I'm trying to count the number of Ones in the binary representation of an integer. I need to do this recursively. I think my logic is correct but I continue to get a stack overflow. I'm on day 2 troubleshooting. Here's my code:
static int CountRecursive(int n) {
int sum = 0;
if (n >= 0) {
if (n%2 == 1) {
sum ++;
} sum += CountRecursive(n/2);
} return sum;
}
My logic is based on this information: "The standard mechanism for converting from decimal to binary is to repeatedly divide the decimal number by 2 and, at each division, output the remainder (0 or 1)."
Remove the equals in the if. 0 divided by 2 is still zero - you go into infinite recursion.
I mean make this one:
if (n >= 0)
strict comparison i.e:
if (n > 0)
Related
I am trying to write a program that will let me know if a number has the odd divisor greater than one. Let's n be the number, and x be the divisor. x%2!=0 and x>1;
Code:
import java.util.Scanner;
public class Simple1{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
long n;
for(int i=0; i<t; i++) {
n=sc.nextLong();
if(n<3)System.out.println("NO");
else {
if(n%2!=0)System.out.println("YES");
else {
int ans=0;
for(long j=3; j<=n/2; j+=2) {
if(n%j==0) {
ans=1;
break;
}
}
if(ans==1)System.out.println("YES");
else System.out.println("NO");
}
}
}
}
}
This java code works fine. But it's not working for a specific input.. and that is n = 1099511627776. If I change the last digit to any int other than 6, then it works fine and gives output. Even numbers greater than that works. But only this number n=1099511627776, when I input this to my program, no terminating happens and no output. Help me to figure out what happens here.
The number 1099511627776 is two to the power 40. That means it has to check through the whole big for-loop to find no odd factors. You would get the same problem, to different extents, with 2199023255552 (2 to the 41) and 549755813888 (2 to the 39). You have to wait longer if you want to do it this way.
A much faster way is to divide n by 2 until you get an odd number.
E.g.
long n = sc.nextLong();
while (n > 1 && n % 2 == 0) {
n /= 2;
}
if (n > 1) {
System.out.println("Yes.");
} else {
System.out.println("No.");
}
An even faster way to tell if a number is a power of two is a bit-twiddling hack:
// Powers of 2 have the property that n & (n-1) is zero
if ((n & (n - 1)) != 0) {
System.out.println("Yes."); // Not a power of two, so has an odd factor
} else {
System.out.println("No."); // Is a power of two, so does not have an odd factor
}
Can you get rid of the powers of two another way?
long number = 1099511627776l;
long r = number >> Long.numberOfTrailingZeros​(number);
Then r is an odd divisor, which might be greater than one.
If you think in base 10, then you know a number is divisible by ten if has a trailing zero. You can remove all of the powers of 10 by removing all of the zeros. It is the same for base 2, you can remove all of the factors of 2 by removing all of the trailing zeros (in binary representation).
I tried to write a method (for kicks) that would sum up the digits at even places using Java recursion.
For example, the number 23495 would return 3+9 = 12.
I am unsuccessful and would appreciate hints or what I'm doing wrong.
int sumEven = 0;
int sumOdd = 0;
int i = 1;
if (n == 0)
return sumEven;
if (n != 0) {
if (i % 2 == 0)
{
i++;
sumEven += n % 10;
}
else
{
i++;
sumOdd += n % 10;
}
}
return sumEven + getEven (n/=10);
The problem is you're trying to do too much - take a look at my comment on the Q
A recursive method needs an input that contains everything it needs to work with, a return value, and an execution path where it calls itself until something happens that means it doesn't need to call itself any more - without this bit it will recourse until it overflows the stack
int sumEveryOtherDigit(int input){
if(input >= 100)
return input%10 + sumEveryOtherDigit(input/100);
else
return input%10;
}
This takes the input , and if there is any point to running again (if the input is at least 100) takes the rightmost digit plus running itself again with a smaller number
Eventually the number gets so small that there isn't any point running itself again so it just returns without running itself again and that is how the recursion stops
Now from your comment on another answer it seems you want to determine even and odd as working from the left so we need to either start with the number (1630) or the number divided by ten (23495 -> 2349) - basically to start the recursion going we always want to pass in a number with an even number of digits
int num = 23495;
int numOfDigits = (int)Math.log10(num)+ 1;
if(numOfDigits%2==0)
result = sumEveryOtherDigit(num);
else
result = sumEveryOtherDigit(num/10);
You should iterate over the digits of the input number, and then sum the remainder mod 10 only for even position digits:
int input = 23495;
input /= 10;
int sum = 0;
while (input > 0) {
sum += input % 10; // add last even digit
input /= 100; // advance by two digits, to the next even digit
}
System.out.println("sum of even digits of input is: " + sum);
This prints:
sum of even digits of input is: 12
I'm trying to write a function to determine whether a number is "ugly". For a number to be "ugly", it must have no prime factors other than 2, 3, or 5.
Here's my attempt:
public class Solution {
public boolean isPrime(int num) {
if (num == 2) {
return true;
}
if (num % 2 == 0) {
return false;
}
if (num < 0) {
num *= -1;
}
for (int i = 3; i <= Math.sqrt(num); i += 2) {
if (num % i == 0) {
return false;
}
}
return true;
}
public boolean isUgly(int num) {
if (num < 0) {
num *= -1;
}
for (int i = 7; i <= Math.sqrt(num); i += 2) {
if ((num % i == 0) && isPrime(num)) {
return false;
}
}
return true;
}
}
I'm getting true for input = -2147483648 when it should be false. Is it possible there's an overflow here? I've gone over my code and the logic looks right to me...
Thanks!
The problem is Integer.MIN_VALUE*-1 = Integer.MIN_VALUE leading to Math.sqrt(Integer.MIN_VALUE) which returns NaN on a negative number, so then when you perform this operation 7 <= Math.sqrt(Integer.MIN_VALUE) it returns false and doesn't even enter the for loop resulting in the program returning true.
I hope this explanation helps.
Yeah, I guess so.
Java lower limit for int is -2147483648 and upper 2147483647. As shown in
public class MainClass {
public static void main(String[] arg) {
System.out.println(Integer.MAX_VALUE);
System.out.println(Integer.MIN_VALUE);
}
}
Negative numbers are tricky in such a question.
You have to take the absolute number and factor it. In your original source, you didn't do this. It meant that you got a NaN from the Math.sqrt method. Which also meant that you got false when you compared it to 7.
So your original method would have returned true for all negative numbers.
But changing the sign (which, by the way can be done by num = -num rather than multiplication), which would solve it for all negative numbers, actually introduced an overflow into the program.
The number -2147483648 is, in fact, -231. The maximum positive number allowed in an int is 231-1. So the number - Integer.MIN_VALUE always overflows... into itself. It remains negative after you negate it!
So you run into that NaN again.
But note - since the number is -231, it doesn't, in fact, have any other prime factors other than 2. So the method really should return true for it - assuming that you are not considering -1 a prime.
So I believe that your expectation that it should be false is incorrect - but it depends on the assignment's definition of the prime factors of negative numbers.
Notes:
Your program checks isPrime(num) instead of isPrime(i), and therefore it will always return true. num cannot both be divisible by i and be prime at the same time.
Limiting your program to the square root of num is wrong to begin with. For example, take the number 881305274. Its prime factors are 2 and 440652637. But 440652637 is much bigger than sqrt(881305274). The square root trick works for prime testing, because any factor that is bigger than the root has to be multiplied by a factor that's smaller than the root. But this doesn't apply to the "ugly" problem.
Also, prime numbers are not considered "ugly" as they are a factor of themselves. But your program, because it limits itself to the square root, will never return false for prime numbers.
I am trying to figure out how this Java method calculates a prime number but something is confusing me.
public static boolean isPrime(int number){
for(int divisor =2; divisor <= number / 2; divisor++){
if (number % divisor ==0){
return false;
}
}
return true;
}
As you see in the second line in the for loop it shows divisor <= number /2 instead of divisor <= number. Can anyone tell me the reason for that?
First, if you put divisor <= number, you would get no prime numbers at all, because every number is divisible by itself. If the loop does not exit before divisor becomes number, you would get to
number % divisor == 0
condition, and return false.
Whoever wrote this code made an observation that you can stop as soon as you have reached half the number, because if you did not find divisors in the lower half of the interval (2..number/2), there would be no divisors above half the number either, so you can declare the number prime without trying, unsuccessfully, the rest of the candidate divisors.
However, this is not the best you can do: a stronger condition can be used - you could compare divisor to square root of number. This works, because if you don't have a divisor that is less than or equal to the square root of number, there would be no divisors above the square root as well (it is a good idea to think why this is so).
int stop = Math.sqrt(number);
for(int divisor = 2; divisor <= stop ; divisor++) {
...
}
The reason is is that any number can't be divided by any divisor larger than it's half and give more than 1 (if we are talking integers, of course).
Any number would not be divisible by a number more than its half.
For example, the last number 10 would be divisible is 5. 10 is not divisible with 6, 7, 8 or 9.
This is why it's good to eliminate the obvious mismatches to improve the performance of the algorithm.
As others have noted, there are no factors of n greater than n/2. A better solution is comparing your iterating variable to the square root of n, as if there are no factors less than or equal to the square root, there can't be any greater than the square root (Note that it is more efficient to compare i*i <= n that i <= Math.sqrt(n)).
An even better approach is the AKS primality test. If the number is 2 or 3, then it obviously must be prime. Otherwise, it can be rewritten in the form (6k+i) where i = -1, 0, 1, 2, 3, 4. Any (6k + 2) or (6k + 4) is divisible by 2, and any (6k + 3) is divisible by three, so the prime numbers must either take the form (6k - 1) or (6k + 1).
public static boolean isPrime(long n) {
/* This code uses the AKS primality test
* http://en.wikipedia.org/wiki/AKS_primality_test
*/
if (n <= 3) return n > 1;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i*i <=n; i+=6) {
if (n % i == 0 || n % (i+2) == 0) return false;
}
return true;
}
}
I used this as a part of my solution to the PrimeCounter problem in Sedgewick's Intro to Programming in Java (although this is in the first chapter before methods are introduced).
public class PrimeCounter {
public static void main(String[] args) {
long n = 10000000;
long count = 0;
for (long i = 0; i <= n; i++) {
if (isPrime(i)) count++;
}
System.out.println("The number of primes less than "
+ n + " is " + count);
}
public static boolean isPrime(long n) {
/* This code uses the AKS primality test
* http://en.wikipedia.org/wiki/AKS_primality_test
*/
if (n <= 3) return n > 1;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i*i <=n; i+=6) {
if (n % i == 0 || n % (i+2) == 0) return false;
}
return true;
}
}
It's using the fact that if one of the factors is greater than N/2 the other must be smaller than 2.
In fact a massive (asymptotic) gain can be obtained by using the square-root.
That's because if one factor is greater than the square root the other is less.
Sorry Sebri Zouhaier. I'm changing allegiance.
The +1 isn't necessary so the best answer is below.
I'm sorry to change sides for such a tiny improvement!
A number N cannot have any divisors D that are > N/2 and < N. To see this, note that if D is a divisor of N, then it must equal N/D2 for some D2. So the divisors of N are those values of this sequence that are integers: N, N/2, N/3, ... This is a descending sequence. It should be obvious that there can't be any divisors between N and N/2.
In fact, it's common for programs that check for primality to stop at sqrt(N) instead of N/2. The reason is this: Suppose there's a divisor D such that D > sqrt(N). Then N/D = D2 also must be a divisor of N. And it must be the case that D2 < sqrt(N), because if both D and D2 were > sqrt(N), then D * D2 would have to be > N, which is wrong because D * D2 = N. This means that there is no need to check possible divisors D > sqrt(N); if such a divisor existed, we already would have found D2 earlier in the loop and proven that N was not prime.
One small caveat to some of the above answers is that 0 and 1 are not prime numbers. You could account for this (for positive integers) with an implementation such as
public static boolean isPrime(int number){
if (number == 0 || number == 1)
return false;
else
{
int stop = (int) Math.sqrt(number);
for (int divisor = 2; divisor <= stop ; divisor++)
{
if (number % divisor ==0)
return false;
}
return true;
}
}
public static Boolean isPrime(int num){ //method signature. returns Boolean, true if number isPrime, false if not
if(num==2){ //for case num=2, function returns true. detailed explanation underneath
return(true);
}
for(int i=2;i<=(int)Math.sqrt(num)+1;i++){ //loops through 2 to sqrt(num). All you need to check- efficient
if(num%i==0){ //if a divisor is found, its not prime. returns false
return(false);
}
}
return(true); //if all cases don't divide num, it is prime.
}
// Returns true iff n is prime. First checks if n is even, handling the
// cases of n=2 (prime) or n is even > 2 (not prime). Then checks if any
// odd #'s between 3 and sqrt(n), inclusive, are divisors of n, returning
// false if any are.
public static boolean isPrime(int n) {
if (n < 2) return false;
if (n % 2 == 0)
// n is an even, so return true iff n is exactly 2
return (n == 2);
for (int i=3; i*i<=n; i+=2)
if (n % i == 0)
// i divides evenly into n, so n is not prime
return false;
return true;
}
int isPrime(int number)
{
int i;
for(i=2; i*i <= number; i++)
{
if (number % i == 0)
{
return 0;
}
}
return 1;
}
Why is it the case that the boolean conditional of the control statement is: i*i <= number?
Deep mathematical explanation please!
If a number is not prime then it can be written in the form p * q. Without loss of generality we can say that p cannot be greater than q (since we can always write the multiplication this way round).
Therefore, in checking for primality, you only need to check the ps since the qs will be implicitly checked.
So p going no higher than q is the limit. Hence p * p.
(By the way, iterating over all the numbers (i++) is also inefficient - you only need to consider primes. Choosing the appropriate algorithm really depends on your use case and without further details I can't comment further.).
When not a prime, one of the factors is always <= sqrt(n), (if the potential factor is > sqrt(n), it will already have been found using the loop), so
i <= sqrt(n)
If you square both sides of the inequality:
i*i <= n
No solutions will be found outside this constraint.
Even better, you can start of at i = 3 and increase i by 2 every iteration!
if (number % 2 == 0) return 0;
for(i=3; i*i <= number; i+=2)
{
if (number % i == 0)
{
return 0;
}
}