Related
I need to count the number of numbers on the right that are less than the number arr[i]. My problem is that the stack overflows at large sizes and I can't solve it in any way. Please tell me how can I refactor my code to avoid the error StackOverflow ?
public class Smaller {
public static int[] smaller(int[] unsorted) {
int[] result = new int[unsorted.length];
for (int i = 0; i < unsorted.length; i++) {
result[i] = countSmaller(unsorted[i], 0, i + 1, unsorted);
}
return result;
}
private static int countSmaller(int currentNumber, int count, int index, int[] arr) {
if (index >= arr.length) {
return count;
}
return arr[index] < currentNumber
? countSmaller(currentNumber, count + 1, index + 1, arr)
: countSmaller(currentNumber, count, index + 1, arr);
}
}
I agree with comments questioning whether recursion is your best solution here, but if it's a requirement you can avoid stack overflow by chopping subproblems in half rather than whittling them down one-by-one. The logic is that the count in the remaining data will be the sum of the count in the first half plus the count in the second half of the remaining data. This reduces the stack growth from O(n) to O(log n).
I originally did a Python implementation due to not having a Java compiler installed (plus my Java skills being rusty), but found an online java compiler at tutorialspoint.com. Here's an implementation of the divide and conquer logic described in the previous paragraph:
public class Smaller {
public static int[] smaller(int[] unsorted) {
int[] result = new int[unsorted.length];
for (int i = 0; i < unsorted.length; i++) {
result[i] = countSmaller(unsorted[i], i+1, unsorted.length-1, unsorted);
}
return result;
}
private static int countSmaller(int threshold, int start, int end, int[] unsorted) {
if (start < end) {
int mid = start + (end - start) / 2;
int count = countSmaller(threshold, start, mid, unsorted);
count += countSmaller(threshold, mid+1, end, unsorted);
return count;
} else if ((start == end) && (unsorted[start] < threshold)) {
return 1;
}
return 0;
}
}
With O(log n) stack growth, this should be able to handle ridonculously big arrays. Since the algorithm as a whole is O(n2), run time will limit you long before recursive stack limitations will.
Original Python Implementation
Sorry for showing this in Python, but I don't have a Java compiler and I didn't want to risk non-functioning code. The following does the trick and should be easy for you to translate:
def smaller(unsorted):
result = []
for i in range(len(unsorted)):
result.append(countSmaller(unsorted[i], i+1, len(unsorted)-1, unsorted))
return result
def countSmaller(threshold, start, end, unsorted):
if start < end:
mid = start + (end - start) // 2 # double slash is integer division
count = countSmaller(threshold, start, mid, unsorted)
count += countSmaller(threshold, mid+1, end, unsorted)
return count
elif start == end and unsorted[start] < threshold:
return 1
return 0
data = [10, 9, 8, 11, 7, 6]
print(smaller(data)) # [4, 3, 2, 2, 1, 0]
print(smaller([])) # []
print(smaller([42])) # [0]
I'm solving Codility questions as practice and couldn't answer one of the questions. I found the answer on the Internet but I don't get how this algorithm works. Could someone walk me through it step-by-step?
Here is the question:
/*
You are given integers K, M and a non-empty zero-indexed array A consisting of N integers.
Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements.
The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2
A[1] = 1
A[2] = 5
A[3] = 1
A[4] = 2
A[5] = 2
A[6] = 2
The array can be divided, for example, into the following blocks:
[2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
[2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
[2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
[2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
class Solution { public int solution(int K, int M, int[] A); }
that, given integers K, M and a non-empty zero-indexed array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2
A[1] = 1
A[2] = 5
A[3] = 1
A[4] = 2
A[5] = 2
A[6] = 2
the function should return 6, as explained above. Assume that:
N and K are integers within the range [1..100,000];
M is an integer within the range [0..10,000];
each element of array A is an integer within the range [0..M].
Complexity:
expected worst-case time complexity is O(N*log(N+M));
expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
*/
And here is the solution I found with my comments about parts which I don't understand:
public static int solution(int K, int M, int[] A) {
int lower = max(A); // why lower is max?
int upper = sum(A); // why upper is sum?
while (true) {
int mid = (lower + upper) / 2;
int blocks = calculateBlockCount(A, mid); // don't I have specified number of blocks? What blocks do? Don't get that.
if (blocks < K) {
upper = mid - 1;
} else if (blocks > K) {
lower = mid + 1;
} else {
return upper;
}
}
}
private static int calculateBlockCount(int[] array, int maxSum) {
int count = 0;
int sum = array[0];
for (int i = 1; i < array.length; i++) {
if (sum + array[i] > maxSum) {
count++;
sum = array[i];
} else {
sum += array[i];
}
}
return count;
}
// returns sum of all elements in an array
private static int sum(int[] input) {
int sum = 0;
for (int n : input) {
sum += n;
}
return sum;
}
// returns max value in an array
private static int max(int[] input) {
int max = -1;
for (int n : input) {
if (n > max) {
max = n;
}
}
return max;
}
So what the code does is using a form of binary search (How binary search works is explained quite nicely here, https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/. It also uses an example quite similar to your problem.). Where you search for the minimum sum every block needs to contain. In the example case, you need the divide the array in 3 parts
When doing a binary search you need to define 2 boundaries, where you are certain that your answer can be found in between. Here, the lower boundary is the maximum value in the array (lower). For the example, this is 5 (this is if you divide your array in 7 blocks). The upper boundary (upper) is 15, which is the sum of all the elements in the array (this is if you divide the array in 1 block.)
Now comes the search part: In solution() you start with your bounds and mid point (10 for the example).
In calculateBlockCount you count (count ++ does that) how many blocks you can make if your sum is a maximum of 10 (your middle point/ or maxSum in calculateBlockCount).
For the example 10 (in the while loop) this is 2 blocks, now the code returns this (blocks) to solution. Then it checks whether is less or more than K, which is the number of blocks you want. If its less than K your mid point is high because you're putting to many array elements in your blocks. If it's more than K, than your mid point is too high and you're putting too little array elements in your array.
Now after the checking this, it halves the solution space (upper = mid-1).
This happens every loop, it halves the solution space which makes it converge quite quickly.
Now you keep going through your while adjusting the mid, till this gives the amount blocks which was in your input K.
So to go though it step by step:
Mid =10 , calculateBlockCount returns 2 blocks
solution. 2 blocks < K so upper -> mid-1 =9, mid -> 7 (lower is 5)
Mid =7 , calculateBlockCount returns 2 blocks
solution() 2 blocks < K so upper -> mid-1 =6, mid -> 5 (lower is 5, cast to int makes it 5)
Mid =5 , calculateBlockCount returns 4 blocks
solution() 4 blocks < K so lower -> mid+1 =6, mid -> 6 (lower is 6, upper is 6
Mid =6 , calculateBlockCount returns 3 blocks
So the function returns mid =6....
Hope this helps,
Gl learning to code :)
Edit. When using binary search a prerequisite is that the solution space is a monotonic function. This is true in this case as when K increases the sum is strictly decreasing.
Seems like your solution has some problems. I rewrote it as below:
class Solution {
public int solution(int K, int M, int[] A) {
// write your code in Java SE 8
int high = sum(A);
int low = max(A);
int mid = 0;
int smallestSum = 0;
while (high >= low) {
mid = (high + low) / 2;
int numberOfBlock = blockCount(mid, A);
if (numberOfBlock > K) {
low = mid + 1;
} else if (numberOfBlock <= K) {
smallestSum = mid;
high = mid - 1;
}
}
return smallestSum;
}
public int sum(int[] A) {
int total = 0;
for (int i = 0; i < A.length; i++) {
total += A[i];
}
return total;
}
public int max(int[] A) {
int max = 0;
for (int i = 0; i < A.length; i++) {
if (max < A[i]) max = A[i];
}
return max;
}
public int blockCount(int max, int[] A) {
int current = 0;
int count = 1;
for (int i = 0; i< A.length; i++) {
if (current + A[i] > max) {
current = A[i];
count++;
} else {
current += A[i];
}
}
return count;
}
}
This is helped me in case anyone else finds it helpful.
Think of it as a function: given k (the block count) we get some largeSum.
What is the inverse of this function? It's that given largeSum we get a k. This inverse function is implemented below.
In solution() we keep plugging guesses for largeSum into the inverse function until it returns the k given in the exercise.
To speed up the guessing process, we use binary search.
public class Problem {
int SLICE_MAX = 100 * 1000 + 1;
public int solution(int blockCount, int maxElement, int[] array) {
// maxGuess is determined by looking at what the max possible largeSum could be
// this happens if all elements are m and the blockCount is 1
// Math.max is necessary, because blockCount can exceed array.length,
// but this shouldn't lower maxGuess
int maxGuess = (Math.max(array.length / blockCount, array.length)) * maxElement;
int minGuess = 0;
return helper(blockCount, array, minGuess, maxGuess);
}
private int helper(int targetBlockCount, int[] array, int minGuess, int maxGuess) {
int guess = minGuess + (maxGuess - minGuess) / 2;
int resultBlockCount = inverseFunction(array, guess);
// if resultBlockCount == targetBlockCount this is not necessarily the solution
// as there might be a lower largeSum, which also satisfies resultBlockCount == targetBlockCount
if (resultBlockCount <= targetBlockCount) {
if (minGuess == guess) return guess;
// even if resultBlockCount == targetBlockCount
// we keep searching for potential lower largeSum that also satisfies resultBlockCount == targetBlockCount
// note that the search range below includes 'guess', as this might in fact be the lowest possible solution
// but we need to check in case there's a lower one
return helper(targetBlockCount, array, minGuess, guess);
} else {
return helper(targetBlockCount, array, guess + 1, maxGuess);
}
}
// think of it as a function: given k (blockCount) we get some largeSum
// the inverse of the above function is that given largeSum we get a k
// in solution() we will keep guessing largeSum using binary search until
// we hit k given in the exercise
int inverseFunction(int[] array, int largeSumGuess) {
int runningSum = 0;
int blockCount = 1;
for (int i = 0; i < array.length; i++) {
int current = array[i];
if (current > largeSumGuess) return SLICE_MAX;
if (runningSum + current <= largeSumGuess) {
runningSum += current;
} else {
runningSum = current;
blockCount++;
}
}
return blockCount;
}
}
From anhtuannd's code, I refactored using Java 8. It is slightly slower. Thanks anhtuannd.
IntSummaryStatistics summary = Arrays.stream(A).summaryStatistics();
long high = summary.getSum();
long low = summary.getMax();
long result = 0;
while (high >= low) {
long mid = (high + low) / 2;
AtomicLong blocks = new AtomicLong(1);
Arrays.stream(A).reduce(0, (acc, val) -> {
if (acc + val > mid) {
blocks.incrementAndGet();
return val;
} else {
return acc + val;
}
});
if (blocks.get() > K) {
low = mid + 1;
} else if (blocks.get() <= K) {
result = mid;
high = mid - 1;
}
}
return (int) result;
I wrote a 100% solution in python here. The result is here.
Remember: You are searching the set of possible answers not the array A
In the example given they are searching for possible answers. Consider [5] as 5 being the smallest max value for a block. And consider [2, 1, 5, 1, 2, 2, 2] 15 as the largest max value for a block.
Mid = (5 + 15) // 2. Slicing out blocks of 10 at a time won't create more than 3 blocks in total.
Make 10-1 the upper and try again (5+9)//2 is 7. Slicing out blocks of 7 at a time won't create more than 3 blocks in total.
Make 7-1 the upper and try again (5+6)//2 is 5. Slicing out blocks of 5 at a time will create more than 3 blocks in total.
Make 5+1 the lower and try again (6+6)//2 is 6. Slicing out blocks of 6 at a time won't create more than 3 blocks in total.
Therefore 6 is the lowest limit to impose on the sum of a block that will permit breaking into 3 blocks.
I understand the concept of quicksort, and most of the implementations I have seen largely make sense to me. However the one by Robert Sedgewick does not, his implementation is along the lines of:
private void sort(int lo, int hi) {
if (hi <= lo) return;
int j = partition(lo, hi);
sort(lo, j-1);
sort(j+1, hi);
}
private int partition(int lo, int hi) {
int start = lo;
int partition = hi + 1;
int pivot = theArray[lo];
while (true) {
// left to right
while (less(theArray[++start], pivot))
if (start == hi) break;
// right to left
while (less(pivot, theArray[--partition]))
if (partition == lo) break;
// check if pointers cross
if (start >= partition) break;
exch(theArray, start, partition);
}
// place pivot at partition
exch(theArray, lo, partition);
return partition;
}
private boolean less(int v, int w) {
return v < w;
}
private void exch(int[] a, int i, int j) {
int swap = a[i];
a[i] = a[j];
a[j] = swap;
}
I understand all of it except for the partition function. Particularly what happens in the while(true) portion
Let's make some "brain debug"
int pivot = theArray[lo];
Fixes 1st element as pivot value
while (less(theArray[++start], pivot))
if (start == hi) break;
Finds the first element for exchange - the leftmost one bigger than pivot
while (less(pivot, theArray[--partition]))
if (partition == lo) break;
Finds the second element for exchange - the rightmost one less than pivot
if (start >= partition) break;
Breaks while (true) loop when there is no more elements to exchange
exch(theArray, start, partition);
Exchanges elements found
Example [5 3 8 9 2]:
5 is pivot
first 'bad' element is 8
second one is 2
they are exchanged
[5 3 2 9 8]
now first index stops at 4 (hi), second index stops at 2, loop breaks, and 5 exchanges with 2.
Result: [2 3 5 9 8]
Subranges (2,3,5) and (9,8) are new partitions
For refreshing some Java I tried to implement a quicksort (inplace) algorithm that can sort integer arrays. Following is the code I've got so far. You can call it by sort(a,0,a.length-1).
This code obviously fails (gets into an infinite loop) if both 'pointers' i,j point each to an array entry that have the same values as the pivot. The pivot element v is always the right most of the current partition (the one with the greatest index).
But I just cannot figure out how to avoid that, does anyone see a solution?
static void sort(int a[], int left, int right) {
if (right > left){
int i=left, j=right-1, tmp;
int v = a[right]; //pivot
int counter = 0;
do {
while(a[i]<v)i++;
while(j>0 && a[j]>v)j--;
if( i < j){
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
} while(i < j);
tmp = a[right];
a[right] = a[i];
a[i] = tmp;
sort(a,left,i-1);
sort(a,i+1,right);
}
}
When preforming a Quicksort I strongly suggest making a separate method for partitioning to make the code easier to follow (I'll show an example below). On top of this a good way of avoiding worst case run time is shuffling the array you're sorting prior to preforming the quick sort. Also I used the first index as the partitioning item instead of the last.
For example:
public static void sort (int[] a)
{
StdRandom.shuffle(a);
sort(a, 0, a.length - 1);
}
private static void sort(int[] a, int lo, int hi)
{
if (hi <= lo) return;
int j = partition(a, lo, hi) // the addition of a partitioning method
sort(a, lo, j-1);
sort(a, j+1, hi);
}
private static int partition(int[] a, int lo, int hi)
{
int i = lo, j = hi + 1, tmp = 0;
int v = a[lo];
while (true)
{
while (a[i++] < v) if (i == hi) break;
while (v < a[j--]) if (j == lo) break;
if (i >= j) break;
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
tmp = a[lo];
a[lo] = a[j];
a[j] = temp;
return j;
}
On top of this if you want a really good example on how Quicksort works (as a refresher) see here.
This should work (will check for correctness in a bit, it works!):
EDIT: I previously made a mistake in error checking. I forgot to add 2 more conditions, here is the amended code.
public static void main (String[] args) throws java.lang.Exception
{
int b[] = {10, 9, 8, 7, 7, 7, 7, 3, 2, 1};
sort(b,0,b.length-1);
System.out.println(Arrays.toString(b));
}
static void sort(int a[], int left, int right) {
if (right > left){
int i=left, j=right, tmp;
//we want j to be right, not right-1 since that leaves out a number during recursion
int v = a[right]; //pivot
do {
while(a[i]<v)
i++;
while(a[j]>v)
//no need to check for 0, the right condition for recursion is the 2 if statements below.
j--;
if( i <= j){ //your code was i<j
tmp = a[i];
a[i] = a[j];
a[j] = tmp;
i++;
j--;
//we need to +/- both i,j, else it will stick at 0 or be same number
}
} while(i <= j); //your code was i<j, hence infinite loop on 0 case
//you had a swap here, I don't think it's needed.
//this is the 2 conditions we need to avoid infinite loops
// check if left < j, if it isn't, it's already sorted. Done
if(left < j) sort(a,left,j);
//check if i is less than right, if it isn't it's already sorted. Done
// here i is now the 'middle index', the slice for divide and conquer.
if(i < right) sort(a,i,right);
}
}
This Code in the IDEOne online compiler
Basically we make sure that we also swap the value if the value of i/j is the same as the pivot, and break out of the recursion.
Also there was a check in the pseudocode for the length, as if we have an array of just 1 item it's already sorted (we forgot the base case), I thought we needed that but since you pass in the indexes and the entire array, not the subarray, we just increment i and j so the algorithm won't stick at 0 (they're done sorting) but still keep sorting an array of 1. :)
Also, we had to add 2 conditions to check if the array is already sorted for the recursive calls. without it, we'll end up sorting an already sorted array forever, hence another infinite loop. see how I added checks for if left less than j and if i less than right. Also, at that point of passing in i and j, i is effectively the middle index we split for divide and conquer, and j would be the value right before the middle value.
The pseudocode for it is taken from RosettaCode:
function quicksort(array)
if length(array) > 1
pivot := select any element of array
left := first index of array
right := last index of array
while left ≤ right
while array[left] < pivot
left := left + 1
while array[right] > pivot
right := right - 1
if left ≤ right
swap array[left] with array[right]
left := left + 1
right := right - 1
quicksort(array from first index to right)
quicksort(array from left to last index)
Reference: This SO question
Also read this for a quick refresher, it's implemented differently with an oridnary while loop
This was fun :)
Heres some simple code I wrote that doesn't initialize to many pointers and gets the job done in a simple manner.
public int[] quickSort(int[] x ){
quickSortWorker(x,0,x.length-1);
return x;
}
private int[] quickSortWorker(int[] x, int lb, int ub){
if (lb>=ub) return x;
int pivotIndex = lb;
for (int i = lb+1 ; i<=ub; i++){
if (x[i]<=x[pivotIndex]){
swap(x,pivotIndex,i);
swap(x,i,pivotIndex+1);
pivotIndex++;
}
}
quickSortWorker(x,lb,pivotIndex-1);
quickSortWorker(x,pivotIndex+1,ub);
return x;
}
private void swap(int[] x,int a, int b){
int tmp = x[a];
x[a]=x[b];
x[b]=tmp;
}
This question already has answers here:
Finding multiple entries with binary search
(15 answers)
Closed 3 years ago.
I've been tasked with creating a method that will print all the indices where value x is found in a sorted array.
I understand that if we just scanned through the array from 0 to N (length of array) it would have a running time of O(n) worst case. Since the array that will be passed into the method will be sorted, I'm assuming that I can take advantage of using a Binary Search since this will be O(log n). However, this only works if the array has unique values. Since the Binary Search will finish after the first "find" of a particular value. I was thinking of doing a Binary Search for finding x in the sorted array, and then checking all values before and after this index, but then if the array contained all x values, it doesn't seem like it would be that much better.
I guess what I'm asking is, is there a better way to find all the indices for a particular value in a sorted array that is better than O(n)?
public void PrintIndicesForValue42(int[] sortedArrayOfInts)
{
// search through the sortedArrayOfInts
// print all indices where we find the number 42.
}
Ex: sortedArray = { 1, 13, 42, 42, 42, 77, 78 } would print: "42 was found at Indices: 2, 3, 4"
You will get the result in O(lg n)
public static void PrintIndicesForValue(int[] numbers, int target) {
if (numbers == null)
return;
int low = 0, high = numbers.length - 1;
// get the start index of target number
int startIndex = -1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] > target) {
high = mid - 1;
} else if (numbers[mid] == target) {
startIndex = mid;
high = mid - 1;
} else
low = mid + 1;
}
// get the end index of target number
int endIndex = -1;
low = 0;
high = numbers.length - 1;
while (low <= high) {
int mid = (high - low) / 2 + low;
if (numbers[mid] > target) {
high = mid - 1;
} else if (numbers[mid] == target) {
endIndex = mid;
low = mid + 1;
} else
low = mid + 1;
}
if (startIndex != -1 && endIndex != -1){
for(int i=0; i+startIndex<=endIndex;i++){
if(i>0)
System.out.print(',');
System.out.print(i+startIndex);
}
}
}
Well, if you actually do have a sorted array, you can do a binary search until you find one of the indexes you're looking for, and from there, the rest should be easy to find since they're all next to each-other.
once you've found your first one, than you go find all the instances before it, and then all the instances after it.
Using that method you should get roughly O(lg(n)+k) where k is the number of occurrences of the value that you're searching for.
EDIT:
And, No, you will never be able to access all k values in anything less than O(k) time.
Second edit: so that I can feel as though I'm actually contributing something useful:
Instead of just searching for the first and last occurrences of X than you can do a binary search for the first occurence and a binary search for the last occurrence. which will result in O(lg(n)) total. once you've done that, you'll know that all the between indexes also contain X(assuming that it's sorted)
You can do this by searching checking if the value is equal to x , AND checking if the value to the left(or right depending on whether you're looking for the first occurrence or the last occurrence) is equal to x.
public void PrintIndicesForValue42(int[] sortedArrayOfInts) {
int index_occurrence_of_42 = left = right = binarySearch(sortedArrayOfInts, 42);
while (left - 1 >= 0) {
if (sortedArrayOfInts[left-1] == 42)
left--;
}
while (right + 1 < sortedArrayOfInts.length) {
if (sortedArrayOfInts[right+1] == 42)
right++;
}
System.out.println("Indices are from: " + left + " to " + right);
}
This would run in O(log(n) + #occurrences)
Read and understand the code. It's simple enough.
Below is the java code which returns the range for which the search-key is spread in the given sorted array:
public static int doBinarySearchRec(int[] array, int start, int end, int n) {
if (start > end) {
return -1;
}
int mid = start + (end - start) / 2;
if (n == array[mid]) {
return mid;
} else if (n < array[mid]) {
return doBinarySearchRec(array, start, mid - 1, n);
} else {
return doBinarySearchRec(array, mid + 1, end, n);
}
}
/**
* Given a sorted array with duplicates and a number, find the range in the
* form of (startIndex, endIndex) of that number. For example,
*
* find_range({0 2 3 3 3 10 10}, 3) should return (2,4). find_range({0 2 3 3
* 3 10 10}, 6) should return (-1,-1). The array and the number of
* duplicates can be large.
*
*/
public static int[] binarySearchArrayWithDup(int[] array, int n) {
if (null == array) {
return null;
}
int firstMatch = doBinarySearchRec(array, 0, array.length - 1, n);
int[] resultArray = { -1, -1 };
if (firstMatch == -1) {
return resultArray;
}
int leftMost = firstMatch;
int rightMost = firstMatch;
for (int result = doBinarySearchRec(array, 0, leftMost - 1, n); result != -1;) {
leftMost = result;
result = doBinarySearchRec(array, 0, leftMost - 1, n);
}
for (int result = doBinarySearchRec(array, rightMost + 1, array.length - 1, n); result != -1;) {
rightMost = result;
result = doBinarySearchRec(array, rightMost + 1, array.length - 1, n);
}
resultArray[0] = leftMost;
resultArray[1] = rightMost;
return resultArray;
}
Another result for log(n) binary search for leftmost target and rightmost target. This is in C++, but I think it is quite readable.
The idea is that we always end up when left = right + 1. So, to find leftmost target, if we can move right to rightmost number which is less than target, left will be at the leftmost target.
For leftmost target:
int binary_search(vector<int>& nums, int target){
int n = nums.size();
int left = 0, right = n - 1;
// carry right to the greatest number which is less than target.
while(left <= right){
int mid = (left + right) / 2;
if(nums[mid] < target)
left = mid + 1;
else
right = mid - 1;
}
// when we are here, right is at the index of greatest number
// which is less than target and since left is at the next,
// it is at the first target's index
return left;
}
For the rightmost target, the idea is very similar:
int binary_search(vector<int>& nums, int target){
while(left <= right){
int mid = (left + right) / 2;
// carry left to the smallest number which is greater than target.
if(nums[mid] <= target)
left = mid + 1;
else
right = mid - 1;
}
// when we are here, left is at the index of smallest number
// which is greater than target and since right is at the next,
// it is at the first target's index
return right;
}
I came up with the solution using binary search, only thing is to do the binary search on both the sides if the match is found.
public static void main(String[] args) {
int a[] ={1,2,2,5,5,6,8,9,10};
System.out.println(2+" IS AVAILABLE AT = "+findDuplicateOfN(a, 0, a.length-1, 2));
System.out.println(5+" IS AVAILABLE AT = "+findDuplicateOfN(a, 0, a.length-1, 5));
int a1[] ={2,2,2,2,2,2,2,2,2};
System.out.println(2+" IS AVAILABLE AT = "+findDuplicateOfN(a1, 0, a1.length-1, 2));
int a2[] ={1,2,3,4,5,6,7,8,9};
System.out.println(10+" IS AVAILABLE AT = "+findDuplicateOfN(a2, 0, a2.length-1, 10));
}
public static String findDuplicateOfN(int[] a, int l, int h, int x){
if(l>h){
return "";
}
int m = (h-l)/2+l;
if(a[m] == x){
String matchedIndexs = ""+m;
matchedIndexs = matchedIndexs+findDuplicateOfN(a, l, m-1, x);
matchedIndexs = matchedIndexs+findDuplicateOfN(a, m+1, h, x);
return matchedIndexs;
}else if(a[m]>x){
return findDuplicateOfN(a, l, m-1, x);
}else{
return findDuplicateOfN(a, m+1, h, x);
}
}
2 IS AVAILABLE AT = 12
5 IS AVAILABLE AT = 43
2 IS AVAILABLE AT = 410236578
10 IS AVAILABLE AT =
I think this is still providing the results in O(logn) complexity.
A Hashmap might work, if you're not required to use a binary search.
Create a HashMap where the Key is the value itself, and then value is an array of indices where that value is in the array. Loop through your array, updating each array in the HashMap for each value.
Lookup time for the indices for each value will be ~ O(1), and creating the map itself will be ~ O(n).
Find_Key(int arr[], int size, int key){
int begin = 0;
int end = size - 1;
int mid = end / 2;
int res = INT_MIN;
while (begin != mid)
{
if (arr[mid] < key)
begin = mid;
else
{
end = mid;
if(arr[mid] == key)
res = mid;
}
mid = (end + begin )/2;
}
return res;
}
Assuming the array of ints is in ascending sorted order; Returns the index of the first index of key occurrence or INT_MIN. Runs in O(lg n).
It is using Modified Binary Search. It will be O(LogN). Space complexity will be O(1).
We are calling BinarySearchModified two times. One for finding start index of element and another for finding end index of element.
private static int BinarySearchModified(int[] input, double toSearch)
{
int start = 0;
int end = input.Length - 1;
while (start <= end)
{
int mid = start + (end - start)/2;
if (toSearch < input[mid]) end = mid - 1;
else start = mid + 1;
}
return start;
}
public static Result GetRange(int[] input, int toSearch)
{
if (input == null) return new Result(-1, -1);
int low = BinarySearchModified(input, toSearch - 0.5);
if ((low >= input.Length) || (input[low] != toSearch)) return new Result(-1, -1);
int high = BinarySearchModified(input, toSearch + 0.5);
return new Result(low, high - 1);
}
public struct Result
{
public int LowIndex;
public int HighIndex;
public Result(int low, int high)
{
LowIndex = low;
HighIndex = high;
}
}
public void printCopies(int[] array)
{
HashMap<Integer, Integer> memberMap = new HashMap<Integer, Integer>();
for(int i = 0; i < array.size; i++)
if(!memberMap.contains(array[i]))
memberMap.put(array[i], 1);
else
{
int temp = memberMap.get(array[i]); //get the number of occurances
memberMap.put(array[i], ++temp); //increment his occurance
}
//check keys which occured more than once
//dump them in a ArrayList
//return this ArrayList
}
Alternatevely, instead of counting the number of occurances, you can put their indices in a arraylist and put that in the map instead of the count.
HashMap<Integer, ArrayList<Integer>>
//the integer is the value, the arraylist a list of their indices
public void printCopies(int[] array)
{
HashMap<Integer, ArrayList<Integer>> memberMap = new HashMap<Integer, ArrayList<Integer>>();
for(int i = 0; i < array.size; i++)
if(!memberMap.contains(array[i]))
{
ArrayList temp = new ArrayList();
temp.add(i);
memberMap.put(array[i], temp);
}
else
{
ArrayList temp = memberMap.get(array[i]); //get the lsit of indices
temp.add(i);
memberMap.put(array[i], temp); //update the index list
}
//check keys which return lists with length > 1
//handle the result any way you want
}
heh, i guess this will have to be posted.
int predefinedDuplicate = //value here;
int index = Arrays.binarySearch(array, predefinedDuplicate);
int leftIndex, rightIndex;
//search left
for(leftIndex = index; array[leftIndex] == array[index]; leftIndex--); //let it run thru it
//leftIndex is now the first different element to the left of this duplicate number string
for(rightIndex = index; array[rightIndex] == array[index]; rightIndex++); //let it run thru it
//right index contains the first different element to the right of the string
//you can arraycopy this [leftIndex+1, rightIndex-1] string or just print it
for(int i = leftIndex+1; i<rightIndex; i++)
System.out.println(array[i] + "\t");