Related
How do I use JUnit to test a class that has internal private methods, fields or nested classes?
It seems bad to change the access modifier for a method just to be able to run a test.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private and private static variables as well as invoke private and private static methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
TargetClass.getDeclaredMethod(methodName, argClasses) lets you look into private methods. The same thing applies for
getDeclaredField.
The setAccessible(true) is required to play around with privates.
The best way to test a private method is via another public method. If this cannot be done, then one of the following conditions is true:
The private method is dead code
There is a design smell near the class that you are testing
The method that you are trying to test should not be private
When I have private methods in a class that are sufficiently complicated that I feel the need to test the private methods directly, that is a code smell: my class is too complicated.
My usual approach to addressing such issues is to tease out a new class that contains the interesting bits. Often, this method and the fields it interacts with, and maybe another method or two can be extracted in to a new class.
The new class exposes these methods as 'public', so they're accessible for unit testing. The new and old classes are now both simpler than the original class, which is great for me (I need to keep things simple, or I get lost!).
Note that I'm not suggesting that people create classes without using their brain! The point here is to use the forces of unit testing to help you find good new classes.
I have used reflection to do this for Java in the past, and in my opinion it was a big mistake.
Strictly speaking, you should not be writing unit tests that directly test private methods. What you should be testing is the public contract that the class has with other objects; you should never directly test an object's internals. If another developer wants to make a small internal change to the class, which doesn't affect the classes public contract, he/she then has to modify your reflection based test to ensure that it works. If you do this repeatedly throughout a project, unit tests then stop being a useful measurement of code health, and start to become a hindrance to development, and an annoyance to the development team.
What I recommend doing instead is using a code coverage tool, such as Cobertura, to ensure that the unit tests you write provide decent coverage of the code in private methods. That way, you indirectly test what the private methods are doing, and maintain a higher level of agility.
From this article: Testing Private Methods with JUnit and SuiteRunner (Bill Venners), you basically have 4 options:
Don't test private methods.
Give the methods package access.
Use a nested test class.
Use reflection.
Generally a unit test is intended to exercise the public interface of a class or unit. Therefore, private methods are implementation detail that you would not expect to test explicitly.
Just two examples of where I would want to test a private method:
Decryption routines - I would not
want to make them visible to anyone to see just for
the sake of testing, else anyone can
use them to decrypt. But they are
intrinsic to the code, complicated,
and need to always work (the obvious exception is reflection which can be used to view even private methods in most cases, when SecurityManager is not configured to prevent this).
Creating an SDK for community
consumption. Here public takes on a
wholly different meaning, since this
is code that the whole world may see
(not just internal to my application). I put
code into private methods if I don't
want the SDK users to see it - I
don't see this as code smell, merely
as how SDK programming works. But of
course I still need to test my
private methods, and they are where
the functionality of my SDK actually
lives.
I understand the idea of only testing the "contract". But I don't see one can advocate actually not testing code—your mileage may vary.
So my trade-off involves complicating the JUnit tests with reflection, rather than compromising my security and SDK.
The private methods are called by a public method, so the inputs to your public methods should also test private methods that are called by those public methods. When a public method fails, then that could be a failure in the private method.
In the Spring Framework you can test private methods using this method:
ReflectionTestUtils.invokeMethod()
For example:
ReflectionTestUtils.invokeMethod(TestClazz, "createTest", "input data");
Another approach I have used is to change a private method to package private or protected then complement it with the #VisibleForTesting annotation of the Google Guava library.
This will tell anybody using this method to take caution and not access it directly even in a package. Also a test class need not be in same package physically, but in the same package under the test folder.
For example, if a method to be tested is in src/main/java/mypackage/MyClass.java then your test call should be placed in src/test/java/mypackage/MyClassTest.java. That way, you got access to the test method in your test class.
To test legacy code with large and quirky classes, it is often very helpful to be able to test the one private (or public) method I'm writing right now.
I use the junitx.util.PrivateAccessor-package for Java. It has lots of helpful one-liners for accessing private methods and private fields.
import junitx.util.PrivateAccessor;
PrivateAccessor.setField(myObjectReference, "myCrucialButHardToReachPrivateField", myNewValue);
PrivateAccessor.invoke(myObjectReference, "privateMethodName", java.lang.Class[] parameterTypes, java.lang.Object[] args);
Having tried Cem Catikkas' solution using reflection for Java, I'd have to say his was a more elegant solution than I have described here. However, if you're looking for an alternative to using reflection, and have access to the source you're testing, this will still be an option.
There is possible merit in testing private methods of a class, particularly with test-driven development, where you would like to design small tests before you write any code.
Creating a test with access to private members and methods can test areas of code which are difficult to target specifically with access only to public methods. If a public method has several steps involved, it can consist of several private methods, which can then be tested individually.
Advantages:
Can test to a finer granularity
Disadvantages:
Test code must reside in the same
file as source code, which can be
more difficult to maintain
Similarly with .class output files, they must remain within the same package as declared in source code
However, if continuous testing requires this method, it may be a signal that the private methods should be extracted, which could be tested in the traditional, public way.
Here is a convoluted example of how this would work:
// Import statements and package declarations
public class ClassToTest
{
private int decrement(int toDecrement) {
toDecrement--;
return toDecrement;
}
// Constructor and the rest of the class
public static class StaticInnerTest extends TestCase
{
public StaticInnerTest(){
super();
}
public void testDecrement(){
int number = 10;
ClassToTest toTest= new ClassToTest();
int decremented = toTest.decrement(number);
assertEquals(9, decremented);
}
public static void main(String[] args) {
junit.textui.TestRunner.run(StaticInnerTest.class);
}
}
}
The inner class would be compiled to ClassToTest$StaticInnerTest.
See also: Java Tip 106: Static inner classes for fun and profit
As others have said... don't test private methods directly. Here are a few thoughts:
Keep all methods small and focused (easy to test, easy to find what is wrong)
Use code coverage tools. I like Cobertura (oh happy day, it looks like a new version is out!)
Run the code coverage on the unit tests. If you see that methods are not fully tested add to the tests to get the coverage up. Aim for 100% code coverage, but realize that you probably won't get it.
If using Spring, ReflectionTestUtils provides some handy tools that help out here with minimal effort. For example, to set up a mock on a private member without being forced to add an undesirable public setter:
ReflectionTestUtils.setField(theClass, "theUnsettableField", theMockObject);
Private methods are consumed by public ones. Otherwise, they're dead code. That's why you test the public method, asserting the expected results of the public method and thereby, the private methods it consumes.
Testing private methods should be tested by debugging before running your unit tests on public methods.
They may also be debugged using test-driven development, debugging your unit tests until all your assertions are met.
I personally believe it is better to create classes using TDD; creating the public method stubs, then generating unit tests with all the assertions defined in advance, so the expected outcome of the method is determined before you code it. This way, you don't go down the wrong path of making the unit test assertions fit the results. Your class is then robust and meets requirements when all your unit tests pass.
If you're trying to test existing code that you're reluctant or unable to change, reflection is a good choice.
If the class's design is still flexible, and you've got a complicated private method that you'd like to test separately, I suggest you pull it out into a separate class and test that class separately. This doesn't have to change the public interface of the original class; it can internally create an instance of the helper class and call the helper method.
If you want to test difficult error conditions coming from the helper method, you can go a step further. Extract an interface from the helper class, add a public getter and setter to the original class to inject the helper class (used through its interface), and then inject a mock version of the helper class into the original class to test how the original class responds to exceptions from the helper. This approach is also helpful if you want to test the original class without also testing the helper class.
Testing private methods breaks the encapsulation of your class because every time you change the internal implementation you break client code (in this case, the tests).
So don't test private methods.
The answer from JUnit.org FAQ page:
But if you must...
If you are using JDK 1.3 or higher, you can use reflection to subvert
the access control mechanism with the aid of the PrivilegedAccessor.
For details on how to use it, read this article.
If you are using JDK 1.6 or higher and you annotate your tests with
#Test, you can use Dp4j to inject reflection in your test methods. For
details on how to use it, see this test script.
P.S. I'm the main contributor to Dp4j. Ask me if you need help. :)
If you want to test private methods of a legacy application where you can't change the code, one option for Java is jMockit, which will allow you to create mocks to an object even when they're private to the class.
PowerMockito is made for this.
Use a Maven dependency:
<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-core</artifactId>
<version>2.0.7</version>
<scope>test</scope>
</dependency>
Then you can do
import org.powermock.reflect.Whitebox;
...
MyClass sut = new MyClass();
SomeType rval = Whitebox.invokeMethod(sut, "myPrivateMethod", params, moreParams);
I tend not to test private methods. There lies madness. Personally, I believe you should only test your publicly exposed interfaces (and that includes protected and internal methods).
If you're using JUnit, have a look at junit-addons. It has the ability to ignore the Java security model and access private methods and attributes.
Here is my generic function to test private fields:
protected <F> F getPrivateField(String fieldName, Object obj)
throws NoSuchFieldException, IllegalAccessException {
Field field =
obj.getClass().getDeclaredField(fieldName);
field.setAccessible(true);
return (F)field.get(obj);
}
Please see below for an example;
The following import statement should be added:
import org.powermock.reflect.Whitebox;
Now you can directly pass the object which has the private method, method name to be called, and additional parameters as below.
Whitebox.invokeMethod(obj, "privateMethod", "param1");
I would suggest you refactoring your code a little bit. When you have to start thinking about using reflection or other kind of stuff, for just testing your code, something is going wrong with your code.
You mentioned different types of problems. Let's start with private fields. In case of private fields I would have added a new constructor and injected fields into that. Instead of this:
public class ClassToTest {
private final String first = "first";
private final List<String> second = new ArrayList<>();
...
}
I'd have used this:
public class ClassToTest {
private final String first;
private final List<String> second;
public ClassToTest() {
this("first", new ArrayList<>());
}
public ClassToTest(final String first, final List<String> second) {
this.first = first;
this.second = second;
}
...
}
This won't be a problem even with some legacy code. Old code will be using an empty constructor, and if you ask me, refactored code will look cleaner, and you'll be able to inject necessary values in test without reflection.
Now about private methods. In my personal experience when you have to stub a private method for testing, then that method has nothing to do in that class. A common pattern, in that case, would be to wrap it within an interface, like Callable and then you pass in that interface also in the constructor (with that multiple constructor trick):
public ClassToTest() {
this(...);
}
public ClassToTest(final Callable<T> privateMethodLogic) {
this.privateMethodLogic = privateMethodLogic;
}
Mostly all that I wrote looks like it's a dependency injection pattern. In my personal experience it's really useful while testing, and I think that this kind of code is cleaner and will be easier to maintain. I'd say the same about nested classes. If a nested class contains heavy logic it would be better if you'd moved it as a package private class and have injected it into a class needing it.
There are also several other design patterns which I have used while refactoring and maintaining legacy code, but it all depends on cases of your code to test. Using reflection mostly is not a problem, but when you have an enterprise application which is heavily tested and tests are run before every deployment everything gets really slow (it's just annoying and I don't like that kind of stuff).
There is also setter injection, but I wouldn't recommended using it. I'd better stick with a constructor and initialize everything when it's really necessary, leaving the possibility for injecting necessary dependencies.
A private method is only to be accessed within the same class. So there is no way to test a “private” method of a target class from any test class. A way out is that you can perform unit testing manually or can change your method from “private” to “protected”.
And then a protected method can only be accessed within the same package where the class is defined. So, testing a protected method of a target class means we need to define your test class in the same package as the target class.
If all the above does not suits your requirement, use the reflection way to access the private method.
As many above have suggested, a good way is to test them via your public interfaces.
If you do this, it's a good idea to use a code coverage tool (like EMMA) to see if your private methods are in fact being executed from your tests.
Today, I pushed a Java library to help testing private methods and fields. It has been designed with Android in mind, but it can really be used for any Java project.
If you got some code with private methods or fields or constructors, you can use BoundBox. It does exactly what you are looking for.
Here below is an example of a test that accesses two private fields of an Android activity to test it:
#UiThreadTest
public void testCompute() {
// Given
boundBoxOfMainActivity = new BoundBoxOfMainActivity(getActivity());
// When
boundBoxOfMainActivity.boundBox_getButtonMain().performClick();
// Then
assertEquals("42", boundBoxOfMainActivity.boundBox_getTextViewMain().getText());
}
BoundBox makes it easy to test private/protected fields, methods and constructors. You can even access stuff that is hidden by inheritance. Indeed, BoundBox breaks encapsulation. It will give you access to all that through reflection, but everything is checked at compile time.
It is ideal for testing some legacy code. Use it carefully. ;)
First, I'll throw this question out: Why do your private members need isolated testing? Are they that complex, providing such complicated behaviors as to require testing apart from the public surface? It's unit testing, not 'line-of-code' testing. Don't sweat the small stuff.
If they are that big, big enough that these private members are each a 'unit' large in complexity—consider refactoring such private members out of this class.
If refactoring is inappropriate or infeasible, can you use the strategy pattern to replace access to these private member functions / member classes when under unit test? Under unit test, the strategy would provide added validation, but in release builds it would be simple passthrough.
I want to share a rule I have about testing which particularly is related to this topic:
I think that you should never adapt production code in order to
indulge easer writing of tests.
There are a few suggestions in other posts saying you should adapt the original class in order to test a private method - please red this warning first.
If we change the accessibility of a method/field to package private or protected, just in order to have it accessible to tests, then we defeat the purpose of existence of private access directive.
Why should we have private fields/methods/classes at all when we want to have test-driven development? Should we declare everything as package private, or even public then, so we can test without any effort?—I don't think so.
From another point of view: Tests should not burden performance and execution of the production application.
If we change production code just for the sake of easier testing, that may burden performance and the execution of the application in some way.
If someone starts to change private access to package private, then a developer may eventually come up to other "ingenious ideas" about adding even more code to the original class. This would make additional noise to readability and can burden the performance of the application.
With changing of a private access to some less restrictive, we are opening the possibility to a developer for misusing the new situation in the future development of the application. Instead of enforcing him/her to develop in the proper way, we are tempting him/her with new possibilities and giving him ability to make wrong choices in the future.
Of course there might be a few exceptions to this rule, but with clear understanding, what is the rule and what is the exception? We need to be absolutely sure we know why that kind of exception is introduced.
How do I use JUnit to test a class that has internal private methods, fields or nested classes?
It seems bad to change the access modifier for a method just to be able to run a test.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private and private static variables as well as invoke private and private static methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
TargetClass.getDeclaredMethod(methodName, argClasses) lets you look into private methods. The same thing applies for
getDeclaredField.
The setAccessible(true) is required to play around with privates.
The best way to test a private method is via another public method. If this cannot be done, then one of the following conditions is true:
The private method is dead code
There is a design smell near the class that you are testing
The method that you are trying to test should not be private
When I have private methods in a class that are sufficiently complicated that I feel the need to test the private methods directly, that is a code smell: my class is too complicated.
My usual approach to addressing such issues is to tease out a new class that contains the interesting bits. Often, this method and the fields it interacts with, and maybe another method or two can be extracted in to a new class.
The new class exposes these methods as 'public', so they're accessible for unit testing. The new and old classes are now both simpler than the original class, which is great for me (I need to keep things simple, or I get lost!).
Note that I'm not suggesting that people create classes without using their brain! The point here is to use the forces of unit testing to help you find good new classes.
I have used reflection to do this for Java in the past, and in my opinion it was a big mistake.
Strictly speaking, you should not be writing unit tests that directly test private methods. What you should be testing is the public contract that the class has with other objects; you should never directly test an object's internals. If another developer wants to make a small internal change to the class, which doesn't affect the classes public contract, he/she then has to modify your reflection based test to ensure that it works. If you do this repeatedly throughout a project, unit tests then stop being a useful measurement of code health, and start to become a hindrance to development, and an annoyance to the development team.
What I recommend doing instead is using a code coverage tool, such as Cobertura, to ensure that the unit tests you write provide decent coverage of the code in private methods. That way, you indirectly test what the private methods are doing, and maintain a higher level of agility.
From this article: Testing Private Methods with JUnit and SuiteRunner (Bill Venners), you basically have 4 options:
Don't test private methods.
Give the methods package access.
Use a nested test class.
Use reflection.
Generally a unit test is intended to exercise the public interface of a class or unit. Therefore, private methods are implementation detail that you would not expect to test explicitly.
Just two examples of where I would want to test a private method:
Decryption routines - I would not
want to make them visible to anyone to see just for
the sake of testing, else anyone can
use them to decrypt. But they are
intrinsic to the code, complicated,
and need to always work (the obvious exception is reflection which can be used to view even private methods in most cases, when SecurityManager is not configured to prevent this).
Creating an SDK for community
consumption. Here public takes on a
wholly different meaning, since this
is code that the whole world may see
(not just internal to my application). I put
code into private methods if I don't
want the SDK users to see it - I
don't see this as code smell, merely
as how SDK programming works. But of
course I still need to test my
private methods, and they are where
the functionality of my SDK actually
lives.
I understand the idea of only testing the "contract". But I don't see one can advocate actually not testing code—your mileage may vary.
So my trade-off involves complicating the JUnit tests with reflection, rather than compromising my security and SDK.
The private methods are called by a public method, so the inputs to your public methods should also test private methods that are called by those public methods. When a public method fails, then that could be a failure in the private method.
In the Spring Framework you can test private methods using this method:
ReflectionTestUtils.invokeMethod()
For example:
ReflectionTestUtils.invokeMethod(TestClazz, "createTest", "input data");
Another approach I have used is to change a private method to package private or protected then complement it with the #VisibleForTesting annotation of the Google Guava library.
This will tell anybody using this method to take caution and not access it directly even in a package. Also a test class need not be in same package physically, but in the same package under the test folder.
For example, if a method to be tested is in src/main/java/mypackage/MyClass.java then your test call should be placed in src/test/java/mypackage/MyClassTest.java. That way, you got access to the test method in your test class.
To test legacy code with large and quirky classes, it is often very helpful to be able to test the one private (or public) method I'm writing right now.
I use the junitx.util.PrivateAccessor-package for Java. It has lots of helpful one-liners for accessing private methods and private fields.
import junitx.util.PrivateAccessor;
PrivateAccessor.setField(myObjectReference, "myCrucialButHardToReachPrivateField", myNewValue);
PrivateAccessor.invoke(myObjectReference, "privateMethodName", java.lang.Class[] parameterTypes, java.lang.Object[] args);
Having tried Cem Catikkas' solution using reflection for Java, I'd have to say his was a more elegant solution than I have described here. However, if you're looking for an alternative to using reflection, and have access to the source you're testing, this will still be an option.
There is possible merit in testing private methods of a class, particularly with test-driven development, where you would like to design small tests before you write any code.
Creating a test with access to private members and methods can test areas of code which are difficult to target specifically with access only to public methods. If a public method has several steps involved, it can consist of several private methods, which can then be tested individually.
Advantages:
Can test to a finer granularity
Disadvantages:
Test code must reside in the same
file as source code, which can be
more difficult to maintain
Similarly with .class output files, they must remain within the same package as declared in source code
However, if continuous testing requires this method, it may be a signal that the private methods should be extracted, which could be tested in the traditional, public way.
Here is a convoluted example of how this would work:
// Import statements and package declarations
public class ClassToTest
{
private int decrement(int toDecrement) {
toDecrement--;
return toDecrement;
}
// Constructor and the rest of the class
public static class StaticInnerTest extends TestCase
{
public StaticInnerTest(){
super();
}
public void testDecrement(){
int number = 10;
ClassToTest toTest= new ClassToTest();
int decremented = toTest.decrement(number);
assertEquals(9, decremented);
}
public static void main(String[] args) {
junit.textui.TestRunner.run(StaticInnerTest.class);
}
}
}
The inner class would be compiled to ClassToTest$StaticInnerTest.
See also: Java Tip 106: Static inner classes for fun and profit
As others have said... don't test private methods directly. Here are a few thoughts:
Keep all methods small and focused (easy to test, easy to find what is wrong)
Use code coverage tools. I like Cobertura (oh happy day, it looks like a new version is out!)
Run the code coverage on the unit tests. If you see that methods are not fully tested add to the tests to get the coverage up. Aim for 100% code coverage, but realize that you probably won't get it.
If using Spring, ReflectionTestUtils provides some handy tools that help out here with minimal effort. For example, to set up a mock on a private member without being forced to add an undesirable public setter:
ReflectionTestUtils.setField(theClass, "theUnsettableField", theMockObject);
Private methods are consumed by public ones. Otherwise, they're dead code. That's why you test the public method, asserting the expected results of the public method and thereby, the private methods it consumes.
Testing private methods should be tested by debugging before running your unit tests on public methods.
They may also be debugged using test-driven development, debugging your unit tests until all your assertions are met.
I personally believe it is better to create classes using TDD; creating the public method stubs, then generating unit tests with all the assertions defined in advance, so the expected outcome of the method is determined before you code it. This way, you don't go down the wrong path of making the unit test assertions fit the results. Your class is then robust and meets requirements when all your unit tests pass.
If you're trying to test existing code that you're reluctant or unable to change, reflection is a good choice.
If the class's design is still flexible, and you've got a complicated private method that you'd like to test separately, I suggest you pull it out into a separate class and test that class separately. This doesn't have to change the public interface of the original class; it can internally create an instance of the helper class and call the helper method.
If you want to test difficult error conditions coming from the helper method, you can go a step further. Extract an interface from the helper class, add a public getter and setter to the original class to inject the helper class (used through its interface), and then inject a mock version of the helper class into the original class to test how the original class responds to exceptions from the helper. This approach is also helpful if you want to test the original class without also testing the helper class.
Testing private methods breaks the encapsulation of your class because every time you change the internal implementation you break client code (in this case, the tests).
So don't test private methods.
The answer from JUnit.org FAQ page:
But if you must...
If you are using JDK 1.3 or higher, you can use reflection to subvert
the access control mechanism with the aid of the PrivilegedAccessor.
For details on how to use it, read this article.
If you are using JDK 1.6 or higher and you annotate your tests with
#Test, you can use Dp4j to inject reflection in your test methods. For
details on how to use it, see this test script.
P.S. I'm the main contributor to Dp4j. Ask me if you need help. :)
If you want to test private methods of a legacy application where you can't change the code, one option for Java is jMockit, which will allow you to create mocks to an object even when they're private to the class.
PowerMockito is made for this.
Use a Maven dependency:
<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-core</artifactId>
<version>2.0.7</version>
<scope>test</scope>
</dependency>
Then you can do
import org.powermock.reflect.Whitebox;
...
MyClass sut = new MyClass();
SomeType rval = Whitebox.invokeMethod(sut, "myPrivateMethod", params, moreParams);
I tend not to test private methods. There lies madness. Personally, I believe you should only test your publicly exposed interfaces (and that includes protected and internal methods).
If you're using JUnit, have a look at junit-addons. It has the ability to ignore the Java security model and access private methods and attributes.
Here is my generic function to test private fields:
protected <F> F getPrivateField(String fieldName, Object obj)
throws NoSuchFieldException, IllegalAccessException {
Field field =
obj.getClass().getDeclaredField(fieldName);
field.setAccessible(true);
return (F)field.get(obj);
}
Please see below for an example;
The following import statement should be added:
import org.powermock.reflect.Whitebox;
Now you can directly pass the object which has the private method, method name to be called, and additional parameters as below.
Whitebox.invokeMethod(obj, "privateMethod", "param1");
I would suggest you refactoring your code a little bit. When you have to start thinking about using reflection or other kind of stuff, for just testing your code, something is going wrong with your code.
You mentioned different types of problems. Let's start with private fields. In case of private fields I would have added a new constructor and injected fields into that. Instead of this:
public class ClassToTest {
private final String first = "first";
private final List<String> second = new ArrayList<>();
...
}
I'd have used this:
public class ClassToTest {
private final String first;
private final List<String> second;
public ClassToTest() {
this("first", new ArrayList<>());
}
public ClassToTest(final String first, final List<String> second) {
this.first = first;
this.second = second;
}
...
}
This won't be a problem even with some legacy code. Old code will be using an empty constructor, and if you ask me, refactored code will look cleaner, and you'll be able to inject necessary values in test without reflection.
Now about private methods. In my personal experience when you have to stub a private method for testing, then that method has nothing to do in that class. A common pattern, in that case, would be to wrap it within an interface, like Callable and then you pass in that interface also in the constructor (with that multiple constructor trick):
public ClassToTest() {
this(...);
}
public ClassToTest(final Callable<T> privateMethodLogic) {
this.privateMethodLogic = privateMethodLogic;
}
Mostly all that I wrote looks like it's a dependency injection pattern. In my personal experience it's really useful while testing, and I think that this kind of code is cleaner and will be easier to maintain. I'd say the same about nested classes. If a nested class contains heavy logic it would be better if you'd moved it as a package private class and have injected it into a class needing it.
There are also several other design patterns which I have used while refactoring and maintaining legacy code, but it all depends on cases of your code to test. Using reflection mostly is not a problem, but when you have an enterprise application which is heavily tested and tests are run before every deployment everything gets really slow (it's just annoying and I don't like that kind of stuff).
There is also setter injection, but I wouldn't recommended using it. I'd better stick with a constructor and initialize everything when it's really necessary, leaving the possibility for injecting necessary dependencies.
A private method is only to be accessed within the same class. So there is no way to test a “private” method of a target class from any test class. A way out is that you can perform unit testing manually or can change your method from “private” to “protected”.
And then a protected method can only be accessed within the same package where the class is defined. So, testing a protected method of a target class means we need to define your test class in the same package as the target class.
If all the above does not suits your requirement, use the reflection way to access the private method.
As many above have suggested, a good way is to test them via your public interfaces.
If you do this, it's a good idea to use a code coverage tool (like EMMA) to see if your private methods are in fact being executed from your tests.
Today, I pushed a Java library to help testing private methods and fields. It has been designed with Android in mind, but it can really be used for any Java project.
If you got some code with private methods or fields or constructors, you can use BoundBox. It does exactly what you are looking for.
Here below is an example of a test that accesses two private fields of an Android activity to test it:
#UiThreadTest
public void testCompute() {
// Given
boundBoxOfMainActivity = new BoundBoxOfMainActivity(getActivity());
// When
boundBoxOfMainActivity.boundBox_getButtonMain().performClick();
// Then
assertEquals("42", boundBoxOfMainActivity.boundBox_getTextViewMain().getText());
}
BoundBox makes it easy to test private/protected fields, methods and constructors. You can even access stuff that is hidden by inheritance. Indeed, BoundBox breaks encapsulation. It will give you access to all that through reflection, but everything is checked at compile time.
It is ideal for testing some legacy code. Use it carefully. ;)
First, I'll throw this question out: Why do your private members need isolated testing? Are they that complex, providing such complicated behaviors as to require testing apart from the public surface? It's unit testing, not 'line-of-code' testing. Don't sweat the small stuff.
If they are that big, big enough that these private members are each a 'unit' large in complexity—consider refactoring such private members out of this class.
If refactoring is inappropriate or infeasible, can you use the strategy pattern to replace access to these private member functions / member classes when under unit test? Under unit test, the strategy would provide added validation, but in release builds it would be simple passthrough.
I want to share a rule I have about testing which particularly is related to this topic:
I think that you should never adapt production code in order to
indulge easer writing of tests.
There are a few suggestions in other posts saying you should adapt the original class in order to test a private method - please red this warning first.
If we change the accessibility of a method/field to package private or protected, just in order to have it accessible to tests, then we defeat the purpose of existence of private access directive.
Why should we have private fields/methods/classes at all when we want to have test-driven development? Should we declare everything as package private, or even public then, so we can test without any effort?—I don't think so.
From another point of view: Tests should not burden performance and execution of the production application.
If we change production code just for the sake of easier testing, that may burden performance and the execution of the application in some way.
If someone starts to change private access to package private, then a developer may eventually come up to other "ingenious ideas" about adding even more code to the original class. This would make additional noise to readability and can burden the performance of the application.
With changing of a private access to some less restrictive, we are opening the possibility to a developer for misusing the new situation in the future development of the application. Instead of enforcing him/her to develop in the proper way, we are tempting him/her with new possibilities and giving him ability to make wrong choices in the future.
Of course there might be a few exceptions to this rule, but with clear understanding, what is the rule and what is the exception? We need to be absolutely sure we know why that kind of exception is introduced.
How do I use JUnit to test a class that has internal private methods, fields or nested classes?
It seems bad to change the access modifier for a method just to be able to run a test.
If you have somewhat of a legacy Java application, and you're not allowed to change the visibility of your methods, the best way to test private methods is to use reflection.
Internally we're using helpers to get/set private and private static variables as well as invoke private and private static methods. The following patterns will let you do pretty much anything related to the private methods and fields. Of course, you can't change private static final variables through reflection.
Method method = TargetClass.getDeclaredMethod(methodName, argClasses);
method.setAccessible(true);
return method.invoke(targetObject, argObjects);
And for fields:
Field field = TargetClass.getDeclaredField(fieldName);
field.setAccessible(true);
field.set(object, value);
Notes:
TargetClass.getDeclaredMethod(methodName, argClasses) lets you look into private methods. The same thing applies for
getDeclaredField.
The setAccessible(true) is required to play around with privates.
The best way to test a private method is via another public method. If this cannot be done, then one of the following conditions is true:
The private method is dead code
There is a design smell near the class that you are testing
The method that you are trying to test should not be private
When I have private methods in a class that are sufficiently complicated that I feel the need to test the private methods directly, that is a code smell: my class is too complicated.
My usual approach to addressing such issues is to tease out a new class that contains the interesting bits. Often, this method and the fields it interacts with, and maybe another method or two can be extracted in to a new class.
The new class exposes these methods as 'public', so they're accessible for unit testing. The new and old classes are now both simpler than the original class, which is great for me (I need to keep things simple, or I get lost!).
Note that I'm not suggesting that people create classes without using their brain! The point here is to use the forces of unit testing to help you find good new classes.
I have used reflection to do this for Java in the past, and in my opinion it was a big mistake.
Strictly speaking, you should not be writing unit tests that directly test private methods. What you should be testing is the public contract that the class has with other objects; you should never directly test an object's internals. If another developer wants to make a small internal change to the class, which doesn't affect the classes public contract, he/she then has to modify your reflection based test to ensure that it works. If you do this repeatedly throughout a project, unit tests then stop being a useful measurement of code health, and start to become a hindrance to development, and an annoyance to the development team.
What I recommend doing instead is using a code coverage tool, such as Cobertura, to ensure that the unit tests you write provide decent coverage of the code in private methods. That way, you indirectly test what the private methods are doing, and maintain a higher level of agility.
From this article: Testing Private Methods with JUnit and SuiteRunner (Bill Venners), you basically have 4 options:
Don't test private methods.
Give the methods package access.
Use a nested test class.
Use reflection.
Generally a unit test is intended to exercise the public interface of a class or unit. Therefore, private methods are implementation detail that you would not expect to test explicitly.
Just two examples of where I would want to test a private method:
Decryption routines - I would not
want to make them visible to anyone to see just for
the sake of testing, else anyone can
use them to decrypt. But they are
intrinsic to the code, complicated,
and need to always work (the obvious exception is reflection which can be used to view even private methods in most cases, when SecurityManager is not configured to prevent this).
Creating an SDK for community
consumption. Here public takes on a
wholly different meaning, since this
is code that the whole world may see
(not just internal to my application). I put
code into private methods if I don't
want the SDK users to see it - I
don't see this as code smell, merely
as how SDK programming works. But of
course I still need to test my
private methods, and they are where
the functionality of my SDK actually
lives.
I understand the idea of only testing the "contract". But I don't see one can advocate actually not testing code—your mileage may vary.
So my trade-off involves complicating the JUnit tests with reflection, rather than compromising my security and SDK.
The private methods are called by a public method, so the inputs to your public methods should also test private methods that are called by those public methods. When a public method fails, then that could be a failure in the private method.
In the Spring Framework you can test private methods using this method:
ReflectionTestUtils.invokeMethod()
For example:
ReflectionTestUtils.invokeMethod(TestClazz, "createTest", "input data");
Another approach I have used is to change a private method to package private or protected then complement it with the #VisibleForTesting annotation of the Google Guava library.
This will tell anybody using this method to take caution and not access it directly even in a package. Also a test class need not be in same package physically, but in the same package under the test folder.
For example, if a method to be tested is in src/main/java/mypackage/MyClass.java then your test call should be placed in src/test/java/mypackage/MyClassTest.java. That way, you got access to the test method in your test class.
To test legacy code with large and quirky classes, it is often very helpful to be able to test the one private (or public) method I'm writing right now.
I use the junitx.util.PrivateAccessor-package for Java. It has lots of helpful one-liners for accessing private methods and private fields.
import junitx.util.PrivateAccessor;
PrivateAccessor.setField(myObjectReference, "myCrucialButHardToReachPrivateField", myNewValue);
PrivateAccessor.invoke(myObjectReference, "privateMethodName", java.lang.Class[] parameterTypes, java.lang.Object[] args);
Having tried Cem Catikkas' solution using reflection for Java, I'd have to say his was a more elegant solution than I have described here. However, if you're looking for an alternative to using reflection, and have access to the source you're testing, this will still be an option.
There is possible merit in testing private methods of a class, particularly with test-driven development, where you would like to design small tests before you write any code.
Creating a test with access to private members and methods can test areas of code which are difficult to target specifically with access only to public methods. If a public method has several steps involved, it can consist of several private methods, which can then be tested individually.
Advantages:
Can test to a finer granularity
Disadvantages:
Test code must reside in the same
file as source code, which can be
more difficult to maintain
Similarly with .class output files, they must remain within the same package as declared in source code
However, if continuous testing requires this method, it may be a signal that the private methods should be extracted, which could be tested in the traditional, public way.
Here is a convoluted example of how this would work:
// Import statements and package declarations
public class ClassToTest
{
private int decrement(int toDecrement) {
toDecrement--;
return toDecrement;
}
// Constructor and the rest of the class
public static class StaticInnerTest extends TestCase
{
public StaticInnerTest(){
super();
}
public void testDecrement(){
int number = 10;
ClassToTest toTest= new ClassToTest();
int decremented = toTest.decrement(number);
assertEquals(9, decremented);
}
public static void main(String[] args) {
junit.textui.TestRunner.run(StaticInnerTest.class);
}
}
}
The inner class would be compiled to ClassToTest$StaticInnerTest.
See also: Java Tip 106: Static inner classes for fun and profit
As others have said... don't test private methods directly. Here are a few thoughts:
Keep all methods small and focused (easy to test, easy to find what is wrong)
Use code coverage tools. I like Cobertura (oh happy day, it looks like a new version is out!)
Run the code coverage on the unit tests. If you see that methods are not fully tested add to the tests to get the coverage up. Aim for 100% code coverage, but realize that you probably won't get it.
If using Spring, ReflectionTestUtils provides some handy tools that help out here with minimal effort. For example, to set up a mock on a private member without being forced to add an undesirable public setter:
ReflectionTestUtils.setField(theClass, "theUnsettableField", theMockObject);
Private methods are consumed by public ones. Otherwise, they're dead code. That's why you test the public method, asserting the expected results of the public method and thereby, the private methods it consumes.
Testing private methods should be tested by debugging before running your unit tests on public methods.
They may also be debugged using test-driven development, debugging your unit tests until all your assertions are met.
I personally believe it is better to create classes using TDD; creating the public method stubs, then generating unit tests with all the assertions defined in advance, so the expected outcome of the method is determined before you code it. This way, you don't go down the wrong path of making the unit test assertions fit the results. Your class is then robust and meets requirements when all your unit tests pass.
If you're trying to test existing code that you're reluctant or unable to change, reflection is a good choice.
If the class's design is still flexible, and you've got a complicated private method that you'd like to test separately, I suggest you pull it out into a separate class and test that class separately. This doesn't have to change the public interface of the original class; it can internally create an instance of the helper class and call the helper method.
If you want to test difficult error conditions coming from the helper method, you can go a step further. Extract an interface from the helper class, add a public getter and setter to the original class to inject the helper class (used through its interface), and then inject a mock version of the helper class into the original class to test how the original class responds to exceptions from the helper. This approach is also helpful if you want to test the original class without also testing the helper class.
Testing private methods breaks the encapsulation of your class because every time you change the internal implementation you break client code (in this case, the tests).
So don't test private methods.
The answer from JUnit.org FAQ page:
But if you must...
If you are using JDK 1.3 or higher, you can use reflection to subvert
the access control mechanism with the aid of the PrivilegedAccessor.
For details on how to use it, read this article.
If you are using JDK 1.6 or higher and you annotate your tests with
#Test, you can use Dp4j to inject reflection in your test methods. For
details on how to use it, see this test script.
P.S. I'm the main contributor to Dp4j. Ask me if you need help. :)
If you want to test private methods of a legacy application where you can't change the code, one option for Java is jMockit, which will allow you to create mocks to an object even when they're private to the class.
PowerMockito is made for this.
Use a Maven dependency:
<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-core</artifactId>
<version>2.0.7</version>
<scope>test</scope>
</dependency>
Then you can do
import org.powermock.reflect.Whitebox;
...
MyClass sut = new MyClass();
SomeType rval = Whitebox.invokeMethod(sut, "myPrivateMethod", params, moreParams);
I tend not to test private methods. There lies madness. Personally, I believe you should only test your publicly exposed interfaces (and that includes protected and internal methods).
If you're using JUnit, have a look at junit-addons. It has the ability to ignore the Java security model and access private methods and attributes.
Here is my generic function to test private fields:
protected <F> F getPrivateField(String fieldName, Object obj)
throws NoSuchFieldException, IllegalAccessException {
Field field =
obj.getClass().getDeclaredField(fieldName);
field.setAccessible(true);
return (F)field.get(obj);
}
Please see below for an example;
The following import statement should be added:
import org.powermock.reflect.Whitebox;
Now you can directly pass the object which has the private method, method name to be called, and additional parameters as below.
Whitebox.invokeMethod(obj, "privateMethod", "param1");
I would suggest you refactoring your code a little bit. When you have to start thinking about using reflection or other kind of stuff, for just testing your code, something is going wrong with your code.
You mentioned different types of problems. Let's start with private fields. In case of private fields I would have added a new constructor and injected fields into that. Instead of this:
public class ClassToTest {
private final String first = "first";
private final List<String> second = new ArrayList<>();
...
}
I'd have used this:
public class ClassToTest {
private final String first;
private final List<String> second;
public ClassToTest() {
this("first", new ArrayList<>());
}
public ClassToTest(final String first, final List<String> second) {
this.first = first;
this.second = second;
}
...
}
This won't be a problem even with some legacy code. Old code will be using an empty constructor, and if you ask me, refactored code will look cleaner, and you'll be able to inject necessary values in test without reflection.
Now about private methods. In my personal experience when you have to stub a private method for testing, then that method has nothing to do in that class. A common pattern, in that case, would be to wrap it within an interface, like Callable and then you pass in that interface also in the constructor (with that multiple constructor trick):
public ClassToTest() {
this(...);
}
public ClassToTest(final Callable<T> privateMethodLogic) {
this.privateMethodLogic = privateMethodLogic;
}
Mostly all that I wrote looks like it's a dependency injection pattern. In my personal experience it's really useful while testing, and I think that this kind of code is cleaner and will be easier to maintain. I'd say the same about nested classes. If a nested class contains heavy logic it would be better if you'd moved it as a package private class and have injected it into a class needing it.
There are also several other design patterns which I have used while refactoring and maintaining legacy code, but it all depends on cases of your code to test. Using reflection mostly is not a problem, but when you have an enterprise application which is heavily tested and tests are run before every deployment everything gets really slow (it's just annoying and I don't like that kind of stuff).
There is also setter injection, but I wouldn't recommended using it. I'd better stick with a constructor and initialize everything when it's really necessary, leaving the possibility for injecting necessary dependencies.
A private method is only to be accessed within the same class. So there is no way to test a “private” method of a target class from any test class. A way out is that you can perform unit testing manually or can change your method from “private” to “protected”.
And then a protected method can only be accessed within the same package where the class is defined. So, testing a protected method of a target class means we need to define your test class in the same package as the target class.
If all the above does not suits your requirement, use the reflection way to access the private method.
As many above have suggested, a good way is to test them via your public interfaces.
If you do this, it's a good idea to use a code coverage tool (like EMMA) to see if your private methods are in fact being executed from your tests.
Today, I pushed a Java library to help testing private methods and fields. It has been designed with Android in mind, but it can really be used for any Java project.
If you got some code with private methods or fields or constructors, you can use BoundBox. It does exactly what you are looking for.
Here below is an example of a test that accesses two private fields of an Android activity to test it:
#UiThreadTest
public void testCompute() {
// Given
boundBoxOfMainActivity = new BoundBoxOfMainActivity(getActivity());
// When
boundBoxOfMainActivity.boundBox_getButtonMain().performClick();
// Then
assertEquals("42", boundBoxOfMainActivity.boundBox_getTextViewMain().getText());
}
BoundBox makes it easy to test private/protected fields, methods and constructors. You can even access stuff that is hidden by inheritance. Indeed, BoundBox breaks encapsulation. It will give you access to all that through reflection, but everything is checked at compile time.
It is ideal for testing some legacy code. Use it carefully. ;)
First, I'll throw this question out: Why do your private members need isolated testing? Are they that complex, providing such complicated behaviors as to require testing apart from the public surface? It's unit testing, not 'line-of-code' testing. Don't sweat the small stuff.
If they are that big, big enough that these private members are each a 'unit' large in complexity—consider refactoring such private members out of this class.
If refactoring is inappropriate or infeasible, can you use the strategy pattern to replace access to these private member functions / member classes when under unit test? Under unit test, the strategy would provide added validation, but in release builds it would be simple passthrough.
I want to share a rule I have about testing which particularly is related to this topic:
I think that you should never adapt production code in order to
indulge easer writing of tests.
There are a few suggestions in other posts saying you should adapt the original class in order to test a private method - please red this warning first.
If we change the accessibility of a method/field to package private or protected, just in order to have it accessible to tests, then we defeat the purpose of existence of private access directive.
Why should we have private fields/methods/classes at all when we want to have test-driven development? Should we declare everything as package private, or even public then, so we can test without any effort?—I don't think so.
From another point of view: Tests should not burden performance and execution of the production application.
If we change production code just for the sake of easier testing, that may burden performance and the execution of the application in some way.
If someone starts to change private access to package private, then a developer may eventually come up to other "ingenious ideas" about adding even more code to the original class. This would make additional noise to readability and can burden the performance of the application.
With changing of a private access to some less restrictive, we are opening the possibility to a developer for misusing the new situation in the future development of the application. Instead of enforcing him/her to develop in the proper way, we are tempting him/her with new possibilities and giving him ability to make wrong choices in the future.
Of course there might be a few exceptions to this rule, but with clear understanding, what is the rule and what is the exception? We need to be absolutely sure we know why that kind of exception is introduced.
Perhaps I have completely fallen short in my search, but I cannot locate any documentation or discussions related to how to write a unit test for a Java class/method that in turn calls other non-private methods. Seemingly, Mockito takes the position that there is perhaps something wrong with the design (not truly OO) if a spy has to be used in order to test a method where mocking internal method calls is necessary. I'm not certain this is always true. But using a spy seems to be the only way to accomplish this. For example, why could you not have a "wrapper" style method that in turn relies on other methods for primitive functionality but additionally provides functionality, error handling, logging, or different branches dependent on results of the other methods, etc.?
So my question is two-fold:
Is it poorly designed and implemented code to have a method that internally calls other methods?
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
This might be a difficult request, but I would prefer for those who decide to answer to not merely re-publish the Mockito verbiage and/or stance on spies as I already am aware of that approach and ideology. Also, I've used Powermockito as well. To me, the issue here is that Mockito developed this framework where additional workarounds had to be created to support this need. So I suppose the question I am wanting an answer to is if spies are "bad", and Powermockito were not available, how is one supposed to unit test a method that calls other non-private methods?
Is it poorly designed and implemented code to have a method that internally calls other methods?
Not really. But I'd say that, in this situation, the method that calls the others should be tested as if the others where not already tested separately.
That is, it protects you from situations where your public methods stops calling the other ones without you noticing it.
Yes, it makes for (sometimes) a lot of test code. I believe that this is the point: the pain in writing the tests is a good clue that you might want to consider extracting those sub-methods into a separate class.
If I can live with those tests, then I consider that the sub-methods are not to be extracted yet.
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
I'd do something like that:
public class Blah {
public int publicMethod() {
return innerMethod();
}
int innerMethod() {
return 0;
}
}
public class BlahTest {
#Test
public void blah() throws Exception {
Blah spy = spy(new Blah());
doReturn(1).when(spy).innerMethod();
assertThat(spy.publicMethod()).isEqualTo(1);
}
}
To me, this question relates strongly to the concept of cohesion.
My answer would be:
It is ok to have methods (public) that call other methods (private) in a class, in fact very often that is what I think of as good code. There is a caveat to this however in that your class should still be strongly cohesive. To me that means the 'state' of your class should be well defined, and the methods (think behaviours) of your class should be involved in changing your classes state in predictable ways.
Is this the case with what you are trying to test? If not, you may be looking at one class when you should be looking at two (or more).
What are the state variables of the class you're trying to test?
You might find that after considering the answers to these types of questions, your code becomes much easier to test in the way you think it should be.
If you really need (or want) to avoid calling the lower-level methods again, you can stub them out instead of mocking them. For example, if method A calls B and C, you can do this:
MyClass classUnderTest = new MyClass() {
#Override
public boolean B() {return true;}
#Override
public int C() {return 0;}
};
doOtherCommonSetUp(classUnderTest);
String result = classUnderTest.A("whatever");
assertEquals("whatIWant", result);
I've used this quite a quite a bit with legacy code where extensive refactoring could easily lead to the software version of shipwright's disease: Isolate something difficult to test into a small method, and then stub that out.
But if the methods being called are fairly innocuous and don't requiring mocking, I just let them be called again without worrying that I am covering every path within them.
The real question should be:
What do I really want to test?
And actually the answer should be:
The behaviour of my object in response to outside changes
That is, depending on the way one can interact with your object, you want to test every possible single scenario in a single test. This way, you can make sure that your class reacts according to your expectations depending on the scenario you're providing your test with.
Is it poorly designed and implemented code to have a method that internally calls other methods?
Not really, and really not! These so called private methods that are called from public members are namely helper methods. It is totally correct to have helper methods!
Helper methods are there to help break some more complex behaviours into smaller pieces of reusable code from within the class itself. Only it knows how it should behave and return the state accordingly through the public members of your class.
It is unrare to see a class with helper methods and normally they are necessary to adopt an internal behaviour for which the class shouldn't react from the outside world.
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
In my humble opinion, you don't test those methods. They get tested when the public members are tested through the state that you expect out of your object upon a public member call. For example, using the MVP pattern, if you want to test user authentication, you shall not test every private methods, since private methods might as well call other public methods from an object on which depend the object under test and so forth. Instead, testing your view:
#TestFixture
public class TestView {
#Test
public void test() {
// arrange
string expected = "Invalid login or password";
string login = "SomeLogin";
string password = "SomePassword";
// act
viewUnderTest.Connect(login, password);
string actual = viewUnderTest.getErrorMessage;
// assert
assertEqual(expected, actual);
}
}
This test method describes the expected behaviour of your view once the, let's say, connectButton is clicked. If the ErrorMessage property doesn't contain the expected value, this means that either your view or presenter doesn't behave as expected. You might check whether the presenter subscribed to your view's Connect event, or if your presenter sets the right error message, etc.
The fact is that you never need to test whatever is going on in your private methods, as you shall adjust and bring corrections on debug, which in turn causes you to test the behaviour of your internal methods simultaneously, but no special test method should be written expressly for those helper method.
I have a question regarding unit testing.
I have a function which does the following thing:
void myFunction(List<MyClass> myList) {
// 1. Sort the list
// 2. Post Process the list
}
Now I want to test this function. But the problem is I should not test these two things at the same time. I am therefore thinking to extract the "Post Process the list" part as a separate function.
But the problem is the task of "Post Process the list" is only used by myFunction and I want to make it private to the class.
If I make it private I won't be able to test it from outside.
What is the general rule of this kind of scenario? Must I change a private function to public only for testing?
Or if there are any other patterns I should use?
Many thanks
The test method only needs to be package-local.
You can call private methods using reflections and there are mocking libraries which allow you to test private methods. But I would just make it package-local as it shows the method is access from elsewhere in the package (which it is either way)
As others have said, you don't need to make the method public, just package visible.
Google Guava has a #VisibleForTesting annotation which is meant for situations like this. You put this annotation on a method, just to document that the reason that the method isn't private is only for testing. The annotation doesn't do anything, it's just meant as a warning for programmers that they shouldn't call it from outside the class. (Some static code checking tool could in principle check if methods with this annotation aren't called from anywhere except inside the class or from test code).
Ofcourse it's kind of ugly to have to modify your code to do this just for testing. If you want to avoid this, you can do tricks with reflection to call the private method:
public class Sandbox {
public static void main(String[] args) throws Exception {
Example e = new Example();
Method m = Example.class.getDeclaredMethod("myFunction", List.class);
m.setAccessible(true);
m.invoke(e, Arrays.asList("one", "two", "three"));
}
}
class Example {
private void myFunction(List<String> data) {
System.out.println("Hey, what are you doing! " + data);
}
}
In general, you should always test the functionality through public methods. If there is some functionality in private methods, which cannot otherwise be tested well enough, that's an indication that the method has a responsibility which should be moved to its own class (this also helps to achieve high cohesion). Then that newly extracted class can be tested directly though its public methods.
Another vote for package-local. Just ensure that your newly exposed method is clearly named and documented so that in future it is not called inappropriately.
It depends.
Dose the sub routine contains common behavior that you should extract ?
Take your first sub routine as example. If you're not sorting your list by Comparator<T>, you should refactor it, then test that Comprartor<T> class instead of your private method. If Post process are actually some algorithm or common business logic, you might want to refactor it using Strategy pattern then test those class you just extract.
The point is, if a private method is complex enough to require a unit-test, then chance is probably you should not put them there, otherwise you should just test through it's public API.
It's a legacy system, and it will take forever to refactor that method.
check Bad Smells in Code : Long method for long method refactor, Method Object is a good strategy for things like this.
It's fine, I just want to test them.
Then you can test through Java reflection API, and I believe there are some mocking framework like PowerMock can also help you.
Below things you may consider for testing a private method.
1.create public method written only for the purpose of testing. (or)
2.create nested class for testing (or)
3.use reflection to test it.
useful link,another useful link from stackoverflow
I typically consider private methods to be part of the method under test. They typically consist of code that has been moved out of the original method to make it leaner and shorter, and more modular. However from a test perspective you would be testing the same code if you moved the content of the private method into your method under test.
The question of trying to isolate the return values of private methods to simulate various conditions is is often valid though. I think its' part of the larger question of how to write testable code.
One approach with very little overhead is to rely on basic overriding of methods. You can make your private methods protected virtual instead, and override them in your test:
Here's an example of that too :
http://www.unit-testing.net/CurrentArticle/How-To-Remove-Data-Dependencies-In-Unit-Tests.html
The example is C#, but the concept applies to all object oriented languages