Java perlin noise - java

I need to make perlin noise like in AS3.0:
bitmapData.perlinNoise(baseX, baseY, numOctaves,
randomSeed, stitch, fractalNoise, grayScale, offsets);
It's seamless noise:
I found a lot of material about it, but I can't make it like in my as3.0 image. Java code:
import java.awt.Color;
import java.awt.Graphics;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JPanel;
#SuppressWarnings("serial")
public class Noise extends JPanel{
public static int octaves = 4;
public static int size = 128;
public static float[][][] noise = new float[size][size][octaves];
public static float[][] perlinnoise = new float[size][size];
public static float p = (float) 1/4;
public static Random gen = new Random();
public static float GenerateNoise() {
return gen.nextFloat();
}
public static float SmoothNoise(int x, int y, int z) {
try{
float corners = (noise[x - 1][y - 1][z] + noise[x + 1][y - 1][z] + noise[x - 1][y + 1][z] + noise[x + 1][y + 1][z]) / 16;
float sides = (noise[x - 1][y][z] + noise[x + 1][y][z] + noise[x][y - 1][z] + noise[x][y + 1][z]) / 8;
float center = noise[x][y][z] / 4;
return corners + sides + center;
}catch(Exception e) {
return 0;
}
}
public static float InterpolatedNoise(float x, float y, int pX, int pY, int pZ) {
int intX = (int) x;
int intY = (int) y;
float fracX = x - intX;
float fracY = y - intY;
float v1 = SmoothNoise(pX, pY, pZ);
float v2 = SmoothNoise(pX + 1, pY, pZ);
float v3 = SmoothNoise(pX, pY + 1, pZ);
float v4 = SmoothNoise(pX + 1, pY + 1, pZ);
float i1 = Interpolate(v1, v2, fracX);
float i2 = Interpolate(v3, v4, fracX);
return Interpolate(i1, i2, fracY);
}
public static float Interpolate(float a, float b, float x) {
float ft = (float) (x * 3.1415927);
float f = (float) ((1 - Math.cos(ft)) * 0.5);
return (float) (a * (1 - f) + b * f);
}
public static float Perlin2D(float x, float y, int posX, int posY, int posZ) {
float total = 0;
for(int i = 0; i < octaves; i++) {
double f = Math.pow(2, i);
double a = Math.pow(p, i);
total = (float) (total + InterpolatedNoise((float)(x * f), (float)(y * f), posX, posY, posZ) * a);
}
return total;
}
public static void main(String [] args) {
for(int z = 0; z < octaves; z++) {
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
noise[x][y][z] = GenerateNoise();
}
}
}
for(int z = 0; z < octaves; z++) {
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
perlinnoise[x][y] = Perlin2D(x / (size - 1), y / (size - 1), x, y, z) / octaves;
}
}
}
JFrame f = new JFrame("Perlin Noise");
f.setSize(400, 400);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(new Noise());
f.setVisible(true);
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
g.setColor(new Color(perlinnoise[x][y], perlinnoise[x][y], perlinnoise[x][y]));
g.fillRect(x * 2, y * 2, 2, 2);
}
}
repaint();
}
}
Help please!

The trick is, the Perlin noise does not use pseudo-random generator, it uses a function that takes an argument and returns predefined value for that argument, but when argument shifts by 1, the value jumps almost randomly. Check the sources for the permutation formulae, the init() method makes a permutation that then is used to make the entire noise.

Related

Android canvas. How to set circles at random position?

Below code generated and save position x y to HashMap and check collision two circles;
HashMap<Integer, Float> posX = new HashMap<>();
HashMap<Integer, Float> posY = new HashMap<>();
int numberOfCircle = 8;
for(int i=0; i < numberOfCircle; i ++){
// boolean flag = false;
while (true){
float x =random.nextInt(width - raduis/2) + raduis/2f;
float y =random.nextInt(height - raduis/2) + raduis/2f;
if(!posX.containsValue(x) && !posY.containsValue(y)){
if(i == 0){
posX.put(i, x);
posY.put(i, y);
break;
}
if(i > 0){
double distance = Math.sqrt(((posX.get(i - 1) - x) * (posX.get(i - 1) - x)) + ((posY.get(i - 1) - y) * ( posY.get(i - 1) - y)));
if (distance > raduis+raduis) {
posX.put(i, x);
posY.put(i, y);
Log.d(TAG, i + " xPos=" + posX.get(i) + " yPos=" + posY.get(i) + " distance=" + distance);
break;
}
if(numberOfCircle == posX.size()) break;
}
}
}
}
This code work only if circle count=2; But when circle count > 2 i have collision; How to check current generated position for each in HashMap?
For example:
xPos = {5, 10, 3}
yPos = {10, 33, 5}
generated position x=6, y=10;
calculate distance between x=6, y=10 with all positions in Map. If distance < radius+radius generate new position while distance > radius+radius;
Update ========================>
My code work like
I want like this
output: distance equal between current generated position(X, Y) and previous position(X, Y). I want to check between current generated x, y with all added positons in HashMap.
D/DEBUG DATA ===>: 1 xPos=432.0 yPos=411.0 distance=390.6430595825299
D/DEBUG DATA ===>: 2 xPos=316.0 yPos=666.0 distance=280.1446055165082
D/DEBUG DATA ===>: 3 xPos=244.0 yPos=83.0 distance=587.4291446634223
D/DEBUG DATA ===>: 4 xPos=214.0 yPos=551.0 distance=468.96055271205915
D/DEBUG DATA ===>: 5 xPos=76.0 yPos=1011.0 distance=480.2540994098853
D/DEBUG DATA ===>: 6 xPos=289.0 yPos=868.0 distance=256.55019002136794
D/DEBUG DATA ===>: 7 xPos=494.0 yPos=988.0 distance=237.53947040439405
P.s Sorry so poor English.
Maybe something closer to this will work? I'm not entirely sure if it's what you want or if it will help, but I did a quick rewrite for clarity.
HashMap<Integer, Integer> posX = new HashMap<>();
HashMap<Integer, Integer> posY = new HashMap<>();
final int circlesToPlace = 8;
for(int i = 0 ; i < circlesToPlace ; i++){
// boolean flag = false;
while (true){
final int x = ThreadLocalRandom.current().nextInt((radius/2f), width + 1);
final int y = ThreadLocalRandom.current().nextInt((radius/2f), height + 1);
// Iterate over all other positions to ensure no circle intersects with
// the new circle.
for (int index = 0 ; index < posX.size() ; index++) {
// Calculate distance where d = sqrt((x2 - x1)^2 + (y2 - y1)^2)
final int otherX = posX.get(index);
final int otherY = posY.get(index);
int differenceX = otherX - x;
differenceX *= differenceX;
int differenceY = otherY - y;
differenceY *= differenceY;
final double distance = Math.sqrt(differenceX + differenceY);
if (distance > (radius * 2)) {
posX.put(i, x);
posY.put(i, y);
Log.d(TAG, i + " xPos=" + posX.get(i) + " yPos=" + posY.get(i) + " distance=" + distance);
break;
}
}
}
}
My variant. You don't need to do sqrt to compare distance, you can instead square the constant (d2 in my case).
Random random = new Random();
int numberOfCircle = 8, width = 400, height = 300;
int diameter = 51;
final float radius = diameter * 0.5f;
final float d2 = diameter * diameter;
List<Float> posX = new ArrayList<>(numberOfCircle);
List<Float> posY = new ArrayList<>(numberOfCircle);
while (posX.size() < numberOfCircle) { // till enough generated
// generate new coordinates
float x = random.nextInt(width - diameter) + radius;
float y = random.nextInt(height - diameter) + radius;
System.out.printf("Generated [%3.3f, %3.3f] ... ", x, y);
// verify it does not overlap/touch with previous circles
int j = 0;
while (j < posX.size()) {
float dx = posX.get(j) - x, dy = posY.get(j) - y;
float diffSquare = (dx * dx) + (dy * dy);
if (diffSquare <= d2) break;
++j;
}
// generate another pair of coordinates, if it does touch previous
if (j != posX.size()) {
System.out.println("collided.");
continue;
}
System.out.println("added.");
// not overlapping/touch, add as new circle
posX.add(x);
posY.add(y);
} // while (posX.size() < numberOfCircle)
I resolve like this
private class MyView extends View implements View.OnTouchListener{
List<Circle> randomCircles = new ArrayList<>();
int radius = new Circle().getRadius();
int randomCircleCount = 3;
Random random = new Random();
public MyView(Context context) {
super(context);
}
#Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
//Integer width = canvas.getWidth();
Integer width = canvas.getWidth();
Integer height = canvas.getHeight() - (radius);
// Integer height = canvas.getHeight()/2 + canvas.getHeight();
///randomCircles.clear();
Paint paint = new Paint();
paint.setStyle(Paint.Style.FILL);
paint.setColor(Color.BLACK);
canvas.drawPaint(paint);
Paint paintT = new Paint();
paintT.setTextSize(18f);
paintT.setAntiAlias(true);
paintT.setTextAlign(Paint.Align.CENTER);
while(randomCircles.size() < randomCircleCount){
randomCircle(width, height);
}
for(int i=0; i < randomCircleCount; i ++){
Circle circle = randomCircles.get(i);
float curPosX = randomCircles.get(i).getCx().floatValue();
float curPosY = randomCircles.get(i).getCy().floatValue();
int r = random.nextInt(256);
int g = random.nextInt(256);
int b = random.nextInt(256);
paint.setARGB(175, 77, 2, 200);
//if(r != 0 && g != 0 && b != 0) paint.setARGB(255, r, g, b);
canvas.drawCircle(curPosX, curPosY, radius, paint);
Rect bounds = new Rect();
String text = "" +i;
paintT.getTextBounds(text, 0, text.length(), bounds);
paint.setAntiAlias(true);
canvas.drawText(text, curPosX, curPosY, paintT);
circle.update(width, height);
//Log.d(TAG, "REDRAW");
}
///invalidate();
postInvalidateDelayed(100);
}
private void randomCircle(int width, int height) {
double x = getPosX(width, radius);
double y = getPosY(height,radius);
boolean hit = false;
for (int i = 0; i < randomCircles.size(); i++) {
Circle circle = randomCircles.get(i);
double dx = circle.getCx() - x;
double dy = circle.getCy() - y;
int r = circle.getRadius() + radius;
if (dx * dx + dy * dy <= r * r) {
Log.d(TAG, "dx=" + dx + " dy=" + dy);
hit = true;
}
}
if (!hit) {
Log.d(TAG, "Here!!!!!");
randomCircles.add(new Circle(x, y));
}
}
private Float getPosX(Integer width, Integer radius){
return random.nextInt(width - radius/2) + radius/2f;
}
private Float getPosY(Integer height, Integer radius){
return random.nextInt(height - radius/2) + radius/2f;
}

Representing Mandelbrot and Julia Sets Graphically in Java

I'm working on a problem where I'm needing to represent the Mandelbrot set graphically using OpenCL and working on my sequential code first. However, the image it is producing isn't very good and I'm unsure if I've missed something somewhere or if this is merely an issue with a lack of resolution (so to speak). I've posted the code below along with a screenshot of what it produces - is this what I should be expecting or have I messed this up somewhere?
public class SequentialMandelbrot {
private static int[] colorMap;
private static int xSize = 200, ySize = 200;
private static float yMin = -2f, yMax = 2f;
private static float xMin = -2f, xMax = 2f;
private static float xStep = (xMax - xMin) / (float)xSize;
private static float yStep = (yMax - yMin) / (float)ySize;
private static final int maxIter = 250;
private static BufferedImage image;
private static JComponent imageComponent;
public static void main(String[] args) {
// Create the image and the component that will paint the image
initColorMap(32, Color.RED, Color.GREEN, Color.BLUE);
image = new BufferedImage(xSize, ySize, BufferedImage.TYPE_INT_RGB);
imageComponent = new JPanel()
{
private static final long serialVersionUID = 1L;
public void paintComponent(Graphics g)
{
super.paintComponent(g);
g.drawImage(image, 0,0,this);
}
};
for (int j = 0; j < xSize; j++) {
for (int k = 0; k < ySize; k++) {
int iter = mandelbrot(j, k);
if (iter == maxIter) {
image.setRGB(j, k, 0);
} else {
int local_rgb = colorMap[iter%64];
image.setRGB(j, k, local_rgb);
}
}
}
JFrame frame = new JFrame("JOCL Simple Mandelbrot");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setLayout(new BorderLayout());
imageComponent.setPreferredSize(new Dimension(xSize, ySize));
frame.add(imageComponent, BorderLayout.CENTER);
frame.pack();
frame.setVisible(true);
}
private static int mandelbrot(float j, float k) {
int t = 0;
float norm = 0;
float x = 0;
float y = 0;
float r = xMin + (j * xStep);
float i = yMin + (k * yStep);
while (t < maxIter && norm < 4) {
x = (x*x) - (y*y) + r;
y = (2*x*y) + i;
norm = (x*x) + (y*y);
t++;
}
return t;
}
I have also altered the code for the Julia set (from the number 0.45 + 0.1428i) and it produces something equally questionable:
This is your iteration loop, which is incorrect.
while (t < maxIter && norm < 4) {
x = (x*x) - (y*y) + r;
y = (2*x*y) + i;
norm = (x*x) + (y*y);
t++;
}
You are overwriting x before re-using it to calculate y. I suggest using a temporary variable, such as
while (t < maxIter && norm < 4) {
tempx = (x*x) - (y*y) + r;
y = (2*x*y) + i;
x = tempx;
norm = (x*x) + (y*y);
t++;
}
Aside: there is room for some efficiency too, as you are calculating x*x and y*y twice.

Java Perlin Noise Implementation Problems

Hey stackoverflow community! I have been reading about perlin noise for the past 2 weeks and tried implementing it on my own in the most basic way. Even so, my program does not work. It outputs near similar looking results all the time and the persistence does not seem to change anything. Here is my code:
import java.awt.Color;
import java.awt.Graphics;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JPanel;
#SuppressWarnings("serial")
public class Noise extends JPanel{
public static int octaves = 4;
public static int size = 128;
public static float[][][] noise = new float[size][size][octaves];
public static float[][] perlinnoise = new float[size][size];
public static float p = (float) 1/4;
public static Random gen = new Random();
public static float GenerateNoise() {
return gen.nextFloat();
}
public static float SmoothNoise(int x, int y, int z) {
try{
float corners = (noise[x - 1][y - 1][z] + noise[x + 1][y - 1][z] + noise[x - 1][y + 1][z] + noise[x + 1][y + 1][z]) / 16;
float sides = (noise[x - 1][y][z] + noise[x + 1][y][z] + noise[x][y - 1][z] + noise[x][y + 1][z]) / 8;
float center = noise[x][y][z] / 4;
return corners + sides + center;
}catch(Exception e) {
return 0;
}
}
public static float InterpolatedNoise(float x, float y, int pX, int pY, int pZ) {
int intX = (int) x;
int intY = (int) y;
float fracX = x - intX;
float fracY = y - intY;
float v1 = SmoothNoise(pX, pY, pZ);
float v2 = SmoothNoise(pX + 1, pY, pZ);
float v3 = SmoothNoise(pX, pY + 1, pZ);
float v4 = SmoothNoise(pX + 1, pY + 1, pZ);
float i1 = Interpolate(v1, v2, fracX);
float i2 = Interpolate(v3, v4, fracX);
return Interpolate(i1, i2, fracY);
}
public static float Interpolate(float a, float b, float x) {
float ft = (float) (x * 3.1415927);
float f = (float) ((1 - Math.cos(ft)) * 0.5);
return (float) (a * (1 - f) + b * f);
}
public static float Perlin2D(float x, float y, int posX, int posY, int posZ) {
float total = 0;
for(int i = 0; i < octaves; i++) {
double f = Math.pow(2, i);
double a = Math.pow(p, i);
total = (float) (total + InterpolatedNoise((float)(x * f), (float)(y * f), posX, posY, posZ) * a);
}
return total;
}
public static void main(String [] args) {
for(int z = 0; z < octaves; z++) {
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
noise[x][y][z] = GenerateNoise();
}
}
}
for(int z = 0; z < octaves; z++) {
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
perlinnoise[x][y] = Perlin2D(x / (size - 1), y / (size - 1), x, y, z) / octaves;
}
}
}
JFrame f = new JFrame("Perlin Noise");
f.setSize(400, 400);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(new Noise());
f.setVisible(true);
}
public void paintComponent(Graphics g) {
super.paintComponent(g);
for(int y = 0; y < size; y++) {
for(int x = 0; x < size; x++) {
g.setColor(new Color(perlinnoise[x][y], perlinnoise[x][y], perlinnoise[x][y]));
g.fillRect(x * 2, y * 2, 2, 2);
}
}
repaint();
}
}
I do not understand why it is not working because it is exactly as the pseudo code in this article said to do it. Can anyone assist me in figuring this out? Thanks.
EDIT: Ok please can someone just explain the process required to do this PLEASE I am going crazy trying to figure this out. I have been trying to figure it out for the past 2 weeks and no one is giving me any help with it. Please if you know how to do this, please just explain it to me I would greatly appreciate it. Thanks.

Canny Edge Detection using Processing

I am looking for a copy paste implementation of Canny Edge Detection in the processing language. I have zero idea about Image processing and very little clue about Processing, though I understand java pretty well.
Can some processing expert tell me if there is a way of implementing this http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java in processing?
I think if you treat processing in lights of Java then some of the problems could be solved very easily. What it means is that you can use Java classes as such.
For the demo I am using the implementation which you have shared.
>>Original Image
>>Changed Image
>>Code
import java.awt.image.BufferedImage;
import java.util.Arrays;
PImage orig;
PImage changed;
void setup() {
orig = loadImage("c:/temp/image.png");
size(250, 166);
CannyEdgeDetector detector = new CannyEdgeDetector();
detector.setLowThreshold(0.5f);
detector.setHighThreshold(1f);
detector.setSourceImage((java.awt.image.BufferedImage)orig.getImage());
detector.process();
BufferedImage edges = detector.getEdgesImage();
changed = new PImage(edges);
noLoop();
}
void draw()
{
//image(orig, 0,0, width, height);
image(changed, 0,0, width, height);
}
// The code below is taken from "http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java"
// I have stripped the comments for conciseness
public class CannyEdgeDetector {
// statics
private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 100F;
private final static float MAGNITUDE_LIMIT = 1000F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
// fields
private int height;
private int width;
private int picsize;
private int[] data;
private int[] magnitude;
private BufferedImage sourceImage;
private BufferedImage edgesImage;
private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;
private float[] xConv;
private float[] yConv;
private float[] xGradient;
private float[] yGradient;
// constructors
/**
* Constructs a new detector with default parameters.
*/
public CannyEdgeDetector() {
lowThreshold = 2.5f;
highThreshold = 7.5f;
gaussianKernelRadius = 2f;
gaussianKernelWidth = 16;
contrastNormalized = false;
}
public BufferedImage getSourceImage() {
return sourceImage;
}
public void setSourceImage(BufferedImage image) {
sourceImage = image;
}
public BufferedImage getEdgesImage() {
return edgesImage;
}
public void setEdgesImage(BufferedImage edgesImage) {
this.edgesImage = edgesImage;
}
public float getLowThreshold() {
return lowThreshold;
}
public void setLowThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
lowThreshold = threshold;
}
public float getHighThreshold() {
return highThreshold;
}
public void setHighThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
highThreshold = threshold;
}
public int getGaussianKernelWidth() {
return gaussianKernelWidth;
}
public void setGaussianKernelWidth(int gaussianKernelWidth) {
if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
this.gaussianKernelWidth = gaussianKernelWidth;
}
public float getGaussianKernelRadius() {
return gaussianKernelRadius;
}
public void setGaussianKernelRadius(float gaussianKernelRadius) {
if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
this.gaussianKernelRadius = gaussianKernelRadius;
}
public boolean isContrastNormalized() {
return contrastNormalized;
}
public void setContrastNormalized(boolean contrastNormalized) {
this.contrastNormalized = contrastNormalized;
}
// methods
public void process() {
width = sourceImage.getWidth();
height = sourceImage.getHeight();
picsize = width * height;
initArrays();
readLuminance();
if (contrastNormalized) normalizeContrast();
computeGradients(gaussianKernelRadius, gaussianKernelWidth);
int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
int high = Math.round( highThreshold * MAGNITUDE_SCALE);
performHysteresis(low, high);
thresholdEdges();
writeEdges(data);
}
// private utility methods
private void initArrays() {
if (data == null || picsize != data.length) {
data = new int[picsize];
magnitude = new int[picsize];
xConv = new float[picsize];
yConv = new float[picsize];
xGradient = new float[picsize];
yGradient = new float[picsize];
}
}
private void computeGradients(float kernelRadius, int kernelWidth) {
//generate the gaussian convolution masks
float kernel[] = new float[kernelWidth];
float diffKernel[] = new float[kernelWidth];
int kwidth;
for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
float g1 = gaussian(kwidth, kernelRadius);
if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
float g2 = gaussian(kwidth - 0.5f, kernelRadius);
float g3 = gaussian(kwidth + 0.5f, kernelRadius);
kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
diffKernel[kwidth] = g3 - g2;
}
int initX = kwidth - 1;
int maxX = width - (kwidth - 1);
int initY = width * (kwidth - 1);
int maxY = width * (height - (kwidth - 1));
//perform convolution in x and y directions
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
float sumX = data[index] * kernel[0];
float sumY = sumX;
int xOffset = 1;
int yOffset = width;
for(; xOffset < kwidth ;) {
sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += width;
xOffset++;
}
yConv[index] = sumY;
xConv[index] = sumX;
}
}
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < kwidth; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = kwidth; x < width - kwidth; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0.0f;
int index = x + y;
int yOffset = width;
for (int i = 1; i < kwidth; i++) {
sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
yOffset += width;
}
yGradient[index] = sum;
}
}
initX = kwidth;
maxX = width - kwidth;
initY = width * kwidth;
maxY = width * (height - kwidth);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
int indexN = index - width;
int indexS = index + width;
int indexW = index - 1;
int indexE = index + 1;
int indexNW = indexN - 1;
int indexNE = indexN + 1;
int indexSW = indexS - 1;
int indexSE = indexS + 1;
float xGrad = xGradient[index];
float yGrad = yGradient[index];
float gradMag = hypot(xGrad, yGrad);
//perform non-maximal supression
float nMag = hypot(xGradient[indexN], yGradient[indexN]);
float sMag = hypot(xGradient[indexS], yGradient[indexS]);
float wMag = hypot(xGradient[indexW], yGradient[indexW]);
float eMag = hypot(xGradient[indexE], yGradient[indexE]);
float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
float tmp;
if (xGrad * yGrad <= (float) 0 /*(1)*/
? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
: Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
) {
magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
//NOTE: The orientation of the edge is not employed by this
//implementation. It is a simple matter to compute it at
//this point as: Math.atan2(yGrad, xGrad);
} else {
magnitude[index] = 0;
}
}
}
}
private float hypot(float x, float y) {
return (float) Math.hypot(x, y);
}
private float gaussian(float x, float sigma) {
return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
}
private void performHysteresis(int low, int high) {
Arrays.fill(data, 0);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (data[offset] == 0 && magnitude[offset] >= high) {
follow(x, y, offset, low);
}
offset++;
}
}
}
private void follow(int x1, int y1, int i1, int threshold) {
int x0 = x1 == 0 ? x1 : x1 - 1;
int x2 = x1 == width - 1 ? x1 : x1 + 1;
int y0 = y1 == 0 ? y1 : y1 - 1;
int y2 = y1 == height -1 ? y1 : y1 + 1;
data[i1] = magnitude[i1];
for (int x = x0; x <= x2; x++) {
for (int y = y0; y <= y2; y++) {
int i2 = x + y * width;
if ((y != y1 || x != x1)
&& data[i2] == 0
&& magnitude[i2] >= threshold) {
follow(x, y, i2, threshold);
return;
}
}
}
}
private void thresholdEdges() {
for (int i = 0; i < picsize; i++) {
data[i] = data[i] > 0 ? -1 : 0xff000000;
}
}
private int luminance(float r, float g, float b) {
return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
}
private void readLuminance() {
int type = sourceImage.getType();
if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int p = pixels[i];
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
int b = p & 0xff;
data[i] = luminance(r, g, b);
}
} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xff);
}
} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xffff) / 256;
}
} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
int offset = 0;
for (int i = 0; i < picsize; i++) {
int b = pixels[offset++] & 0xff;
int g = pixels[offset++] & 0xff;
int r = pixels[offset++] & 0xff;
data[i] = luminance(r, g, b);
}
} else {
throw new IllegalArgumentException("Unsupported image type: " + type);
}
}
private void normalizeContrast() {
int[] histogram = new int[256];
for (int i = 0; i < data.length; i++) {
histogram[data[i]]++;
}
int[] remap = new int[256];
int sum = 0;
int j = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
int target = sum*255/picsize;
for (int k = j+1; k <=target; k++) {
remap[k] = i;
}
j = target;
}
for (int i = 0; i < data.length; i++) {
data[i] = remap[data[i]];
}
}
private void writeEdges(int pixels[]) {
if (edgesImage == null) {
edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
}
edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
}
}
I've been spending some time with the Gibara Canny implementation and I'm inclined to agree with Settembrini's comment above; further to this one needs to change the implementation of the Gaussian Kernel generation.
The Gibara Canny uses:
(g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius)
The averaging across a pixel (+-0.5 pixels) in (g1 + g2 + g3) / 3f is great, but the correct variance calculation on the bottom half of the equation for single dimensions is:
(g1 + g2 + g3) / 3f / (Math.sqrt(2f * (float) Math.PI) * kernelRadius)
The standard deviation kernelRadius is sigma in the following equation:
Single direction gaussian
I'm assuming that Gibara is attempting to implement the two dimensional gaussian from the following equation: Two dimensional gaussian where the convolution is a direct product of each gaussian. Whilst this is probably possible and more concise, the following code will correctly convolve in two directions with the above variance calculation:
// First Convolution
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
int index = x + y;
float sumX = data[index] * kernel[0];
int xOffset = 1;
int yOffset = sourceImage.width;
for(; xOffset < k ;) {;
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += sourceImage.width;
xOffset++;
}
xConv[index] = sumX;
}
}
// Second Convolution
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
int index = x + y;
float sumY = xConv[index] * kernel[0];
int xOffset = 1;
int yOffset = sourceImage.width;
for(; xOffset < k ;) {;
sumY += xConv[xOffset] * (xConv[index - xOffset] + xConv[index + xOffset]);
yOffset += sourceImage.width;
xOffset++;
}
yConv[index] = sumY;
}
}
NB the yConv[] is now the bidirectional convolution, so the following gradient Sobel calculations are as follows:
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < k; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = k; x < sourceImage.width - k; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
float sum = 0.0f;
int index = x + y;
int yOffset = sourceImage.width;
for (int i = 1; i < k; i++) {
sum += diffKernel[i] * (yConv[index - yOffset] - yConv[index + yOffset]);
yOffset += sourceImage.width;
}
yGradient[index] = sum;
}
}
Gibara's very neat implementation of non-maximum suppression requires that these gradients be calculated seperately, however if you want to output an image with these gradients one can sum them using either Euclidean or Manhattan distances, the Euclidean would look like so:
// Calculate the Euclidean distance between x & y gradients prior to suppression
int [] gradients = new int [picsize];
for (int i = 0; i < xGradient.length; i++) {
gradients[i] = Math.sqrt(Math.sq(xGradient[i]) + Math.sq(yGradient[i]));
}
Hope this helps, is all in order and apologies for my code! Critique most welcome
In addition to Favonius' answer, you might want to try Greg's OpenCV Processing library which you can now easily install via Sketch > Import Library... > Add Library... and select OpenCV for Processing
After you install the library, you can have a play with the FindEdges example:
import gab.opencv.*;
OpenCV opencv;
PImage src, canny, scharr, sobel;
void setup() {
src = loadImage("test.jpg");
size(src.width, src.height);
opencv = new OpenCV(this, src);
opencv.findCannyEdges(20,75);
canny = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findScharrEdges(OpenCV.HORIZONTAL);
scharr = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findSobelEdges(1,0);
sobel = opencv.getSnapshot();
}
void draw() {
pushMatrix();
scale(0.5);
image(src, 0, 0);
image(canny, src.width, 0);
image(scharr, 0, src.height);
image(sobel, src.width, src.height);
popMatrix();
text("Source", 10, 25);
text("Canny", src.width/2 + 10, 25);
text("Scharr", 10, src.height/2 + 25);
text("Sobel", src.width/2 + 10, src.height/2 + 25);
}
Just as I side note. I studied the Gibara Canny implementation some time ago and found some flaws. E.g. he separates the Gauss-Filtering in 1d filters in x and y direction (which is ok and efficient as such), but then he doesn't apply two passes of those filters (one after another) but just applies SobelX to the x-first-pass-Gauss and SobelY to the y-first-pass-Gauss, which of course leads to low quality gradients. Thus be careful just by copy-past such code.

Application not working as expected

I have a standalone Java application below that is:
Generating a random line
Applied to a 2D grid where each cell value is the distance along the line perpindicular to the line
Finds the rise/run and attempts to calculate the original linear equation from the grid
Applies new line to another grid and prints out the greatest difference compared to the first grid
I expected the two grids to have identical values. The gradient lines may be different since the lines can extend outside the area of the grid, but should be similar and in two cases identical.
So is the problem a poor understanding of math, a bug in my code or a misunderstanding of floating point values?
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height - 1);
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
int endX = (int)Math.round(radius * Math.sin(theta));
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height - 1);
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a + b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a + b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE - 1, SIZE - 1, 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
I think I have fixed your program.
a) I took out the integer cast.
b) I removed all the 'x + 1' and 'x - 1' fudges you had used.
I think when dealing with floats and doubles, subtracting '1' from the end of a line is a No-No! What is 1 anyway? - it's ok to do this just before you plot it on the screen once it's an integer. But not while calculating! line length is a 'zero-based' quantity.
This version returns approx 4E-16 always.
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.awt.geom.QuadCurve2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height );
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
float endX = (float)(radius * Math.sin(theta));
float endY = (float)(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height );
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a+b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a+b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE, SIZE , 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
why do you multiply by -1 at the end of this line?
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
this means that endY is always negative except radius is below 0. (cosinus always returns positive value)
is this intended or am i getting something wrong?
regards
You probably misunderstand float and/or double. This is a common problem with any language that implements the ieee spec for floats and doubles, which Java, C, C++ and just about every other language does.
Essentially
double val = 0;
for(int i=0;i<10;i++) {
val+=0.1;
System.out.println(val);
}
results in
0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999
And sometimes even worse. Either use BigDecimal, which alleviates a lot of the problem, or use integers.

Categories

Resources