you can override in implementation classes.
As #Turning85 pointed out, such an implementation would not make much sense.
Either you want to give your successor classes the flexibility to implement both of the methods according to their own specific needs or you want to take this complexity away from them and implement the whole logic in the abstract class, where you could have something like this:
abstract class Component() {
protected void createDefaultPhysics() {
//implement
}
abstract protected void createPhysics(Comp1D[] comp1DS);
}
and your concrete classes:
public class Comp1D extends Component{
protected void createPhysics(Comp1D[] comp1Ds){
if(comp1Ds == null) {
createDefaultPhysics();
}
}
}

Abstract and Interface Method usage in my Class [duplicate]

What exactly is the difference between an interface and an abstract class?
Interfaces
An interface is a contract: The person writing the interface says, "hey, I accept things looking that way", and the person using the interface says "OK, the class I write looks that way".
An interface is an empty shell. There are only the signatures of the methods, which implies that the methods do not have a body. The interface can't do anything. It's just a pattern.
For example (pseudo code):
// I say all motor vehicles should look like this:
interface MotorVehicle
{
void run();
int getFuel();
}
// My team mate complies and writes vehicle looking that way
class Car implements MotorVehicle
{
int fuel;
void run()
{
print("Wrroooooooom");
}
int getFuel()
{
return this.fuel;
}
}
Implementing an interface consumes very little CPU, because it's not a class, just a bunch of names, and therefore there isn't any expensive look-up to do. It's great when it matters, such as in embedded devices.
Abstract classes
Abstract classes, unlike interfaces, are classes. They are more expensive to use, because there is a look-up to do when you inherit from them.
Abstract classes look a lot like interfaces, but they have something more: You can define a behavior for them. It's more about a person saying, "these classes should look like that, and they have that in common, so fill in the blanks!".
For example:
// I say all motor vehicles should look like this:
abstract class MotorVehicle
{
int fuel;
// They ALL have fuel, so lets implement this for everybody.
int getFuel()
{
return this.fuel;
}
// That can be very different, force them to provide their
// own implementation.
abstract void run();
}
// My teammate complies and writes vehicle looking that way
class Car extends MotorVehicle
{
void run()
{
print("Wrroooooooom");
}
}
Implementation
While abstract classes and interfaces are supposed to be different concepts, the implementations make that statement sometimes untrue. Sometimes, they are not even what you think they are.
In Java, this rule is strongly enforced, while in PHP, interfaces are abstract classes with no method declared.
In Python, abstract classes are more a programming trick you can get from the ABC module and is actually using metaclasses, and therefore classes. And interfaces are more related to duck typing in this language and it's a mix between conventions and special methods that call descriptors (the __method__ methods).
As usual with programming, there is theory, practice, and practice in another language :-)
The key technical differences between an abstract class and an interface are:
Abstract classes can have constants, members, method stubs (methods without a body) and defined methods, whereas interfaces can only have constants and methods stubs.
Methods and members of an abstract class can be defined with any visibility, whereas all methods of an interface must be defined as public (they are defined public by default).
When inheriting an abstract class, a concrete child class must define the abstract methods, whereas an abstract class can extend another abstract class and abstract methods from the parent class don't have to be defined.
Similarly, an interface extending another interface is not responsible for implementing methods from the parent interface. This is because interfaces cannot define any implementation.
A child class can only extend a single class (abstract or concrete), whereas an interface can extend or a class can implement multiple other interfaces.
A child class can define abstract methods with the same or less restrictive visibility, whereas a class implementing an interface must define the methods with the exact same visibility (public).
An Interface contains only the definition / signature of functionality, and if we have some common functionality as well as common signatures, then we need to use an abstract class. By using an abstract class, we can provide behavior as well as functionality both in the same time. Another developer inheriting abstract class can use this functionality easily, as they would only need to fill in the blanks.
Taken from:
http://www.dotnetbull.com/2011/11/difference-between-abstract-class-and.html
http://www.dotnetbull.com/2011/11/what-is-abstract-class-in-c-net.html
http://www.dotnetbull.com/2011/11/what-is-interface-in-c-net.html
An explanation can be found here: http://www.developer.com/lang/php/article.php/3604111/PHP-5-OOP-Interfaces-Abstract-Classes-and-the-Adapter-Pattern.htm
An abstract class is a class that is
only partially implemented by the
programmer. It may contain one or more
abstract methods. An abstract method
is simply a function definition that
serves to tell the programmer that the
method must be implemented in a child
class.
An interface is similar to an abstract
class; indeed interfaces occupy the
same namespace as classes and abstract
classes. For that reason, you cannot
define an interface with the same name
as a class. An interface is a fully
abstract class; none of its methods
are implemented and instead of a class
sub-classing from it, it is said to
implement that interface.
Anyway I find this explanation of interfaces somewhat confusing. A more common definition is: An interface defines a contract that implementing classes must fulfill. An interface definition consists of signatures of public members, without any implementing code.
I don't want to highlight the differences, which have been already said in many answers ( regarding public static final modifiers for variables in interface & support for protected, private methods in abstract classes)
In simple terms, I would like to say:
interface: To implement a contract by multiple unrelated objects
abstract class: To implement the same or different behaviour among multiple related objects
From the Oracle documentation
Consider using abstract classes if :
You want to share code among several closely related classes.
You expect that classes that extend your abstract class have many common methods or fields, or require access modifiers other than public (such as protected and private).
You want to declare non-static or non-final fields.
Consider using interfaces if :
You expect that unrelated classes would implement your interface. For example,many unrelated objects can implement Serializable interface.
You want to specify the behaviour of a particular data type, but not concerned about who implements its behaviour.
You want to take advantage of multiple inheritance of type.
abstract class establishes "is a" relation with concrete classes. interface provides "has a" capability for classes.
If you are looking for Java as programming language, here are a few more updates:
Java 8 has reduced the gap between interface and abstract classes to some extent by providing a default method feature. An interface does not have an implementation for a method is no longer valid now.
Refer to this documentation page for more details.
Have a look at this SE question for code examples to understand better.
How should I have explained the difference between an Interface and an Abstract class?
Some important differences:
In the form of a table:
As stated by Joe from javapapers:
1.Main difference is methods of a Java interface are implicitly abstract and cannot have implementations. A Java abstract class can
have instance methods that implements a default behavior.
2.Variables declared in a Java interface is by default final. An abstract class may contain non-final variables.
3.Members of a Java interface are public by default. A Java abstract class can have the usual flavors of class members like private,
protected, etc..
4.Java interface should be implemented using keyword “implements”; A Java abstract class should be extended using keyword “extends”.
5.An interface can extend another Java interface only, an abstract class can extend another Java class and implement multiple Java
interfaces.
6.A Java class can implement multiple interfaces but it can extend only one abstract class.
7.Interface is absolutely abstract and cannot be instantiated; A Java abstract class also cannot be instantiated, but can be invoked if a
main() exists.
8.In comparison with java abstract classes, java interfaces are slow as it requires extra indirection.
The main point is that:
Abstract is object oriented. It offers the basic data an 'object' should have and/or functions it should be able to do. It is concerned with the object's basic characteristics: what it has and what it can do. Hence objects which inherit from the same abstract class share the basic characteristics (generalization).
Interface is functionality oriented. It defines functionalities an object should have. Regardless what object it is, as long as it can do these functionalities, which are defined in the interface, it's fine. It ignores everything else. An object/class can contain several (groups of) functionalities; hence it is possible for a class to implement multiple interfaces.
When you want to provide polymorphic behaviour in an inheritance hierarchy, use abstract classes.
When you want polymorphic behaviour for classes which are completely unrelated, use an interface.
I am constructing a building of 300 floors
The building's blueprint interface
For example, Servlet(I)
Building constructed up to 200 floors - partially completed---abstract
Partial implementation, for example, generic and HTTP servlet
Building construction completed-concrete
Full implementation, for example, own servlet
Interface
We don't know anything about implementation, just requirements. We can
go for an interface.
Every method is public and abstract by default
It is a 100% pure abstract class
If we declare public we cannot declare private and protected
If we declare abstract we cannot declare final, static, synchronized, strictfp and native
Every interface has public, static and final
Serialization and transient is not applicable, because we can't create an instance for in interface
Non-volatile because it is final
Every variable is static
When we declare a variable inside an interface we need to initialize variables while declaring
Instance and static block not allowed
Abstract
Partial implementation
It has an abstract method. An addition, it uses concrete
No restriction for abstract class method modifiers
No restriction for abstract class variable modifiers
We cannot declare other modifiers except abstract
No restriction to initialize variables
Taken from DurgaJobs Website
Let's work on this question again:
The first thing to let you know is that 1/1 and 1*1 results in the same, but it does not mean that multiplication and division are same. Obviously, they hold some good relationship, but mind you both are different.
I will point out main differences, and the rest have already been explained:
Abstract classes are useful for modeling a class hierarchy. At first glance of any requirement, we are partially clear on what exactly is to be built, but we know what to build. And so your abstract classes are your base classes.
Interfaces are useful for letting other hierarchy or classes to know that what I am capable of doing. And when you say I am capable of something, you must have that capacity. Interfaces will mark it as compulsory for a class to implement the same functionalities.
If you have some common methods that can be used by multiple classes go for abstract classes.
Else if you want the classes to follow some definite blueprint go for interfaces.
Following examples demonstrate this.
Abstract class in Java:
abstract class Animals
{
// They all love to eat. So let's implement them for everybody
void eat()
{
System.out.println("Eating...");
}
// The make different sounds. They will provide their own implementation.
abstract void sound();
}
class Dog extends Animals
{
void sound()
{
System.out.println("Woof Woof");
}
}
class Cat extends Animals
{
void sound()
{
System.out.println("Meoww");
}
}
Following is an implementation of interface in Java:
interface Shape
{
void display();
double area();
}
class Rectangle implements Shape
{
int length, width;
Rectangle(int length, int width)
{
this.length = length;
this.width = width;
}
#Override
public void display()
{
System.out.println("****\n* *\n* *\n****");
}
#Override
public double area()
{
return (double)(length*width);
}
}
class Circle implements Shape
{
double pi = 3.14;
int radius;
Circle(int radius)
{
this.radius = radius;
}
#Override
public void display()
{
System.out.println("O"); // :P
}
#Override
public double area()
{
return (double)((pi*radius*radius)/2);
}
}
Some Important Key points in a nutshell:
The variables declared in Java interface are by default final. Abstract classes can have non-final variables.
The variables declared in Java interface are by default static. Abstract classes can have non-static variables.
Members of a Java interface are public by default. A Java abstract class can have the usual flavors of class members like private, protected, etc..
It's pretty simple actually.
You can think of an interface as a class which is only allowed to have abstract methods and nothing else.
So an interface can only "declare" and not define the behavior you want the class to have.
An abstract class allows you to do both declare (using abstract methods) as well as define (using full method implementations) the behavior you want the class to have.
And a regular class only allows you to define, not declare, the behavior/actions you want the class to have.
One last thing,
In Java, you can implement multiple interfaces, but you can only extend one (Abstract Class or Class)...
This means inheritance of defined behavior is restricted to only allow one per class... ie if you wanted a class that encapsulated behavior from Classes A,B&C you would need to do the following: Class A extends B, Class C extends A .. its a bit of a round about way to have multiple inheritance...
Interfaces on the other hand, you could simply do: interface C implements A, B
So in effect Java supports multiple inheritance only in "declared behavior" ie interfaces, and only single inheritance with defined behavior.. unless you do the round about way I described...
Hopefully that makes sense.
The comparison of interface vs. abstract class is wrong. There should be two other comparisons instead: 1) interface vs. class and 2) abstract vs. final class.
Interface vs Class
Interface is a contract between two objects. E.g., I'm a Postman and you're a Package to deliver. I expect you to know your delivery address. When someone gives me a Package, it has to know its delivery address:
interface Package {
String address();
}
Class is a group of objects that obey the contract. E.g., I'm a box from "Box" group and I obey the contract required by the Postman. At the same time I obey other contracts:
class Box implements Package, Property {
#Override
String address() {
return "5th Street, New York, NY";
}
#Override
Human owner() {
// this method is part of another contract
}
}
Abstract vs Final
Abstract class is a group of incomplete objects. They can't be used, because they miss some parts. E.g., I'm an abstract GPS-aware box - I know how to check my position on the map:
abstract class GpsBox implements Package {
#Override
public abstract String address();
protected Coordinates whereAmI() {
// connect to GPS and return my current position
}
}
This class, if inherited/extended by another class, can be very useful. But by itself - it is useless, since it can't have objects. Abstract classes can be building elements of final classes.
Final class is a group of complete objects, which can be used, but can't be modified. They know exactly how to work and what to do. E.g., I'm a Box that always goes to the address specified during its construction:
final class DirectBox implements Package {
private final String to;
public DirectBox(String addr) {
this.to = addr;
}
#Override
public String address() {
return this.to;
}
}
In most languages, like Java or C++, it is possible to have just a class, neither abstract nor final. Such a class can be inherited and can be instantiated. I don't think this is strictly in line with object-oriented paradigm, though.
Again, comparing interfaces with abstract classes is not correct.
The only difference is that one can participate in multiple inheritance and other cannot.
The definition of an interface has changed over time. Do you think an interface just has method declarations only and are just contracts? What about static final variables and what about default definitions after Java 8?
Interfaces were introduced to Java because of the diamond problem with multiple inheritance and that's what they actually intend to do.
Interfaces are the constructs that were created to get away with the multiple inheritance problem and can have abstract methods, default definitions and static final variables.
See Why does Java allow static final variables in interfaces when they are only intended to be contracts?.
Interface: Turn ( Turn Left, Turn Right.)
Abstract Class: Wheel.
Class: Steering Wheel, derives from Wheel, exposes Interface Turn
One is for categorizing behavior that can be offered across a diverse range of things, the other is for modelling an ontology of things.
In short the differences are the following:
Syntactical Differences Between Interface and Abstract Class:
Methods and members of an abstract class can have any visibility. All methods of an interface must be public. //Does not hold true from Java 9 anymore
A concrete child class of an Abstract Class must define all the abstract methods. An Abstract child class can have abstract methods. An interface extending another interface need not provide default implementation for methods inherited from the parent interface.
A child class can only extend a single class. An interface can extend multiple interfaces. A class can implement multiple interfaces.
A child class can define abstract methods with the same or less restrictive visibility, whereas class implementing an interface must define all interface methods as public.
Abstract Classes can have constructors but not interfaces.
Interfaces from Java 9 have private static methods.
In Interfaces now:
public static - supported
public abstract - supported
public default - supported
private static - supported
private abstract - compile error
private default - compile error
private - supported
Many junior developers make the mistake of thinking of interfaces, abstract and concrete classes as slight variations of the same thing, and choose one of them purely on technical grounds: Do I need multiple inheritance? Do I need some place to put common methods? Do I need to bother with something other than just a concrete class? This is wrong, and hidden in these questions is the main problem: "I". When you write code for yourself, by yourself, you rarely think of other present or future developers working on or with your code.
Interfaces and abstract classes, although apparently similar from a technical point of view, have completely different meanings and purposes.
Summary
An interface defines a contract that some implementation will fulfill for you.
An abstract class provides a default behavior that your implementation can reuse.
Alternative summary
An interface is for defining public APIs
An abstract class is for internal use, and for defining SPIs
On the importance of hiding implementation details
A concrete class does the actual work, in a very specific way. For example, an ArrayList uses a contiguous area of memory to store a list of objects in a compact manner which offers fast random access, iteration, and in-place changes, but is terrible at insertions, deletions, and occasionally even additions; meanwhile, a LinkedList uses double-linked nodes to store a list of objects, which instead offers fast iteration, in-place changes, and insertion/deletion/addition, but is terrible at random access. These two types of lists are optimized for different use cases, and it matters a lot how you're going to use them. When you're trying to squeeze performance out of a list that you're heavily interacting with, and when picking the type of list is up to you, you should carefully pick which one you're instantiating.
On the other hand, high level users of a list don't really care how it is actually implemented, and they should be insulated from these details. Let's imagine that Java didn't expose the List interface, but only had a concrete List class that's actually what LinkedList is right now. All Java developers would have tailored their code to fit the implementation details: avoid random access, add a cache to speed up access, or just reimplement ArrayList on their own, although it would be incompatible with all the other code that actually works with List only. That would be terrible... But now imagine that the Java masters actually realize that a linked list is terrible for most actual use cases, and decided to switch over to an array list for their only List class available. This would affect the performance of every Java program in the world, and people wouldn't be happy about it. And the main culprit is that implementation details were available, and the developers assumed that those details are a permanent contract that they can rely on. This is why it's important to hide implementation details, and only define an abstract contract. This is the purpose of an interface: define what kind of input a method accepts, and what kind of output is expected, without exposing all the guts that would tempt programmers to tweak their code to fit the internal details that might change with any future update.
An abstract class is in the middle between interfaces and concrete classes. It is supposed to help implementations share common or boring code. For example, AbstractCollection provides basic implementations for isEmpty based on size is 0, contains as iterate and compare, addAll as repeated add, and so on. This lets implementations focus on the crucial parts that differentiate between them: how to actually store and retrieve data.
APIs versus SPIs
Interfaces are low-cohesion gateways between different parts of code. They allow libraries to exist and evolve without breaking every library user when something changes internally. It's called Application Programming Interface, not Application Programming Classes. On a smaller scale, they also allow multiple developers to collaborate successfully on large scale projects, by separating different modules through well documented interfaces.
Abstract classes are high-cohesion helpers to be used when implementing an interface, assuming some level of implementation details. Alternatively, abstract classes are used for defining SPIs, Service Provider Interfaces.
The difference between an API and an SPI is subtle, but important: for an API, the focus is on who uses it, and for an SPI the focus is on who implements it.
Adding methods to an API is easy, all existing users of the API will still compile. Adding methods to an SPI is hard, since every service provider (concrete implementation) will have to implement the new methods. If interfaces are used to define an SPI, a provider will have to release a new version whenever the SPI contract changes. If abstract classes are used instead, new methods could either be defined in terms of existing abstract methods, or as empty throw not implemented exception stubs, which will at least allow an older version of a service implementation to still compile and run.
A note on Java 8 and default methods
Although Java 8 introduced default methods for interfaces, which makes the line between interfaces and abstract classes even blurrier, this wasn't so that implementations can reuse code, but to make it easier to change interfaces that serve both as an API and as an SPI (or are wrongly used for defining SPIs instead of abstract classes).
Which one to use?
Is the thing supposed to be publicly used by other parts of the code, or by other external code? Add an interface to it to hide the implementation details from the public abstract contract, which is the general behavior of the thing.
Is the thing something that's supposed to have multiple implementations with a lot of code in common? Make both an interface and an abstract, incomplete implementation.
Is there ever going to be only one implementation, and nobody else will use it? Just make it a concrete class.
"ever" is long time, you could play it safe and still add an interface on top of it.
A corollary: the other way around is often wrongly done: when using a thing, always try to use the most generic class/interface that you actually need. In other words, don't declare your variables as ArrayList theList = new ArrayList(), unless you actually have a very strong dependency on it being an array list, and no other type of list would cut it for you. Use List theList = new ArrayList instead, or even Collection theCollection = new ArrayList if the fact that it's a list, and not any other type of collection doesn't actually matter.
Not really the answer to the original question, but once you have the answer to the difference between them, you will enter the when-to-use-each dilemma:
When to use interfaces or abstract classes? When to use both?
I've limited knowledge of OOP, but seeing interfaces as an equivalent of an adjective in grammar has worked for me until now (correct me if this method is bogus!). For example, interface names are like attributes or capabilities you can give to a class, and a class can have many of them: ISerializable, ICountable, IList, ICacheable, IHappy, ...
You can find clear difference between interface and abstract class.
Interface
Interface only contains abstract methods.
Force users to implement all methods when implements the interface.
Contains only final and static variables.
Declare using interface keyword.
All methods of an interface must be defined as public.
An interface can extend or a class can implement multiple other
interfaces.
Abstract class
Abstract class contains abstract and non-abstract methods.
Does not force users to implement all methods when inherited the
abstract class.
Contains all kinds of variables including primitive and non-primitive
Declare using abstract keyword.
Methods and members of an abstract class can be defined with any
visibility.
A child class can only extend a single class (abstract or concrete).
I am 10 yrs late to the party but would like to attempt any way. Wrote a post about the same on medium few days back. Thought of posting it here.
tl;dr; When you see “Is A” relationship use inheritance/abstract class. when you see “has a” relationship create member variables. When you see “relies on external provider” implement (not inherit) an interface.
Interview Question: What is the difference between an interface and an abstract class? And how do you decide when to use what?
I mostly get one or all of the below answers:
Answer 1: You cannot create an object of abstract class and interfaces.
ZK (That’s my initials): You cannot create an object of either. So this is not a difference. This is a similarity between an interface and an abstract class. Counter
Question: Why can’t you create an object of abstract class or interface?
Answer 2: Abstract classes can have a function body as partial/default implementation.
ZK: Counter Question: So if I change it to a pure abstract class, marking all the virtual functions as abstract and provide no default implementation for any virtual function. Would that make abstract classes and interfaces the same? And could they be used interchangeably after that?
Answer 3: Interfaces allow multi-inheritance and abstract classes don’t.
ZK: Counter Question: Do you really inherit from an interface? or do you just implement an interface and, inherit from an abstract class? What’s the difference between implementing and inheriting?
These counter questions throw candidates off and make most scratch their heads or just pass to the next question. That makes me think people need help with these basic building blocks of Object-Oriented Programming.
The answer to the original question and all the counter questions is found in the English language and the UML.
You must know at least below to understand these two constructs better.
Common Noun: A common noun is a name given “in common” to things of the same class or kind. For e.g. fruits, animals, city, car etc.
Proper Noun: A proper noun is the name of an object, place or thing. Apple, Cat, New York, Honda Accord etc.
Car is a Common Noun. And Honda Accord is a Proper Noun, and probably a Composit Proper noun, a proper noun made using two nouns.
Coming to the UML Part. You should be familiar with below relationships:
Is A
Has A
Uses
Let’s consider the below two sentences.
- HondaAccord Is A Car?
- HondaAccord Has A Car?
Which one sounds correct? Plain English and comprehension. HondaAccord and Cars share an “Is A” relationship. Honda accord doesn’t have a car in it. It “is a” car. Honda Accord “has a” music player in it.
When two entities share the “Is A” relationship it’s a better candidate for inheritance. And Has a relationship is a better candidate for creating member variables.
With this established our code looks like this:
abstract class Car
{
string color;
int speed;
}
class HondaAccord : Car
{
MusicPlayer musicPlayer;
}
Now Honda doesn't manufacture music players. Or at least it’s not their main business.
So they reach out to other companies and sign a contract. If you receive power here and the output signal on these two wires it’ll play just fine on these speakers.
This makes Music Player a perfect candidate for an interface. You don’t care who provides support for it as long as the connections work just fine.
You can replace the MusicPlayer of LG with Sony or the other way. And it won’t change a thing in Honda Accord.
Why can’t you create an object of abstract classes?
Because you can’t walk into a showroom and say give me a car. You’ll have to provide a proper noun. What car? Probably a honda accord. And that’s when a sales agent could get you something.
Why can’t you create an object of an interface?
Because you can’t walk into a showroom and say give me a contract of music player. It won’t help. Interfaces sit between consumers and providers just to facilitate an agreement. What will you do with a copy of the agreement? It won’t play music.
Why do interfaces allow multiple inheritance?
Interfaces are not inherited. Interfaces are implemented.
The interface is a candidate for interaction with the external world.
Honda Accord has an interface for refueling. It has interfaces for inflating tires. And the same hose that is used to inflate a football. So the new code will look like below:
abstract class Car
{
string color;
int speed;
}
class HondaAccord : Car, IInflateAir, IRefueling
{
MusicPlayer musicPlayer;
}
And the English will read like this “Honda Accord is a Car that supports inflating tire and refueling”.
Key Points:
Abstract class can have property, Data fields ,Methods (complete /
incomplete) both.
If method or Properties define in abstract keyword that must override in derived class.(its work as a tightly coupled
functionality)
If define abstract keyword for method or properties in abstract class you can not define body of method and get/set value for
properties and that must override in derived class.
Abstract class does not support multiple inheritance.
Abstract class contains Constructors.
An abstract class can contain access modifiers for the subs, functions, properties.
Only Complete Member of abstract class can be Static.
An interface can inherit from another interface only and cannot inherit from an abstract class, where as an abstract class can inherit from another abstract class or another interface.
Advantage:
It is a kind of contract that forces all the subclasses to carry on the same hierarchies or standards.
If various implementations are of the same kind and use common behavior or status then abstract class is better to use.
If we add a new method to an abstract class then we have the option of providing default implementation and therefore all the existing code might work properly.
Its allow fast execution than interface.(interface Requires more time to find the actual method in the corresponding classes.)
It can use for tight and loosely coupling.
find details here...
http://pradeepatkari.wordpress.com/2014/11/20/interface-and-abstract-class-in-c-oops/
The shortest way to sum it up is that an interface is:
Fully abstract, apart from default and static methods; while it has definitions (method signatures + implementations) for default and static methods, it only has declarations (method signatures) for other methods.
Subject to laxer rules than classes (a class can implement multiple interfaces, and an interface can inherit from multiple interfaces). All variables are implicitly constant, whether specified as public static final or not. All members are implicitly public, whether specified as such or not.
Generally used as a guarantee that the implementing class will have the specified features and/or be compatible with any other class which implements the same interface.
Meanwhile, an abstract class is:
Anywhere from fully abstract to fully implemented, with a tendency to have one or more abstract methods. Can contain both declarations and definitions, with declarations marked as abstract.
A full-fledged class, and subject to the rules that govern other classes (can only inherit from one class), on the condition that it cannot be instantiated (because there's no guarantee that it's fully implemented). Can have non-constant member variables. Can implement member access control, restricting members as protected, private, or private package (unspecified).
Generally used either to provide as much of the implementation as can be shared by multiple subclasses, or to provide as much of the implementation as the programmer is able to supply.
Or, if we want to boil it all down to a single sentence: An interface is what the implementing class has, but an abstract class is what the subclass is.
Inheritance is used for two purposes:
To allow an object to regard parent-type data members and method implementations as its own.
To allow a reference to an objects of one type to be used by code which expects a reference to supertype object.
In languages/frameworks which support generalized multiple inheritance, there is often little need to classify a type as either being an "interface" or an "abstract class". Popular languages and frameworks, however, will allow a type to regard one other type's data members or method implementations as its own even though they allow a type to be substitutable for an arbitrary number of other types.
Abstract classes may have data members and method implementations, but can only be inherited by classes which don't inherit from any other classes. Interfaces put almost no restrictions on the types which implement them, but cannot include any data members or method implementations.
There are times when it's useful for types to be substitutable for many different things; there are other times when it's useful for objects to regard parent-type data members and method implementations as their own. Making a distinction between interfaces and abstract classes allows each of those abilities to be used in cases where it is most relevant.
Differences between abstract class and interface on behalf of real implementation.
Interface: It is a keyword and it is used to define the template or blue print of an object and it forces all the sub classes would follow the same prototype,as for as implementation, all the sub classes are free to implement the functionality as per it's requirement.
Some of other use cases where we should use interface.
Communication between two external objects(Third party integration in our application) done through Interface here Interface works as Contract.
Abstract Class: Abstract,it is a keyword and when we use this keyword before any class then it becomes abstract class.It is mainly used when we need to define the template as well as some default functionality of an object that is followed by all the sub classes and this way it removes the redundant code and one more use cases where we can use abstract class, such as we want no other classes can directly instantiate an object of the class, only derived classes can use the functionality.
Example of Abstract Class:
public abstract class DesireCar
{
//It is an abstract method that defines the prototype.
public abstract void Color();
// It is a default implementation of a Wheel method as all the desire cars have the same no. of wheels.
// and hence no need to define this in all the sub classes in this way it saves the code duplicasy
public void Wheel() {
Console.WriteLine("Car has four wheel");
}
}
**Here is the sub classes:**
public class DesireCar1 : DesireCar
{
public override void Color()
{
Console.WriteLine("This is a red color Desire car");
}
}
public class DesireCar2 : DesireCar
{
public override void Color()
{
Console.WriteLine("This is a red white Desire car");
}
}
Example Of Interface:
public interface IShape
{
// Defines the prototype(template)
void Draw();
}
// All the sub classes follow the same template but implementation can be different.
public class Circle : IShape
{
public void Draw()
{
Console.WriteLine("This is a Circle");
}
}
public class Rectangle : IShape
{
public void Draw()
{
Console.WriteLine("This is a Rectangle");
}
}
I'd like to add one more difference which makes sense.
For example, you have a framework with thousands of lines of code. Now if you want to add a new feature throughout the code using a method enhanceUI(), then it's better to add that method in abstract class rather in interface. Because, if you add this method in an interface then you should implement it in all the implemented class but it's not the case if you add the method in abstract class.
To give a simple but clear answer, it helps to set the context : you use both when you do not want to provide full implementations.
The main difference then is an interface has no implementation at all (only methods without a body) while abstract classes can have members and methods with a body as well, i.e. can be partially implemented.
usually Abstract class used for core of something but interface used for appending peripheral.
when you want to create base type for vehicle you should use abstract class but if you want to add some functionality or property that is not part of base concept of vehicle you should use interface,for example you want to add "ToJSON()" function.
interface has wide range of abstraction rather than abstract class.
you can see this in passing arguments.look this example:
if you use vehicle as argument you just can use one of its derived type (bus or car-same category-just vehicle category).
but when you use IMoveable interface as argument you have more choices.
The topic of abstract classes vs interfaces is mostly about semantics.
Abstract classes act in different programming languages often as a superset of interfaces, except one thing and that is, that you can implement multiple interfaces, but inherit only one class.
An interface defines what something must be able to do; like a contract, but does not provide an implementation of it.
An abstract class defines what something is and it commonly hosts shared code between the subclasses.
For example a Formatter should be able to format() something. The common semantics to describe something like that would be to create an interface IFormatter with a declaration of format() that acts like a contract. But IFormatter does not describe what something is, but just what it should be able to to. The common semantics to describe what something actually is, is to create a class. In this case we create an abstract class... So we create an abstract class Formatter which implements the interface. That is a very descriptive code, because we now know we have a Formatter and we now know what every Formatter must be able to do.
Also one very important topic is documentation (at least for some people...). In your documentation you probably want to explain within your subclasses what a Formatter actually is. It is very convenient to have an abstract class Formatter to which documentation you can link to within your subclasses. That is very convenient and generic. On the other hand if you do not have an abstract class Formatter and only an interface IFormatter you would have to explain in each of your subclasses what a Formatter actucally is, because an interface is a contract and you would not describe what a Formatter actually is within the documentation of an interface — at least it would be not something common to do and you would break the semantics that most developers consider to be correct.
Note: It is a very common pattern to make an abstract class implement an interface.
An abstract class is a class whose object cannot be created or a class which cannot be instantiated.
An abstract method makes a class abstract.
An abstract class needs to be inherited in order to override the methods that are declared in the abstract class.
No restriction on access specifiers.
An abstract class can have constructor and other concrete(non abstarct methods ) methods in them but interface cannot have.
An interface is a blueprint/template of methods.(eg. A house on a paper is given(interface house) and different architects will use their ideas to build it(the classes of architects implementing the house interface) .
It is a collection of abstract methods , default methods , static methods , final variables and nested classes.
All members will be either final or public , protected and private access specifiers are not allowed.No object creation is allowed.
A class has to be made in order to use the implementing interface and also to override the abstract method declared in the interface. An interface is a good example of loose coupling(dynamic polymorphism/dynamic binding)
An interface implements polymorphism and abstraction.It tells what to do but how to do is defined by the implementing class.
For Eg. There's a car company and it wants that some features to be same for all the car it is manufacturing so for that the company would be making an interface vehicle which will have those features and different classes of car(like Maruti Suzkhi , Maruti 800) will override those features(functions).
Why interface when we already have abstract class?
Java supports only multilevel and hierarchal inheritance but with the help of interface we can implement multiple inheritance.
In an interface all methods must be only definitions, not single one should be implemented.
But in an abstract class there must an abstract method with only definition, but other methods can be also in the abstract class with implementation...

is there a time you would ever need an abstract class without any abstract methods

I am playing around with abstract methods and classes...is there a time you would ever need something like this instead of just creating a concrete class ?
public abstract class AbstractClass{
public String nonAbstractMethodOne(String param1,String param2){
String param = param1 + param2;
return param;
}
public static void nonAbstractMethodTwo(String param){
System.out.println("Value of param is "+param);
}
}
Abstract classes can provide default implementations.
Consider the MouseListener in the Java API, and the corresponding abstract class MouseAdapter.
Using "pure" (non-abstract) MouseAdapter does not make sense: all methods are implemented as no-ops. However, the class is very convenient to use as abstract parent for a concrete listener, because you only have to override the one method that you are interested in, instead of having to reimplemet lots of methods as no-ops.
It's not necessary to make MouseAdapter abstract. It is a complete class. It just doesn't make sense to use it without overriding at least one method. But otherwise, you would need to have MouseListenerWithoutMouseClicked, if you wanted it to have at least one abstract method.
Another example would be the state pattern. The interface defines the actual API. The abstract class would implement (some or all) transition functions as the default operation. Each state would only override those methods, where it diverts from the default behavior.
In general, any "abstract" method declaration could (and often: should) be moved to an interface instead. The only reason why I often declare them as #Override abstract nevertheless is documentation purposes, to emphasize which methods need to be implemented for a concrete instance.
Any method inherited from an interface will be effectively declare an abstract method.
When you want to provide default implementations for methods that subclasses should override. Particularly when the default implementation is "do nothing" or that owns an "unimplemented" exception.
An example from the JDK is HttpServet, which has methods to handle each of the four http methods (get, post, put and delete) whose default implementations throw a ServletException , forcing the subclass to override those methods they want to implement, but only those. Methods not implemented explode if called. This makes good sense, because it cleanly throws an exception if a web client hits the server with an unexpected web method.
You could do this but i would argue against it. Class hierarchies are very inflexible, and since this code doesn't take advantage of abstract methods I would look for an alternative way to implement this.
The point of the abstract class is that it provides a template where the superclass defines abstract methods and calls them in its own methods, so the subclasses specify how the details happen. Nothing about this example requires inheritance, so I would do without it.
The example Bohemian brings up is that of the adapter class, which is a convenience that provides default implementations of multiple methods so the class that you write doesn't have to provide implementations of methods that you don't care about anyway. That would be the best time to have an abstract class without abstract methods (although whether the adapter is abstract doesn't really matter that much).

interface and overriding the methods of the interface

I'm 13 and quite new to java. What I can't seem to figure out is how NOT to implement overriding methods in a class from an interface because they are references. I don't want to make a new copy, and I can't just make (insert Class here) extend (the class the interface gets some of its methods from). So I implement it and what do i get?
err: The type Threadmanager must implement the inherited abstract method (the method)
and then it has a list, one of which says "implement uninherited methods".
But I dont want to implement any methods! I want to use them!
Threadmanager tm;
AwtUtils manager = tm;
manager.drawImage(/*params*/)
The above is what i want, the following is what i don't want:
#override
public void drawImage(/*params*/){
...
}
I don't want to redefine the methods in the interface, simply just use them. and I cant have class ThreadManager extends Debugger(.java) because it already extends something. I thought interfaces were a way you could use those methods in another class without inheriting them through "class foo extends bar"
By the way, all the methods referenced in the interface are references to methods in my class Debugger.java which doubles up as a debugger and the game library.
You cannot use methods from an interface. An interface has no code, only definitions. Think of it as a functionality contract that classes implementing it have to fulfill.
For example
public interface Example {
public void method1ToImplement();
public int method2ToImplement(final String input);
}
This is a contract that all classes implementing this interface must fulfill. This means any instantiable class that implements Example has to implement public void method1ToImplement() and public int method2ToImplement(String). This is because you're stating this class fulfills this functionality, so you must implement this funcionality because as of now there's no code for this functionality in your class since the interface contains no code. For example, you cannot use the methods in List, in fact you cannot even create a new List because it's an interface. But you can create and ArrayList and use its methods because it's a non-abstract class implementing the List interface.
Maybe you're confused because you saw somewhere else you can use already implemented methods, for example toString() (which is already implemented in all classes). This is because this method is not defined in an interface but by a parent class (in case of toString() it's Object that implements it).
TL;DR: A class implementing an interface must implement its methods unless it's abstract.
If I'm understanding you right, you want a class to implement an interface, but don't implement its methods. If that's so, you cannot. Implementation of interface methods is mandatory, unless you're writing an abstract class.
I'm guessing there's something missing on your question, so please, provide some code of your Interface and Class so that we could give you a better answer.
I think you're confused about what an interface does. An interface simply defines a contract such that any object which implements the interface must define the methods in the interface. If you have an abstract class, then you must implement the abstract methods of said class for any class that extends the abstract class. The only exception to this is when you extend from a class that has already implemented the abstract methods or interface and you don't want/need to redefine them for subclasses.
You say that you don't want to implement the methods, you just want to use them, but you can't use methods that don't exist. Implementing an interface does not magically define the logic in the methods in the interface--that is your job. Again, it simply states that any objects that implement the interface will have the interfaces' methods defined.
One of the nice things about interfaces is the following: Let's assume that we have a collection of objects that all implement a particular interface, then we can call any method from the interface on all those objects. NB: we can group said objects together by having an array, ArrayList, or what have you that take the interface as the type parameter, ie ArrayList<MyInterface>
More specific example:
Let's consider a Shape interface that solely includes the header for an area method. We can have a bunch of difference types of shapes that implement the Shape interface (circles, squares, etc). In each shape class, we define a method to get the area for said shape. Now, if we have an ArrayList<Shape> shapes =... we can put different types of shapes into that list and do the following:
for (Shape s : shapes)
{
System.out.println(s.area());
}

Java: Make a method abstract for each extending class

Is there any keyword or design pattern for doing this?
Please check the update
public abstract class Root
{
public abstract void foo();
}
public abstract class SubClass extends Root
{
public void foo()
{
// Do something
//---------------- Update -------------------//
// This method contains important code
// that is needed when I'm using a instance
// of SubClass and it is no instance of any
// other class extending SubClass
}
}
public class SubberClass extends SubClass
{
// Here is it not necessary to override foo()
// So is there a way to make this necessary?
// A way to obligate the developer make again the override
}
Thanks
If you are doing this, then you are probably abusing inheritance; inheritance, contrary to popular myth, is not intended for making custom hooks/handlers, but rather to enable alternative implementations.
If you want your user to provide some sort of function/hook/callback, then you should define an interface that provides just those methods that you need your user to define. Then you should require the user to pass in an instance of that interface to your object's constructor or passed into the function that needs it.
Aggregation, delegation, and composition are frequently better and safer design patterns than inheritance; forcing other users to inherit from your class, is incredibly risky, as it provides the user with many opportunities to violate the contract of your class or to invalidate the invariant of your base class.
If every class subclassing SubClass has to override foo() then why provide an implementation at all in SubClass? You can simply remove the method definition from SubClass and then all subclasses will be forced to provide an implementation.
If you really want to, you can re-declare foo as abstract.
public abstract class SubberClass extends SubClass
{
public abstract void foo();
}
Instead of overriding foo() in SubClass, create a new method fooImpl() and leave foo() abstract. This way, all classes must implement foo() but you can simply implement it by calling fooImpl() if that is already enough.
Yeah it is not necessary to override foo() in SubberClass.
You can't have it both ways. You can't provide a method with a default implementation AND require child classes override it. Instead of declaring the method as abstract in Root, you could define an interface (IFoo) with the method declared and then provide an abstract class that implements the interface. That would still require a concrete child class but would not require a method override.
Most of the time you see this type of pattern, an interface is used to define a set of methods and an abstract base class provides some default implementations for some but not all methods from the interface. This requires the concrete child class to provide code for the remaining methods and the option to override the default behaviors.
In any case, you can't provide a default behavior for a single method and require child classes to override that same method.

Categories

Resources