External shuffle: shuffling large amount of data out of memory - java

I am looking for a way to shuffle a large amount of data which does not fit into memory (approx. 40GB).
I have around 30 millions entries, of variable length, stored in one large file. I know the starting and ending positions of each entry in that file. I need to shuffle this data which does not fit in the RAM.
The only solution I thought of is to shuffle an array containing the numbers from 1 to N, where N is the number of entries, with the Fisher-Yates algorithm and then copy the entries in a new file, according to this order. Unfortunately, this solution involves a lot of seek operations, and thus, would be very slow.
Is there a better solution to shuffle large amount of data with uniform distribution?

First get the shuffle issue out of your face. Do this by inventing a hash algorithm for your entries that produces random-like results, then do a normal external sort on the hash.
Now you have transformed your shuffle into a sort your problems turn into finding an efficient external sort algorithm that fits your pocket and memory limits. That should now be as easy as google.

A simple approach is to pick a K such that 1/K of the data fits comfortably in memory. Perhaps K=4 for your data, assuming you've got 16GB RAM. I'll assume your random number function has the form rnd(n) which generates a uniform random number from 0 to n-1.
Then:
for i = 0 .. K-1
Initialize your random number generator to a known state.
Read through the input data, generating a random number rnd(K) for each item as you go.
Retain items in memory whenever rnd(K) == i.
After you've read the input file, shuffle the retained data in memory.
Write the shuffled retained items to the output file.
This is very easy to implement, will avoid a lot of seeking, and is clearly correct.
An alternative is to partition the input data into K files based on the random numbers, and then go through each, shuffling in memory and writing to disk. This reduces disk IO (each item is read twice and written twice, compared to the first approach where each item is read K times and written once), but you need to be careful to buffer the IO to avoid a lot of seeking, it uses more intermediate disk, and is somewhat more difficult to implement. If you've got only 40GB of data (so K is small), then the simple approach of multiple iterations through the input data is probably best.
If you use 20ms as the time for reading or writing 1MB of data (and assuming the in-memory shuffling cost is insignificant), the simple approach will take 40*1024*(K+1)*20ms, which is 1 minute 8 seconds (assuming K=4). The intermediate-file approach will take 40*1024*4*20ms, which is around 55 seconds, assuming you can minimize seeking. Note that SSD is approximately 20 times faster for reads and writes (even ignoring seeking), so you should expect to perform this task in well under 10s using an SSD. Numbers from Latency Numbers every Programmer should know

I suggest keeping your general approach, but inverting the map before doing the actual copy. That way, you read sequentially and do scattered writes rather than the other way round.
A read has to be done when requested before the program can continue. A write can be left in a buffer, increasing the probability of accumulating more than one write to the same disk block before actually doing the write.

Premise
From what I understand, using the Fisher-Yates algorithm and the data you have about the positions of the entries, you should be able to obtain (and compute) a list of:
struct Entry {
long long sourceStartIndex;
long long sourceEndIndex;
long long destinationStartIndex;
long long destinationEndIndex;
}
Problem
From this point onward, the naive solution is to seek each entry in the source file, read it, then seek to the new position of the entry in the destination file and write it.
The problem with this approach is that it uses way too many seeks.
Solution
A better way to do it, is to reduce the number of seeks, using two huge buffers, for each of the files.
I recommend a small buffer for the source file (say 64MB) and a big one for the destination file (as big as the user can afford - say 2GB).
Initially, the destination buffer will be mapped to the first 2GB of the destination file. At this point, read the whole source file, in chunks of 64MB, in the source buffer. As you read it, copy the proper entries to the destination buffer. When you reach the end of the file, the output buffer should contain all the proper data. Write it to the destination file.
Next, map the output buffer to the next 2GB of the destination file and repeat the procedure. Continue until you have wrote the whole output file.
Caution
Since the entries have arbitrary sizes, it's very likely that at the beginning and ending of the buffers you will have suffixes and prefixes of entries, so you need to make sure you copy the data properly!
Estimated time costs
The execution time depends, essentially, on the size of the source file, the available RAM for the application and the reading speed of the HDD. Assuming a 40GB file, a 2GB RAM and a 200MB/s HDD read speed, the program will need to read 800GB of data (40GB * (40GB / 2GB)). Assuming the HDD is not highly fragmented, the time spent on seeks will be negligible. This means the reads will take up one hour! But if, luckily, the user has 8GB of RAM available for your application, the time may decrease to only 15 to 20 minutes.
I hope this will be enough for you, as I don't see any other faster way.

Although you can use external sort on a random key, as proposed by OldCurmudgeon, the random key is not necessary. You can shuffle blocks of data in memory, and then join them with a "random merge," as suggested by aldel.
It's worth specifying what "random merge" means more clearly. Given two shuffled sequences of equal size, a random merge behaves exactly as in merge sort, with the exception that the next item to be added to the merged list is chosen using a boolean value from a shuffled sequence of zeros and ones, with exactly as many zeros as ones. (In merge sort, the choice would be made using a comparison.)
Proving it
My assertion that this works isn't enough. How do we know this process gives a shuffled sequence, such that every ordering is equally possible? It's possible to give a proof sketch with a diagram and a few calculations.
First, definitions. Suppose we have N unique items, where N is an even number, and M = N / 2. The N items are given to us in two M-item sequences labeled 0 and 1 that are guaranteed to be in a random order. The process of merging them produces a sequence of N items, such that each item comes from sequence 0 or sequence 1, and the same number of items come from each sequence. It will look something like this:
0: a b c d
1: w x y z
N: a w x b y c d z
Note that although the items in 0 and 1 appear to be in order, they are just labels here, and the order doesn't mean anything. It just serves to connect the order of 0 and 1 to the order of N.
Since we can tell from the labels which sequence each item came from, we can create a "source" sequence of zeros and ones. Call that c.
c: 0 1 1 0 1 0 0 1
By the definitions above, there will always be exactly as many zeros as ones in c.
Now observe that for any given ordering of labels in N, we can reproduce a c sequence directly, because the labels preserve information about the sequence they came from. And given N and c, we can reproduce the 0 and 1 sequences. So we know there's always one path back from a sequence N to one triple (0, 1, c). In other words, we have a reverse function r defined from the set of all orderings of N labels to triples (0, 1, c) -- r(N) = (0, 1, c).
We also have a forward function f from any triple r(n) that simply re-merges 0 and 1 according to the value of c. Together, these two functions show that there is a one-to-one correspondence between outputs of r(N) and orderings of N.
But what we really want to prove is that this one-to-one correspondence is exhaustive -- that is, we want to prove that there aren't extra orderings of N that don't correspond to any triple, and that there aren't extra triples that don't correspond to any ordering of N. If we can prove that, then we can choose orderings of N in a uniformly random way by choosing triples (0, 1, c) in a uniformly random way.
We can complete this last part of the proof by counting bins. Suppose every possible triple gets a bin. Then we drop every ordering of N in the bin for the triple that r(N) gives us. If there are exactly as many bins as orderings, then we have an exhaustive one-to-one correspondence.
From combinatorics, we know that number of orderings of N unique labels is N!. We also know that the number of orderings of 0 and 1 are both M!. And we know that the number of possible sequences c is N choose M, which is the same as N! / (M! * (N - M)!).
This means there are a total of
M! * M! * N! / (M! * (N - M)!)
triples. But N = 2 * M, so N - M = M, and the above reduces to
M! * M! * N! / (M! * M!)
That's just N!. QED.
Implementation
To pick triples in a uniformly random way, we must pick each element of the triple in a uniformly random way. For 0 and 1, we accomplish that using a straightforward Fisher-Yates shuffle in memory. The only remaining obstacle is generating a proper sequence of zeros and ones.
It's important -- important! -- to generate only sequences with equal numbers of zeros and ones. Otherwise, you haven't chosen from among Choose(N, M) sequences with uniform probability, and your shuffle may be biased. The really obvious way to do this is to shuffle a sequence containing an equal number of zeros and ones... but the whole premise of the question is that we can't fit that many zeros and ones in memory! So we need a way to generate random sequences of zeros and ones that are constrained such that there are exactly as many zeros as ones.
To do this in a way that is probabilistically coherent, we can simulate drawing balls labeled zero or one from an urn, without replacement. Suppose we start with fifty 0 balls and fifty 1 balls. If we keep count of the number of each kind of ball in the urn, we can maintain a running probability of choosing one or the other, so that the final result isn't biased. The (suspiciously Python-like) pseudocode would be something like this:
def generate_choices(N, M):
n0 = M
n1 = N - M
while n0 + n1 > 0:
if randrange(0, n0 + n1) < n0:
yield 0
n0 -= 1
else:
yield 1
n1 -= 1
This might not be perfect because of floating point errors, but it will be pretty close to perfect.
This last part of the algorithm is crucial. Going through the above proof exhaustively makes it clear that other ways of generating ones and zeros won't give us a proper shuffle.
Performing multiple merges in real data
There remain a few practical issues. The above argument assumes a perfectly balanced merge, and it also assumes you have only twice as much data as you have memory. Neither assumption is likely to hold.
The fist turns out not to be a big problem because the above argument doesn't actually require equally sized lists. It's just that if the list sizes are different, the calculations are a little more complex. If you go through the above replacing the M for list 1 with N - M throughout, the details all line up the same way. (The pseudocode is also written in a way that works for any M greater than zero and less than N. There will then be exactly M zeros and M - N ones.)
The second means that in practice, there might be many, many chunks to merge this way. The process inherits several properties of merge sort — in particular, it requires that for K chunks, you'll have to perform roughly K / 2 merges, and then K / 4 merges, and so on, until all the data has been merged. Each batch of merges will loop over the entire dataset, and there will be roughly log2(K) batches, for a run time of O(N * log(K)). An ordinary Fisher-Yates shuffle would be strictly linear in N, and so in theory would be faster for very large K. But until K gets very, very large, the penalty may be much smaller than the disk seeking penalties.
The benefit of this approach, then, comes from smart IO management. And with SSDs it might not even be worth it — the seek penalties might not be large enough to justify the overhead of multiple merges. Paul Hankin's answer has some practical tips for thinking through the practical issues raised.
Merging all data at once
An alternative to doing multiple binary merges would be to merge all the chunks at once -- which is theoretically possible, and might lead to an O(N) algorithm. The random number generation algorithm for values in c would need to generate labels from 0 to K - 1, such that the final outputs have exactly the right number of labels for each category. (In other words, if you're merging three chunks with 10, 12, and 13 items, then the final value of c would need to have 0 ten times, 1 twelve times, and 2 thirteen times.)
I think there is probably an O(N) time, O(1) space algorithm that will do that, and if I can find one or work one out, I'll post it here. The result would be a truly O(N) shuffle, much like the one Paul Hankin describes towards the end of his answer.

Logically partition your database entries (for e.g Alphabetically)
Create indexes based on your created partitions
build DAO to sensitize based on index

Related

How can I get the most frequent 100 numbers out of 4,000,000,000 numbers?

Yesterday in a coding interview I was asked how to get the most frequent 100 numbers out of 4,000,000,000 integers (may contain duplicates), for example:
813972066
908187460
365175040
120428932
908187460
504108776
The first approach that came to my mind was using HashMap:
static void printMostFrequent100Numbers() throws FileNotFoundException {
// Group unique numbers, key=number, value=frequency
Map<String, Integer> unsorted = new HashMap<>();
try (Scanner scanner = new Scanner(new File("numbers.txt"))) {
while (scanner.hasNextLine()) {
String number = scanner.nextLine();
unsorted.put(number, unsorted.getOrDefault(number, 0) + 1);
}
}
// Sort by frequency in descending order
List<Map.Entry<String, Integer>> sorted = new LinkedList<>(unsorted.entrySet());
sorted.sort((o1, o2) -> o2.getValue().compareTo(o1.getValue()));
// Print first 100 numbers
int count = 0;
for (Map.Entry<String, Integer> entry : sorted) {
System.out.println(entry.getKey());
if (++count == 100) {
return;
}
}
}
But it probably would throw an OutOfMemory exception for the data set of 4,000,000,000 numbers. Moreover, since 4,000,000,000 exceeds the maximum length of a Java array, let's say numbers are in a text file and they are not sorted. I assume multithreading or Map Reduce would be more appropriate for big data set?
How can the top 100 values be calculated when the data does not fit into the available memory?
If the data is sorted, you can collect the top 100 in O(n) where n is the data's size. Because the data is sorted, the distinct values are contiguous. Counting them while traversing the data once gives you the global frequency, which is not available to you when the data is not sorted.
See the sample code below on how this can be done. There is also an implementation (in Kotlin) of the entire approach on GitHub
Note: Sorting is not required. What is required is that distinct values are contiguous and so there is no need for ordering to be defined - we get this from sorting but perhaps there is a way of doing this more efficiently.
You can sort the data file using (external) merge sort in roughly O(n log n) by splitting the input data file into smaller files that fit into your memory, sorting and writing them out into sorted files then merging them.
About this code sample:
Sorted data is represented by a long[]. Because the logic reads values one by one, it's an OK approximation of reading the data from a sorted file.
The OP didn't specify how multiple values with equal frequency should be treated; consequently, the code doesn't do anything beyond ensuring that the result is top N values in no particular order and not implying that there aren't other values with the same frequency.
import java.util.*;
import java.util.Map.Entry;
class TopN {
private final int maxSize;
private Map<Long, Long> countMap;
public TopN(int maxSize) {
this.maxSize = maxSize;
this.countMap = new HashMap(maxSize);
}
private void addOrReplace(long value, long count) {
if (countMap.size() < maxSize) {
countMap.put(value, count);
} else {
Optional<Entry<Long, Long>> opt = countMap.entrySet().stream().min(Entry.comparingByValue());
Entry<Long, Long> minEntry = opt.get();
if (minEntry.getValue() < count) {
countMap.remove(minEntry.getKey());
countMap.put(value, count);
}
}
}
public Set<Long> get() {
return countMap.keySet();
}
public void process(long[] data) {
long value = data[0];
long count = 0;
for (long current : data) {
if (current == value) {
++count;
} else {
addOrReplace(value, count);
value = current;
count = 1;
}
}
addOrReplace(value, count);
}
public static void main(String[] args) {
long[] data = {0, 2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 6, 7};
TopN topMap = new TopN(2);
topMap.process(data);
System.out.println(topMap.get()); // [5, 6]
}
}
Integers are signed 32 bits, so if only positive integers happen, we look at 2^31 max different entries. An array of 2^31 bytes should stay under max array size.
But that can't hold frequencies higher than 255, you would say? Yes, you're right.
So we add an hashmap for all entries that exceed the max value possible in your array (255 - if it's signed just start counting at -128). There are at most 16 million entries in this hash map (4 billion divided by 255), which should be possible.
We have two data structures:
a large array, indexed by the number read (0..2^31) of bytes.
a hashmap of (number read, frequency)
Algorithm:
while reading next number 'x'
{
if (hashmap.contains(x))
{
hashmap[x]++;
}
else
{
bigarray[x]++;
if (bigarray[x] > 250)
{
hashmap[x] = bigarray[x];
}
}
}
// when done:
// Look up top-100 in hashmap
// if not 100 yet, add more from bigarray, skipping those already taken from the hashmap
I'm not fluent in Java, so can't give a better code example.
Note that this algorithm is single-pass, works on unsorted input, and doesn't use external pre-processing steps.
All it does is assuming a maximum to the number read. It should work if the input are non-negative Integers, which have a maximum of 2^31. The sample input satisfies that constraint.
The algorithm above should satisfy most interviewers that ask this question. Whether you can code in Java should be established by a different question. This question is about designing data structures and efficient algorithms.
In pseudocode:
Perform an external sort
Do a pass to collect the top 100 frequencies (not which values have them)
Do another pass to collect the values that have those frequencies
Assumption: There are clear winners - no ties (outside the top 100).
Time complexity: O(n log n) (approx) due to sort.
Space complexity: Available memory, again due to sort.
Steps 2 and 3 are both O(n) time and O(1) space.
If there are no ties (outside the top 100), steps 2 and 3 can be combined into one pass, which wouldn’t improve the time complexity, but would improve the run time slightly.
If there are ties that would make the quantity of winners large, you couldn’t discover that and take special action (e.g., throw error or discard all ties) without two passes. You could however find the smallest 100 values from the ties with one pass.
But it probably would throw an OutOfMemory exception for the data set of 4000000000 numbers. Moreover, since 4000000000 exceeds max length of Java array, let's say numbers are in a text file and they are not sorted.
That depends on the value distribution. If you have 4E9 numbers, but the numbers are integers 1-1000, then you will end up with a map of 1000 entries. If the numbers are doubles or the value space is unrestricted, then you may have an issue.
As in the previous answer - there's a bug
unsorted.put(number, unsorted.getOrDefault(number, 0) + 1);
I personally would use "AtomicLong" for value, it allows to increase the value without updating the HashMap entries.
I assume multithreading or Map Reduce would be more appropriate for big data set?
What would be the most efficient solution for this problem?
This is a typical map-reduce exercise example, so in theory you could use multi-threaded or M-R approach. Maybe it's the goal of your exercise and you suppose to implement the multithreaded map-reduce tasks regardless if it's the most efficient way or not.
In reality you should calculate if it is worth the effort. If you're reading the input serially (as it's in your code using the Scanner), then definitely not. If you can split the input files and read multiple parts in parallel, considering the I/O throughput, it may be the case.
Or maybe if the value space is too large to fit into memory and you will need to downscale the dataset, you may consider different approach.
One option is a type of binary search. Consider a binary tree where each split corresponds to a bit in a 32-bit integer. So conceptually we have a binary tree of depth 32. At each node, we can compute the count of numbers in the set that start with the bit sequence for that node. This count is an O(n) operation, so the total cost of finding our most common sequence is going to be O(n * f(n)) where the function depends on how many nodes we need to enumerate.
Let's start by considering a depth-first search. This provides a reasonable upper bound to the stack size during enumeration. A brute force search of all nodes is obviously terrible (in that case, you can ignore the tree concept entirely and just enumerate over all the integers), but we have two things that can prevent us from needing to search all nodes:
If we ever reach a branch where there are 0 numbers in the set starting with that bit sequence, we can prune that branch and stop enumerating.
Once we hit a terminal node, we know how many occurrences of that specific number there are. We add this to our 'top 100' list, removing the lowest if necessary. Once this list fills up, we can start pruning any branches whose total count is lower than the lowest of the 'top 100' counts.
I'm not sure what the average and worst-case performance for this would be. It would tend to perform better for sets with fewer distinct numbers and probably performs worst for sets that approach uniformly distributed, since that implies more nodes will need to be searched.
A few observations:
There are at most N terminal nodes with non-zero counts, but since N > 2^32 in this specific case, that doesn't matter.
The total number of nodes for M leaf nodes (M = 2^32) is 2M-1. This is still linear in M, so worst case running time is bounded above at O(N*M).
This will perform worse than just searching all integers for some cases, but only by a linear scalar factor. Whether this performs better on average depends on the the expected data. For uniformly random data sets, my intuitive guess is that you'd be able to prune enough branches once the top-100 list fills up that you would tend to require fewer than M counts, but that would need to evaluated empirically or proven.
As a practical matter, the fact that this algorithm just requires read-only access to the data set (it only ever performs a count of numbers starting with a certain bit pattern) means it is amenable to parallelization by storing the data across multiple arrays, counting the subsets in parallel, then adding the counts together. This could be a pretty substantial speedup in a practical implementation that's harder to do with an approach that requires sorting.
A concrete example of how this might execute, for a simpler set of 3-bit numbers and only finding the single most frequent. Let's say the set is '000, 001, 100, 001, 100, 010'.
Count all numbers that start with '0'. This count is 4.
Go deeper, count all numbers that start with '00'. This count is 3.
Count all numbers that are '000'. This count is 1. This is our new most frequent.
Count all numbers that are '001'. This count is 2. This is our new most frequent.
Take next deep branch and count all numbers that start with '01'. This count is 1, which is less than our most frequent, so we can stop enumerating this branch.
Count all numbers that start with '1'. This count is 1, which is less than our most frequent, so we can stop enumerating this branch.
We're out of branches, so we're done and '001' is the most frequent.
Since the data set is presumably too big for memory, I'd do a hexadecimal radix sort. So the data set would get split between 16 files in each pass with as many passes as needed to get to the largest integer.
The second part would be to combine the files into one large data set.
The third part would be to read the file number by number and count the occurrence of each number. Save the number and number of occurrences into a two-dimensional array (the list) which is sorted by size. If the next number from the file has more occurrences than the number in the list with the lowest occurrences then replace that number.
Linux tools
That's simply done in a shell script on Linux/Mac:
sort inputfile | uniq -c | sort -nr | head -n 100
If the data is already sorted, you just use
uniq -c inputfile | sort -nr | head -n 100
File system
Another idea is to use the number as the filename and increase the file size for each hit
while read number;
do
echo -n "." >> number
done <<< inputfile
File system constraints could cause trouble with that many files, so you can create a directory tree with the first digits and store the files there.
When finished, you traverse through the tree and remember the 100 highest seen values for file size.
Database
You can use the same approach with a database, so you don't need to actually store the GB of data there (works too), just the counters (needs less space).
Interview
An interesting question would be how you handle edge cases, so what should happen if the 100th, 101st, ... number have the same frequency. Are the integers only positive?
What kind of output do they need, just the numbers or also the frequencies? Just think it through like a real task at work and ask everything you need to know to solve it. It's more about how you think and analyze a problem.
I have noticed there is a bug in this line.
unsorted.put(number, unsorted.getOrDefault(number, 1) + 1);
You should make the default value as 0 as you are then adding 1 to it. If not when you only have 1 occurrence of a value, it is recorded as the frequency of 2.
unsorted.put(number, unsorted.getOrDefault(number, 0) + 1);
One downside that I see is the unnecessity of keeping all 4 billion frequencies when you are sorting.
You can use a PriorityQueue to hold only 100 values.
Map<String, Integer> unsorted = new HashMap<>();
PriorityQueue<Map.Entry<String, Integer>> highestFrequentValues = new PriorityQueue<>(100,
(o1, o2) -> o2.getValue().compareTo(o1.getValue()));
// O(n)
try (Scanner scanner = new Scanner(new File("numbers.txt"))) {
while (scanner.hasNextLine()) {
String number = scanner.nextLine();
unsorted.put(number, unsorted.getOrDefault(number, 0) + 1);
}
}
// O(n)
for (Map.Entry<String, Integer> stringIntegerEntry : unsorted.entrySet()) {
if (highestFrequentValues.size() < 100) {
highestFrequentValues.add(stringIntegerEntry);
} else {
Map.Entry<String, Integer> minFrequencyWithinHundredEntries = highestFrequentValues.poll();
if (minFrequencyWithinHundredEntries.getValue() < stringIntegerEntry.getValue()) {
highestFrequentValues.add(stringIntegerEntry);
}
}
}
// O(n)
for (Map.Entry<String, Integer> frequentValue : highestFrequentValues) {
System.out.println(frequentValue.getKey());
}
OK, I know that the question is about Java and algorithms and solving this problem otherwise is not the point, but I still think this solution must be posted for completeness.
Solution in sh:
sort FILE | uniq -c | sort -nr | head -n 100
Explanation: sort | uniq -c lists only unique entries and counts the number of their occurrences in the input; sort -nr sorts the output numerically in reverse order (the lines with more occurrences on the top); head -n 100 keeps 100 top lines only. A file with 4,000,000,000 numbers up to 999999999 (as per OP) will take about ~40GB, so fits well on a disk of a single machine, so it is technically possible to use this solution.
Pro: simple, has constant and limited memory usage. Cons: sub-optimal (because of sort), consumes lots of the temporary disk space for the operation, and overall there is no doubt that a solution specifically designed for this problem will have a much better performance. The question remains (in all seriousness): in a general case, will writing (and then debugging and executing) an optimized solution take more or less time than using a sub-optimal one (as above) but available immediately? I ran the solution on a sample file with 400,000,000 lines (10x smaller) and it took about 7 minutes on my computer.
P.S. On a side note, OP mentions that this question was asked during a programming interview. This is interesting because I think this a kind of a solution worth mentioning in this context before starting to code another program from scratch. When people say "experienced engineers are 10x faster...", I personally don't think that this is because experienced engineers code faster or produce optimized algorithms off the top of the head, but because they explore the alternatives that can save time. In the context of an interview it is an important skill to demonstrate among others.
I suppose that 4 trillion was chosen to be sure the problem is too large to fit in memory on current desktop machines. So rent a large VM from Amazon or Microsoft for the purpose? That's an answer most people don't think of yet but is valid for real-world solutions.
The way I'd approach it is start by binning. The range of numbers is presumably all 32-bit unsigned integers (or whatever they said). How large of an array does fit in RAM? divide the range into that many equal bins and pass through the data once. Look over the distribution: Is it fairly uniform, or spikey, or a curve of some kind? If the first/last range of bins are zeros then it gives you the true range of input values, and you can adjust the program to just bin over that range and repeat, to get better accuracy.
Then depending on the distribution, decide how to proceed. In general, only the top 100 bins can possibly contain the top 100 values, so you can reconfigure with those ranges and the largest bins you can handle within that excerpted range. If the distribution is too uniform, you might get many many bins with all the same count, so drop the smaller bins even though you have many more than 100 bins remaining -- you still cut it down some.
Worst case is that all the bins come out the same and you can't cut it down this way! Someone prepared some pathological data assuming this kind of approach. So re-arrange the way you do the binning. Rather than simply chopping into contiguous ranges of equal size, us a 1:1 mapping to shuffle them. However, for large bins, this might preserve the property of being fairly uniform, so you don't want a conventional "good" hashing function.
Another approach
If binning works, and rapidly cuts down the problem, it's easy. But the data could be such that it's actually very difficult. So what's a way that always works, regardless of the data? Well, I can assume that the result exists: some 100 values will have more occurrences.
Instead of bins, pick n specific values (however many you can fit in memory). Either choose random numbers, or use the first N distinct values from your input. Count those, and copy the others to another file. That is, the values you don't have room to count get copied to a (smaller the original) file.
Now you'll at least have a useful pivot value: the exact cardinality of the 100 distinct top values that you did count exactly. Well, the ones you picked might still end up being all the same count! So you only have 1 distinct cardinality worst case. You know that this is not a "top" value since there are far more an 100 of them.
Run again on your new (smaller) file, and discard counts that are smaller than the top 100 you already know. Repeat.
This reminds me of something that I might have read in Knuth's TAOCP, but scaled up for modern machine sizes.
I would just drop all the numbers in a database (SQLite would be my first choice) with a table like
CREATE TABLE tbl (
number INTEGER PRIMARY KEY,
counter INTEGER
)
Then for every number received, just do a
INSERT INTO tbl (number,counter) VALUES (:number,1) ON DUPLICATE KEY UPDATE counter=counter+1;
or with SQLite syntax
INSERT INTO tbl (number,counter) VALUES (:number,1) ON CONFLICT(number) DO UPDATE SET counter=counter+1;
Then when all the numbers are accounted for,
SELECT number, counter FROM tbl ORDER BY counter DESC LIMIT 100
... then I would end up with the 100 most common numbers, and how often they occurred. This scheme will only break when you run out of disk space... (or when you reach ~20000000000000 (20 trillion) unique digits at some ~281 terabytes of disk space... )
Divide your numbers into two buckets
Find top 100 in each bucket
Merge those top 100 lists.
To divide, do median of medians (which can be modified to make medians of the top/bottom as well).
Each bucket has a distinct range of numbers in it. The initial median split makes 2 buckets, each with half (about) as many elements as the entire list in it.
To find the top 100, first know if the bucket is narrow (similar minimum and maximum) O(1) or small (few numbers in it) (O(n) time O(n*bucket count) memory). If either is true, a simple counting pass (possibly doing more than 1 bucket at once) solves it (you will have to do it more than once probably, as you have memory limits).
If neither is true, recurse and divide that bucket into two.
There are going to be fiddly bits with how you recurse without wasting too much time.
But the idea is that each bucket exponentially gets narrower or smaller. Narrow buckets have a minimum and maximum that is close, and small buckets have few elements.
You merge buckets so that you have enough storage to count the elements in the bucket (either width based, or volume based). Then you do a pass that counts that bucket and finds the top 100, and repeat. Each time you merge the top 100 from the scan into the previous top 100.
In-place, no sorting of the entire list needed, and devolves to simpler and more optimal strategies when the initial "bucket" is narrow or small.
I assume that the point of the challenge is to process this large amount of data without consuming too much memory, and avoid parsing the input too many times.
Here's an algorithm that would require two not too large arrays. Don't know about java, but I am confident that this can be made to run very fast in C:
Create a Count array of size 2^n to count the number of input numbers based on their n most significant bits. That will require a first scan over the input data but is really straightforward to do. I would first try with n=20 (about one million buckets).
Obviously, we won't process the data one bucket at a time, as that would require reading the input a million times, instead we choose our optimal batch size B and allocate a Batch array of size B. B could be like 40M, so that we aim at reading the input about 100 times. (It all depends on available memory).
Then we iterate over the count array to group the first range of buckets so that the sum is close to, but doesn't exceed B.
For each such range, we parse the input data, look for numbers in range and copy those numbers to the batch array. Since we already know the size of each bucket, we can immediately copy them grouped per bucket, so that we only have to sort them bucket by bucket (you can repurpose the count array to store the indices for where to write the next entry). Next we count the identical items in the sorted batch array and keep track of the top 100 so far.
Proceed the next range of buckets for which the sum of counts is under size B, etc...
Optimizations:
Once we start having a decent top 100, you can skip entire buckets whose size is below our 100th entry. For this we can use a special value (such as -1) in the count array, to indicate there is not index. Depending on the data, this can drastically reduce the number of passes required.
When counting identical items in the sorted Batch, we can make jumps of the size of your 100th entry (and then take a few steps backwards. I can share pseudo-code if needed)
Potential issues with this approach:
The input numbers could be concentrated in a small range, then you might get one or more single buckets that are larger than B. Possible solutions:
You could try another selection of n bits instead (eg. the n least significant bits). Note that that still won't help if the same numbers appears a billion times.
If the input is 32bit integers, then the range of possible values is limited, and there can only be a few thousand different numbers in each bucket. So if one bucket is really large, then we can process that bucket differently: Just keep a counter for each unique value in that range. We can repurpose the Batch array for that.

knapsack with dynamic programming complexity doesn't match with the real result [duplicate]

I'd prefer as little formal definition as possible and simple mathematics.
Quick note, my answer is almost certainly confusing Big Oh notation (which is an upper bound) with Big Theta notation "Θ" (which is a two-side bound). But in my experience, this is actually typical of discussions in non-academic settings. Apologies for any confusion caused.
BigOh complexity can be visualized with this graph:
The simplest definition I can give for Big Oh notation is this:
Big Oh notation is a relative representation of the complexity of an algorithm.
There are some important and deliberately chosen words in that sentence:
relative: you can only compare apples to apples. You can't compare an algorithm that does arithmetic multiplication to an algorithm that sorts a list of integers. But a comparison of two algorithms to do arithmetic operations (one multiplication, one addition) will tell you something meaningful;
representation: BigOh (in its simplest form) reduces the comparison between algorithms to a single variable. That variable is chosen based on observations or assumptions. For example, sorting algorithms are typically compared based on comparison operations (comparing two nodes to determine their relative ordering). This assumes that comparison is expensive. But what if the comparison is cheap but swapping is expensive? It changes the comparison; and
complexity: if it takes me one second to sort 10,000 elements, how long will it take me to sort one million? Complexity in this instance is a relative measure to something else.
Come back and reread the above when you've read the rest.
The best example of BigOh I can think of is doing arithmetic. Take two numbers (123456 and 789012). The basic arithmetic operations we learned in school were:
addition;
subtraction;
multiplication; and
division.
Each of these is an operation or a problem. A method of solving these is called an algorithm.
The addition is the simplest. You line the numbers up (to the right) and add the digits in a column writing the last number of that addition in the result. The 'tens' part of that number is carried over to the next column.
Let's assume that the addition of these numbers is the most expensive operation in this algorithm. It stands to reason that to add these two numbers together we have to add together 6 digits (and possibly carry a 7th). If we add two 100 digit numbers together we have to do 100 additions. If we add two 10,000 digit numbers we have to do 10,000 additions.
See the pattern? The complexity (being the number of operations) is directly proportional to the number of digits n in the larger number. We call this O(n) or linear complexity.
Subtraction is similar (except you may need to borrow instead of carry).
Multiplication is different. You line the numbers up, take the first digit in the bottom number and multiply it in turn against each digit in the top number and so on through each digit. So to multiply our two 6 digit numbers we must do 36 multiplications. We may need to do as many as 10 or 11 column adds to get the end result too.
If we have two 100-digit numbers we need to do 10,000 multiplications and 200 adds. For two one million digit numbers we need to do one trillion (1012) multiplications and two million adds.
As the algorithm scales with n-squared, this is O(n2) or quadratic complexity. This is a good time to introduce another important concept:
We only care about the most significant portion of complexity.
The astute may have realized that we could express the number of operations as: n2 + 2n. But as you saw from our example with two numbers of a million digits apiece, the second term (2n) becomes insignificant (accounting for 0.0002% of the total operations by that stage).
One can notice that we've assumed the worst case scenario here. While multiplying 6 digit numbers, if one of them has 4 digits and the other one has 6 digits, then we only have 24 multiplications. Still, we calculate the worst case scenario for that 'n', i.e when both are 6 digit numbers. Hence Big Oh notation is about the Worst-case scenario of an algorithm.
The Telephone Book
The next best example I can think of is the telephone book, normally called the White Pages or similar but it varies from country to country. But I'm talking about the one that lists people by surname and then initials or first name, possibly address and then telephone numbers.
Now if you were instructing a computer to look up the phone number for "John Smith" in a telephone book that contains 1,000,000 names, what would you do? Ignoring the fact that you could guess how far in the S's started (let's assume you can't), what would you do?
A typical implementation might be to open up to the middle, take the 500,000th and compare it to "Smith". If it happens to be "Smith, John", we just got really lucky. Far more likely is that "John Smith" will be before or after that name. If it's after we then divide the last half of the phone book in half and repeat. If it's before then we divide the first half of the phone book in half and repeat. And so on.
This is called a binary search and is used every day in programming whether you realize it or not.
So if you want to find a name in a phone book of a million names you can actually find any name by doing this at most 20 times. In comparing search algorithms we decide that this comparison is our 'n'.
For a phone book of 3 names it takes 2 comparisons (at most).
For 7 it takes at most 3.
For 15 it takes 4.
…
For 1,000,000 it takes 20.
That is staggeringly good, isn't it?
In BigOh terms this is O(log n) or logarithmic complexity. Now the logarithm in question could be ln (base e), log10, log2 or some other base. It doesn't matter it's still O(log n) just like O(2n2) and O(100n2) are still both O(n2).
It's worthwhile at this point to explain that BigOh can be used to determine three cases with an algorithm:
Best Case: In the telephone book search, the best case is that we find the name in one comparison. This is O(1) or constant complexity;
Expected Case: As discussed above this is O(log n); and
Worst Case: This is also O(log n).
Normally we don't care about the best case. We're interested in the expected and worst case. Sometimes one or the other of these will be more important.
Back to the telephone book.
What if you have a phone number and want to find a name? The police have a reverse phone book but such look-ups are denied to the general public. Or are they? Technically you can reverse look-up a number in an ordinary phone book. How?
You start at the first name and compare the number. If it's a match, great, if not, you move on to the next. You have to do it this way because the phone book is unordered (by phone number anyway).
So to find a name given the phone number (reverse lookup):
Best Case: O(1);
Expected Case: O(n) (for 500,000); and
Worst Case: O(n) (for 1,000,000).
The Traveling Salesman
This is quite a famous problem in computer science and deserves a mention. In this problem, you have N towns. Each of those towns is linked to 1 or more other towns by a road of a certain distance. The Traveling Salesman problem is to find the shortest tour that visits every town.
Sounds simple? Think again.
If you have 3 towns A, B, and C with roads between all pairs then you could go:
A → B → C
A → C → B
B → C → A
B → A → C
C → A → B
C → B → A
Well, actually there's less than that because some of these are equivalent (A → B → C and C → B → A are equivalent, for example, because they use the same roads, just in reverse).
In actuality, there are 3 possibilities.
Take this to 4 towns and you have (iirc) 12 possibilities.
With 5 it's 60.
6 becomes 360.
This is a function of a mathematical operation called a factorial. Basically:
5! = 5 × 4 × 3 × 2 × 1 = 120
6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040
…
25! = 25 × 24 × … × 2 × 1 = 15,511,210,043,330,985,984,000,000
…
50! = 50 × 49 × … × 2 × 1 = 3.04140932 × 1064
So the BigOh of the Traveling Salesman problem is O(n!) or factorial or combinatorial complexity.
By the time you get to 200 towns there isn't enough time left in the universe to solve the problem with traditional computers.
Something to think about.
Polynomial Time
Another point I wanted to make a quick mention of is that any algorithm that has a complexity of O(na) is said to have polynomial complexity or is solvable in polynomial time.
O(n), O(n2) etc. are all polynomial time. Some problems cannot be solved in polynomial time. Certain things are used in the world because of this. Public Key Cryptography is a prime example. It is computationally hard to find two prime factors of a very large number. If it wasn't, we couldn't use the public key systems we use.
Anyway, that's it for my (hopefully plain English) explanation of BigOh (revised).
It shows how an algorithm scales based on input size.
O(n2): known as Quadratic complexity
1 item: 1 operations
10 items: 100 operations
100 items: 10,000 operations
Notice that the number of items increases by a factor of 10, but the time increases by a factor of 102. Basically, n=10 and so O(n2) gives us the scaling factor n2 which is 102.
O(n): known as Linear complexity
1 item: 1 operation
10 items: 10 operations
100 items: 100 operations
This time the number of items increases by a factor of 10, and so does the time. n=10 and so O(n)'s scaling factor is 10.
O(1): known as Constant complexity
1 item: 1 operations
10 items: 1 operations
100 items: 1 operations
The number of items is still increasing by a factor of 10, but the scaling factor of O(1) is always 1.
O(log n): known as Logarithmic complexity
1 item: 1 operations
10 items: 2 operations
100 items: 3 operations
1000 items: 4 operations
10,000 items: 5 operations
The number of computations is only increased by a log of the input value. So in this case, assuming each computation takes 1 second, the log of the input n is the time required, hence log n.
That's the gist of it. They reduce the maths down so it might not be exactly n2 or whatever they say it is, but that'll be the dominating factor in the scaling.
Big-O notation (also called "asymptotic growth" notation) is what functions "look like" when you ignore constant factors and stuff near the origin. We use it to talk about how thing scale.
Basics
for "sufficiently" large inputs...
f(x) ∈ O(upperbound) means f "grows no faster than" upperbound
f(x) ∈ Ɵ(justlikethis) mean f "grows exactly like" justlikethis
f(x) ∈ Ω(lowerbound) means f "grows no slower than" lowerbound
big-O notation doesn't care about constant factors: the function 9x² is said to "grow exactly like" 10x². Neither does big-O asymptotic notation care about non-asymptotic stuff ("stuff near the origin" or "what happens when the problem size is small"): the function 10x² is said to "grow exactly like" 10x² - x + 2.
Why would you want to ignore the smaller parts of the equation? Because they become completely dwarfed by the big parts of the equation as you consider larger and larger scales; their contribution becomes dwarfed and irrelevant. (See example section.)
Put another way, it's all about the ratio as you go to infinity. If you divide the actual time it takes by the O(...), you will get a constant factor in the limit of large inputs. Intuitively this makes sense: functions "scale like" one another if you can multiply one to get the other. That is when we say...
actualAlgorithmTime(N) ∈ O(bound(N))
e.g. "time to mergesort N elements
is O(N log(N))"
... this means that for "large enough" problem sizes N (if we ignore stuff near the origin), there exists some constant (e.g. 2.5, completely made up) such that:
actualAlgorithmTime(N) e.g. "mergesort_duration(N) "
────────────────────── < constant ───────────────────── < 2.5
bound(N) N log(N)
There are many choices of constant; often the "best" choice is known as the "constant factor" of the algorithm... but we often ignore it like we ignore non-largest terms (see Constant Factors section for why they don't usually matter). You can also think of the above equation as a bound, saying "In the worst-case scenario, the time it takes will never be worse than roughly N*log(N), within a factor of 2.5 (a constant factor we don't care much about)".
In general, O(...) is the most useful one because we often care about worst-case behavior. If f(x) represents something "bad" like the processor or memory usage, then "f(x) ∈ O(upperbound)" means "upperbound is the worst-case scenario of processor/memory usage".
Applications
As a purely mathematical construct, big-O notation is not limited to talking about processing time and memory. You can use it to discuss the asymptotics of anything where scaling is meaningful, such as:
the number of possible handshakes among N people at a party (Ɵ(N²), specifically N(N-1)/2, but what matters is that it "scales like" N²)
probabilistic expected number of people who have seen some viral marketing as a function of time
how website latency scales with the number of processing units in a CPU or GPU or computer cluster
how heat output scales on CPU dies as a function of transistor count, voltage, etc.
how much time an algorithm needs to run, as a function of input size
how much space an algorithm needs to run, as a function of input size
Example
For the handshake example above, everyone in a room shakes everyone else's hand. In that example, #handshakes ∈ Ɵ(N²). Why?
Back up a bit: the number of handshakes is exactly n-choose-2 or N*(N-1)/2 (each of N people shakes the hands of N-1 other people, but this double-counts handshakes so divide by 2):
However, for very large numbers of people, the linear term N is dwarfed and effectively contributes 0 to the ratio (in the chart: the fraction of empty boxes on the diagonal over total boxes gets smaller as the number of participants becomes larger). Therefore the scaling behavior is order N², or the number of handshakes "grows like N²".
#handshakes(N)
────────────── ≈ 1/2
N²
It's as if the empty boxes on the diagonal of the chart (N*(N-1)/2 checkmarks) weren't even there (N2 checkmarks asymptotically).
(temporary digression from "plain English":) If you wanted to prove this to yourself, you could perform some simple algebra on the ratio to split it up into multiple terms (lim means "considered in the limit of", just ignore it if you haven't seen it, it's just notation for "and N is really really big"):
N²/2 - N/2 (N²)/2 N/2 1/2
lim ────────── = lim ( ────── - ─── ) = lim ─── = 1/2
N→∞ N² N→∞ N² N² N→∞ 1
┕━━━┙
this is 0 in the limit of N→∞:
graph it, or plug in a really large number for N
tl;dr: The number of handshakes 'looks like' x² so much for large values, that if we were to write down the ratio #handshakes/x², the fact that we don't need exactly x² handshakes wouldn't even show up in the decimal for an arbitrarily large while.
e.g. for x=1million, ratio #handshakes/x²: 0.499999...
Building Intuition
This lets us make statements like...
"For large enough inputsize=N, no matter what the constant factor is, if I double the input size...
... I double the time an O(N) ("linear time") algorithm takes."
N → (2N) = 2(N)
... I double-squared (quadruple) the time an O(N²) ("quadratic time") algorithm takes." (e.g. a problem 100x as big takes 100²=10000x as long... possibly unsustainable)
N² → (2N)² = 4(N²)
... I double-cubed (octuple) the time an O(N³) ("cubic time") algorithm takes." (e.g. a problem 100x as big takes 100³=1000000x as long... very unsustainable)
cN³ → c(2N)³ = 8(cN³)
... I add a fixed amount to the time an O(log(N)) ("logarithmic time") algorithm takes." (cheap!)
c log(N) → c log(2N) = (c log(2))+(c log(N)) = (fixed amount)+(c log(N))
... I don't change the time an O(1) ("constant time") algorithm takes." (the cheapest!)
c*1 → c*1
... I "(basically) double" the time an O(N log(N)) algorithm takes." (fairly common)
c 2N log(2N) / c N log(N) (here we divide f(2n)/f(n), but we could have as above massaged the expression and factored out cNlogN as above)
→ 2 log(2N)/log(N)
→ 2 (log(2) + log(N))/log(N)
→ 2*(1+(log2N)-1) (basically 2 for large N; eventually less than 2.000001)
(alternatively, say log(N) will always be below like 17 for your data so it's O(17 N) which is linear; that is not rigorous nor sensical though)
... I ridiculously increase the time a O(2N) ("exponential time") algorithm takes." (you'd double (or triple, etc.) the time just by increasing the problem by a single unit)
2N → 22N = (4N)............put another way...... 2N → 2N+1 = 2N21 = 2 2N
[for the mathematically inclined, you can mouse over the spoilers for minor sidenotes]
(with credit to https://stackoverflow.com/a/487292/711085 )
(technically the constant factor could maybe matter in some more esoteric examples, but I've phrased things above (e.g. in log(N)) such that it doesn't)
These are the bread-and-butter orders of growth that programmers and applied computer scientists use as reference points. They see these all the time. (So while you could technically think "Doubling the input makes an O(√N) algorithm 1.414 times slower," it's better to think of it as "this is worse than logarithmic but better than linear".)
Constant factors
Usually, we don't care what the specific constant factors are, because they don't affect the way the function grows. For example, two algorithms may both take O(N) time to complete, but one may be twice as slow as the other. We usually don't care too much unless the factor is very large since optimizing is tricky business ( When is optimisation premature? ); also the mere act of picking an algorithm with a better big-O will often improve performance by orders of magnitude.
Some asymptotically superior algorithms (e.g. a non-comparison O(N log(log(N))) sort) can have so large a constant factor (e.g. 100000*N log(log(N))), or overhead that is relatively large like O(N log(log(N))) with a hidden + 100*N, that they are rarely worth using even on "big data".
Why O(N) is sometimes the best you can do, i.e. why we need datastructures
O(N) algorithms are in some sense the "best" algorithms if you need to read all your data. The very act of reading a bunch of data is an O(N) operation. Loading it into memory is usually O(N) (or faster if you have hardware support, or no time at all if you've already read the data). However, if you touch or even look at every piece of data (or even every other piece of data), your algorithm will take O(N) time to perform this looking. No matter how long your actual algorithm takes, it will be at least O(N) because it spent that time looking at all the data.
The same can be said for the very act of writing. All algorithms which print out N things will take N time because the output is at least that long (e.g. printing out all permutations (ways to rearrange) a set of N playing cards is factorial: O(N!) (which is why in those cases, good programs will ensure an iteration uses O(1) memory and doesn't print or store every intermediate step)).
This motivates the use of data structures: a data structure requires reading the data only once (usually O(N) time), plus some arbitrary amount of preprocessing (e.g. O(N) or O(N log(N)) or O(N²)) which we try to keep small. Thereafter, modifying the data structure (insertions/deletions/ etc.) and making queries on the data take very little time, such as O(1) or O(log(N)). You then proceed to make a large number of queries! In general, the more work you're willing to do ahead of time, the less work you'll have to do later on.
For example, say you had the latitude and longitude coordinates of millions of road segments and wanted to find all street intersections.
Naive method: If you had the coordinates of a street intersection, and wanted to examine nearby streets, you would have to go through the millions of segments each time, and check each one for adjacency.
If you only needed to do this once, it would not be a problem to have to do the naive method of O(N) work only once, but if you want to do it many times (in this case, N times, once for each segment), we'd have to do O(N²) work, or 1000000²=1000000000000 operations. Not good (a modern computer can perform about a billion operations per second).
If we use a simple structure called a hash table (an instant-speed lookup table, also known as a hashmap or dictionary), we pay a small cost by preprocessing everything in O(N) time. Thereafter, it only takes constant time on average to look up something by its key (in this case, our key is the latitude and longitude coordinates, rounded into a grid; we search the adjacent gridspaces of which there are only 9, which is a constant).
Our task went from an infeasible O(N²) to a manageable O(N), and all we had to do was pay a minor cost to make a hash table.
analogy: The analogy in this particular case is a jigsaw puzzle: We created a data structure that exploits some property of the data. If our road segments are like puzzle pieces, we group them by matching color and pattern. We then exploit this to avoid doing extra work later (comparing puzzle pieces of like color to each other, not to every other single puzzle piece).
The moral of the story: a data structure lets us speed up operations. Even more, advanced data structures can let you combine, delay, or even ignore operations in incredibly clever ways. Different problems would have different analogies, but they'd all involve organizing the data in a way that exploits some structure we care about, or which we've artificially imposed on it for bookkeeping. We do work ahead of time (basically planning and organizing), and now repeated tasks are much much easier!
Practical example: visualizing orders of growth while coding
Asymptotic notation is, at its core, quite separate from programming. Asymptotic notation is a mathematical framework for thinking about how things scale and can be used in many different fields. That said... this is how you apply asymptotic notation to coding.
The basics: Whenever we interact with every element in a collection of size A (such as an array, a set, all keys of a map, etc.), or perform A iterations of a loop, that is a multiplicative factor of size A. Why do I say "a multiplicative factor"?--because loops and functions (almost by definition) have multiplicative running time: the number of iterations, times work done in the loop (or for functions: the number of times you call the function, times work done in the function). (This holds if we don't do anything fancy, like skip loops or exit the loop early, or change control flow in the function based on arguments, which is very common.) Here are some examples of visualization techniques, with accompanying pseudocode.
(here, the xs represent constant-time units of work, processor instructions, interpreter opcodes, whatever)
for(i=0; i<A; i++) // A * ...
some O(1) operation // 1
--> A*1 --> O(A) time
visualization:
|<------ A ------->|
1 2 3 4 5 x x ... x
other languages, multiplying orders of growth:
javascript, O(A) time and space
someListOfSizeA.map((x,i) => [x,i])
python, O(rows*cols) time and space
[[r*c for c in range(cols)] for r in range(rows)]
Example 2:
for every x in listOfSizeA: // A * (...
some O(1) operation // 1
some O(B) operation // B
for every y in listOfSizeC: // C * (...
some O(1) operation // 1))
--> O(A*(1 + B + C))
O(A*(B+C)) (1 is dwarfed)
visualization:
|<------ A ------->|
1 x x x x x x ... x
2 x x x x x x ... x ^
3 x x x x x x ... x |
4 x x x x x x ... x |
5 x x x x x x ... x B <-- A*B
x x x x x x x ... x |
................... |
x x x x x x x ... x v
x x x x x x x ... x ^
x x x x x x x ... x |
x x x x x x x ... x |
x x x x x x x ... x C <-- A*C
x x x x x x x ... x |
................... |
x x x x x x x ... x v
Example 3:
function nSquaredFunction(n) {
total = 0
for i in 1..n: // N *
for j in 1..n: // N *
total += i*k // 1
return total
}
// O(n^2)
function nCubedFunction(a) {
for i in 1..n: // A *
print(nSquaredFunction(a)) // A^2
}
// O(a^3)
If we do something slightly complicated, you might still be able to imagine visually what's going on:
for x in range(A):
for y in range(1..x):
simpleOperation(x*y)
x x x x x x x x x x |
x x x x x x x x x |
x x x x x x x x |
x x x x x x x |
x x x x x x |
x x x x x |
x x x x |
x x x |
x x |
x___________________|
Here, the smallest recognizable outline you can draw is what matters; a triangle is a two dimensional shape (0.5 A^2), just like a square is a two-dimensional shape (A^2); the constant factor of two here remains in the asymptotic ratio between the two, however, we ignore it like all factors... (There are some unfortunate nuances to this technique I don't go into here; it can mislead you.)
Of course this does not mean that loops and functions are bad; on the contrary, they are the building blocks of modern programming languages, and we love them. However, we can see that the way we weave loops and functions and conditionals together with our data (control flow, etc.) mimics the time and space usage of our program! If time and space usage becomes an issue, that is when we resort to cleverness and find an easy algorithm or data structure we hadn't considered, to reduce the order of growth somehow. Nevertheless, these visualization techniques (though they don't always work) can give you a naive guess at a worst-case running time.
Here is another thing we can recognize visually:
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x
x x x x x x x x
x x x x
x x
x
We can just rearrange this and see it's O(N):
<----------------------------- N ----------------------------->
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x|x x x x x x x x|x x x x|x x|x
Or maybe you do log(N) passes of the data, for O(N*log(N)) total time:
<----------------------------- N ----------------------------->
^ x x x x x x x x x x x x x x x x|x x x x x x x x x x x x x x x x
| x x x x x x x x|x x x x x x x x|x x x x x x x x|x x x x x x x x
lgN x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x|x x x x
| x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x|x x
v x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x|x
Unrelatedly but worth mentioning again: If we perform a hash (e.g. a dictionary/hashtable lookup), that is a factor of O(1). That's pretty fast.
[myDictionary.has(x) for x in listOfSizeA]
\----- O(1) ------/
--> A*1 --> O(A)
If we do something very complicated, such as with a recursive function or divide-and-conquer algorithm, you can use the Master Theorem (usually works), or in ridiculous cases the Akra-Bazzi Theorem (almost always works) you look up the running time of your algorithm on Wikipedia.
But, programmers don't think like this because eventually, algorithm intuition just becomes second nature. You will start to code something inefficient and immediately think "am I doing something grossly inefficient?". If the answer is "yes" AND you foresee it actually mattering, then you can take a step back and think of various tricks to make things run faster (the answer is almost always "use a hashtable", rarely "use a tree", and very rarely something a bit more complicated).
Amortized and average-case complexity
There is also the concept of "amortized" and/or "average case" (note that these are different).
Average Case: This is no more than using big-O notation for the expected value of a function, rather than the function itself. In the usual case where you consider all inputs to be equally likely, the average case is just the average of the running time. For example with quicksort, even though the worst-case is O(N^2) for some really bad inputs, the average case is the usual O(N log(N)) (the really bad inputs are very small in number, so few that we don't notice them in the average case).
Amortized Worst-Case: Some data structures may have a worst-case complexity that is large, but guarantee that if you do many of these operations, the average amount of work you do will be better than worst-case. For example, you may have a data structure that normally takes constant O(1) time. However, occasionally it will 'hiccup' and take O(N) time for one random operation, because maybe it needs to do some bookkeeping or garbage collection or something... but it promises you that if it does hiccup, it won't hiccup again for N more operations. The worst-case cost is still O(N) per operation, but the amortized cost over many runs is O(N)/N = O(1) per operation. Because the big operations are sufficiently rare, the massive amount of occasional work can be considered to blend in with the rest of the work as a constant factor. We say the work is "amortized" over a sufficiently large number of calls that it disappears asymptotically.
The analogy for amortized analysis:
You drive a car. Occasionally, you need to spend 10 minutes going to
the gas station and then spend 1 minute refilling the tank with gas.
If you did this every time you went anywhere with your car (spend 10
minutes driving to the gas station, spend a few seconds filling up a
fraction of a gallon), it would be very inefficient. But if you fill
up the tank once every few days, the 11 minutes spent driving to the
gas station is "amortized" over a sufficiently large number of trips,
that you can ignore it and pretend all your trips were maybe 5% longer.
Comparison between average-case and amortized worst-case:
Average-case: We make some assumptions about our inputs; i.e. if our inputs have different probabilities, then our outputs/runtimes will have different probabilities (which we take the average of). Usually, we assume that our inputs are all equally likely (uniform probability), but if the real-world inputs don't fit our assumptions of "average input", the average output/runtime calculations may be meaningless. If you anticipate uniformly random inputs though, this is useful to think about!
Amortized worst-case: If you use an amortized worst-case data structure, the performance is guaranteed to be within the amortized worst-case... eventually (even if the inputs are chosen by an evil demon who knows everything and is trying to screw you over). Usually, we use this to analyze algorithms that may be very 'choppy' in performance with unexpected large hiccups, but over time perform just as well as other algorithms. (However unless your data structure has upper limits for much outstanding work it is willing to procrastinate on, an evil attacker could perhaps force you to catch up on the maximum amount of procrastinated work all-at-once.
Though, if you're reasonably worried about an attacker, there are many other algorithmic attack vectors to worry about besides amortization and average-case.)
Both average-case and amortization are incredibly useful tools for thinking about and designing with scaling in mind.
(See Difference between average case and amortized analysis if interested in this subtopic.)
Multidimensional big-O
Most of the time, people don't realize that there's more than one variable at work. For example, in a string-search algorithm, your algorithm may take time O([length of text] + [length of query]), i.e. it is linear in two variables like O(N+M). Other more naive algorithms may be O([length of text]*[length of query]) or O(N*M). Ignoring multiple variables is one of the most common oversights I see in algorithm analysis, and can handicap you when designing an algorithm.
The whole story
Keep in mind that big-O is not the whole story. You can drastically speed up some algorithms by using caching, making them cache-oblivious, avoiding bottlenecks by working with RAM instead of disk, using parallelization, or doing work ahead of time -- these techniques are often independent of the order-of-growth "big-O" notation, though you will often see the number of cores in the big-O notation of parallel algorithms.
Also keep in mind that due to hidden constraints of your program, you might not really care about asymptotic behavior. You may be working with a bounded number of values, for example:
If you're sorting something like 5 elements, you don't want to use the speedy O(N log(N)) quicksort; you want to use insertion sort, which happens to perform well on small inputs. These situations often come up in divide-and-conquer algorithms, where you split up the problem into smaller and smaller subproblems, such as recursive sorting, fast Fourier transforms, or matrix multiplication.
If some values are effectively bounded due to some hidden fact (e.g. the average human name is softly bounded at perhaps 40 letters, and human age is softly bounded at around 150). You can also impose bounds on your input to effectively make terms constant.
In practice, even among algorithms which have the same or similar asymptotic performance, their relative merit may actually be driven by other things, such as: other performance factors (quicksort and mergesort are both O(N log(N)), but quicksort takes advantage of CPU caches); non-performance considerations, like ease of implementation; whether a library is available, and how reputable and maintained the library is.
Programs will also run slower on a 500MHz computer vs 2GHz computer. We don't really consider this as part of the resource bounds, because we think of the scaling in terms of machine resources (e.g. per clock cycle), not per real second. However, there are similar things which can 'secretly' affect performance, such as whether you are running under emulation, or whether the compiler optimized code or not. These might make some basic operations take longer (even relative to each other), or even speed up or slow down some operations asymptotically (even relative to each other). The effect may be small or large between different implementation and/or environment. Do you switch languages or machines to eke out that little extra work? That depends on a hundred other reasons (necessity, skills, coworkers, programmer productivity, the monetary value of your time, familiarity, workarounds, why not assembly or GPU, etc...), which may be more important than performance.
The above issues, like the effect of the choice of which programming language is used, are almost never considered as part of the constant factor (nor should they be); yet one should be aware of them because sometimes (though rarely) they may affect things. For example in cpython, the native priority queue implementation is asymptotically non-optimal (O(log(N)) rather than O(1) for your choice of insertion or find-min); do you use another implementation? Probably not, since the C implementation is probably faster, and there are probably other similar issues elsewhere. There are tradeoffs; sometimes they matter and sometimes they don't.
(edit: The "plain English" explanation ends here.)
Math addenda
For completeness, the precise definition of big-O notation is as follows: f(x) ∈ O(g(x)) means that "f is asymptotically upper-bounded by const*g": ignoring everything below some finite value of x, there exists a constant such that |f(x)| ≤ const * |g(x)|. (The other symbols are as follows: just like O means ≤, Ω means ≥. There are lowercase variants: o means <, and ω means >.) f(x) ∈ Ɵ(g(x)) means both f(x) ∈ O(g(x)) and f(x) ∈ Ω(g(x)) (upper- and lower-bounded by g): there exists some constants such that f will always lie in the "band" between const1*g(x) and const2*g(x). It is the strongest asymptotic statement you can make and roughly equivalent to ==. (Sorry, I elected to delay the mention of the absolute-value symbols until now, for clarity's sake; especially because I have never seen negative values come up in a computer science context.)
People will often use = O(...), which is perhaps the more correct 'comp-sci' notation, and entirely legitimate to use; "f = O(...)" is read "f is order ... / f is xxx-bounded by ..." and is thought of as "f is some expression whose asymptotics are ...". I was taught to use the more rigorous ∈ O(...). ∈ means "is an element of" (still read as before). In this particular case, O(N²) contains elements like {2 N², 3 N², 1/2 N², 2 N² + log(N), - N² + N^1.9, ...} and is infinitely large, but it's still a set.
O and Ω are not symmetric (n = O(n²), but n² is not O(n)), but Ɵ is symmetric, and (since these relations are all transitive and reflexive) Ɵ, therefore, is symmetric and transitive and reflexive, and therefore partitions the set of all functions into equivalence classes. An equivalence class is a set of things that we consider to be the same. That is to say, given any function you can think of, you can find a canonical/unique 'asymptotic representative' of the class (by generally taking the limit... I think); just like you can group all integers into odds or evens, you can group all functions with Ɵ into x-ish, log(x)^2-ish, etc... by basically ignoring smaller terms (but sometimes you might be stuck with more complicated functions which are separate classes unto themselves).
The = notation might be the more common one and is even used in papers by world-renowned computer scientists. Additionally, it is often the case that in a casual setting, people will say O(...) when they mean Ɵ(...); this is technically true since the set of things Ɵ(exactlyThis) is a subset of O(noGreaterThanThis)... and it's easier to type. ;-)
EDIT: Quick note, this is almost certainly confusing Big O notation (which is an upper bound) with Theta notation (which is both an upper and lower bound). In my experience this is actually typical of discussions in non-academic settings. Apologies for any confusion caused.
In one sentence: As the size of your job goes up, how much longer does it take to complete it?
Obviously that's only using "size" as the input and "time taken" as the output — the same idea applies if you want to talk about memory usage etc.
Here's an example where we have N T-shirts which we want to dry. We'll assume it's incredibly quick to get them in the drying position (i.e. the human interaction is negligible). That's not the case in real life, of course...
Using a washing line outside: assuming you have an infinitely large back yard, washing dries in O(1) time. However much you have of it, it'll get the same sun and fresh air, so the size doesn't affect the drying time.
Using a tumble dryer: you put 10 shirts in each load, and then they're done an hour later. (Ignore the actual numbers here — they're irrelevant.) So drying 50 shirts takes about 5 times as long as drying 10 shirts.
Putting everything in an airing cupboard: If we put everything in one big pile and just let general warmth do it, it will take a long time for the middle shirts to get dry. I wouldn't like to guess at the detail, but I suspect this is at least O(N^2) — as you increase the wash load, the drying time increases faster.
One important aspect of "big O" notation is that it doesn't say which algorithm will be faster for a given size. Take a hashtable (string key, integer value) vs an array of pairs (string, integer). Is it faster to find a key in the hashtable or an element in the array, based on a string? (i.e. for the array, "find the first element where the string part matches the given key.") Hashtables are generally amortised (~= "on average") O(1) — once they're set up, it should take about the same time to find an entry in a 100 entry table as in a 1,000,000 entry table. Finding an element in an array (based on content rather than index) is linear, i.e. O(N) — on average, you're going to have to look at half the entries.
Does this make a hashtable faster than an array for lookups? Not necessarily. If you've got a very small collection of entries, an array may well be faster — you may be able to check all the strings in the time that it takes to just calculate the hashcode of the one you're looking at. As the data set grows larger, however, the hashtable will eventually beat the array.
Big O describes an upper limit on the growth behaviour of a function, for example the runtime of a program, when inputs become large.
Examples:
O(n): If I double the input size the runtime doubles
O(n2): If the input size doubles the runtime quadruples
O(log n): If the input size doubles the runtime increases by one
O(2n): If the input size increases by one, the runtime doubles
The input size is usually the space in bits needed to represent the input.
Big O notation is most commonly used by programmers as an approximate measure of how long a computation (algorithm) will take to complete expressed as a function of the size of the input set.
Big O is useful to compare how well two algorithms will scale up as the number of inputs is increased.
More precisely Big O notation is used to express the asymptotic behavior of a function. That means how the function behaves as it approaches infinity.
In many cases the "O" of an algorithm will fall into one of the following cases:
O(1) - Time to complete is the same regardless of the size of input set. An example is accessing an array element by index.
O(Log N) - Time to complete increases roughly in line with the log2(n). For example 1024 items takes roughly twice as long as 32 items, because Log2(1024) = 10 and Log2(32) = 5. An example is finding an item in a binary search tree (BST).
O(N) - Time to complete that scales linearly with the size of the input set. In other words if you double the number of items in the input set, the algorithm takes roughly twice as long. An example is counting the number of items in a linked list.
O(N Log N) - Time to complete increases by the number of items times the result of Log2(N). An example of this is heap sort and quick sort.
O(N^2) - Time to complete is roughly equal to the square of the number of items. An example of this is bubble sort.
O(N!) - Time to complete is the factorial of the input set. An example of this is the traveling salesman problem brute-force solution.
Big O ignores factors that do not contribute in a meaningful way to the growth curve of a function as the input size increases towards infinity. This means that constants that are added to or multiplied by the function are simply ignored.
Big O is just a way to "Express" yourself in a common way, "How much time / space does it take to run my code?".
You may often see O(n), O(n2), O(nlogn) and so forth, all these are just ways to show; How does an algorithm change?
O(n) means Big O is n, and now you might think, "What is n!?" Well "n" is the amount of elements. Imaging you want to search for an Item in an Array. You would have to look on Each element and as "Are you the correct element/item?" in the worst case, the item is at the last index, which means that it took as much time as there are items in the list, so to be generic, we say "oh hey, n is a fair given amount of values!".
So then you might understand what "n2" means, but to be even more specific, play with the thought you have a simple, the simpliest of the sorting algorithms; bubblesort. This algorithm needs to look through the whole list, for each item.
My list
1
6
3
The flow here would be:
Compare 1 and 6, which is biggest? Ok 6 is in the right position, moving forward!
Compare 6 and 3, oh, 3 is less! Let's move that, Ok the list changed, we need to start from the begining now!
This is O n2 because, you need to look at all items in the list there are "n" items. For each item, you look at all items once more, for comparing, this is also "n", so for every item, you look "n" times meaning n*n = n2
I hope this is as simple as you want it.
But remember, Big O is just a way to experss yourself in the manner of time and space.
Big O describes the fundamental scaling nature of an algorithm.
There is a lot of information that Big O does not tell you about a given algorithm. It cuts to the bone and gives only information about the scaling nature of an algorithm, specifically how the resource use (think time or memory) of an algorithm scales in response to the "input size".
Consider the difference between a steam engine and a rocket. They are not merely different varieties of the same thing (as, say, a Prius engine vs. a Lamborghini engine) but they are dramatically different kinds of propulsion systems, at their core. A steam engine may be faster than a toy rocket, but no steam piston engine will be able to achieve the speeds of an orbital launch vehicle. This is because these systems have different scaling characteristics with regards to the relation of fuel required ("resource usage") to reach a given speed ("input size").
Why is this so important? Because software deals with problems that may differ in size by factors up to a trillion. Consider that for a moment. The ratio between the speed necessary to travel to the Moon and human walking speed is less than 10,000:1, and that is absolutely tiny compared to the range in input sizes software may face. And because software may face an astronomical range in input sizes there is the potential for the Big O complexity of an algorithm, it's fundamental scaling nature, to trump any implementation details.
Consider the canonical sorting example. Bubble-sort is O(n2) while merge-sort is O(n log n). Let's say you have two sorting applications, application A which uses bubble-sort and application B which uses merge-sort, and let's say that for input sizes of around 30 elements application A is 1,000x faster than application B at sorting. If you never have to sort much more than 30 elements then it's obvious that you should prefer application A, as it is much faster at these input sizes. However, if you find that you may have to sort ten million items then what you'd expect is that application B actually ends up being thousands of times faster than application A in this case, entirely due to the way each algorithm scales.
Here is the plain English bestiary I tend to use when explaining the common varieties of Big-O
In all cases, prefer algorithms higher up on the list to those lower on the list. However, the cost of moving to a more expensive complexity class varies significantly.
O(1):
No growth. Regardless of how big as the problem is, you can solve it in the same amount of time. This is somewhat analogous to broadcasting where it takes the same amount of energy to broadcast over a given distance, regardless of the number of people that lie within the broadcast range.
O(log n):
This complexity is the same as O(1) except that it's just a little bit worse. For all practical purposes, you can consider this as a very large constant scaling. The difference in work between processing 1 thousand and 1 billion items is only a factor six.
O(n):
The cost of solving the problem is proportional to the size of the problem. If your problem doubles in size, then the cost of the solution doubles. Since most problems have to be scanned into the computer in some way, as data entry, disk reads, or network traffic, this is generally an affordable scaling factor.
O(n log n):
This complexity is very similar to O(n). For all practical purposes, the two are equivalent. This level of complexity would generally still be considered scalable. By tweaking assumptions some O(n log n) algorithms can be transformed into O(n) algorithms. For example, bounding the size of keys reduces sorting from O(n log n) to O(n).
O(n2):
Grows as a square, where n is the length of the side of a square. This is the same growth rate as the "network effect", where everyone in a network might know everyone else in the network. Growth is expensive. Most scalable solutions cannot use algorithms with this level of complexity without doing significant gymnastics. This generally applies to all other polynomial complexities - O(nk) - as well.
O(2n):
Does not scale. You have no hope of solving any non-trivially sized problem. Useful for knowing what to avoid, and for experts to find approximate algorithms which are in O(nk).
Big O is a measure of how much time/space an algorithm uses relative to the size of its input.
If an algorithm is O(n) then the time/space will increase at the same rate as its input.
If an algorithm is O(n2) then the time/space increase at the rate of its input squared.
and so on.
It is very difficult to measure the speed of software programs, and when we try, the answers can be very complex and filled with exceptions and special cases. This is a big problem, because all those exceptions and special cases are distracting and unhelpful when we want to compare two different programs with one another to find out which is "fastest".
As a result of all this unhelpful complexity, people try to describe the speed of software programs using the smallest and least complex (mathematical) expressions possible. These expressions are very very crude approximations: Although, with a bit of luck, they will capture the "essence" of whether a piece of software is fast or slow.
Because they are approximations, we use the letter "O" (Big Oh) in the expression, as a convention to signal to the reader that we are making a gross oversimplification. (And to make sure that nobody mistakenly thinks that the expression is in any way accurate).
If you read the "Oh" as meaning "on the order of" or "approximately" you will not go too far wrong. (I think the choice of the Big-Oh might have been an attempt at humour).
The only thing that these "Big-Oh" expressions try to do is to describe how much the software slows down as we increase the amount of data that the software has to process. If we double the amount of data that needs to be processed, does the software need twice as long to finish it's work? Ten times as long? In practice, there are a very limited number of big-Oh expressions that you will encounter and need to worry about:
The good:
O(1) Constant: The program takes the same time to run no matter how big the input is.
O(log n) Logarithmic: The program run-time increases only slowly, even with big increases in the size of the input.
The bad:
O(n) Linear: The program run-time increases proportionally to the size of the input.
O(n^k) Polynomial: - Processing time grows faster and faster - as a polynomial function - as the size of the input increases.
... and the ugly:
O(k^n) Exponential The program run-time increases very quickly with even moderate increases in the size of the problem - it is only practical to process small data sets with exponential algorithms.
O(n!) Factorial The program run-time will be longer than you can afford to wait for anything but the very smallest and most trivial-seeming datasets.
What is a plain English explanation of Big O? With as little formal definition as possible and simple mathematics.
A Plain English Explanation of the Need for Big-O Notation:
When we program, we are trying to solve a problem. What we code is called an algorithm. Big O notation allows us to compare the worse case performance of our algorithms in a standardized way. Hardware specs vary over time and improvements in hardware can reduce the time it takes an algorithms to run. But replacing the hardware does not mean our algorithm is any better or improved over time, as our algorithm is still the same. So in order to allow us to compare different algorithms, to determine if one is better or not, we use Big O notation.
A Plain English Explanation of What Big O Notation is:
Not all algorithms run in the same amount of time, and can vary based on the number of items in the input, which we'll call n. Based on this, we consider the worse case analysis, or an upper-bound of the run-time as n get larger and larger. We must be aware of what n is, because many of the Big O notations reference it.
Ok, my 2cents.
Big-O, is rate of increase of resource consumed by program, w.r.t. problem-instance-size
Resource : Could be total-CPU time, could be maximum RAM space. By default refers to CPU time.
Say the problem is "Find the sum",
int Sum(int*arr,int size){
int sum=0;
while(size-->0)
sum+=arr[size];
return sum;
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, iterations-in-loop= 3
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5 iterations-in-loop = 5
For input of size "n" the program is growing at speed of "n" iterations in array. Hence Big-O is N expressed as O(n)
Say the problem is "Find the Combination",
void Combination(int*arr,int size)
{ int outer=size,inner=size;
while(outer -->0) {
inner=size;
while(inner -->0)
cout<<arr[outer]<<"-"<<arr[inner]<<endl;
}
}
problem-instance= {5,10,15} ==> problem-instance-size = 3, total-iterations = 3*3 = 9
problem-instance= {5,10,15,20,25} ==> problem-instance-size = 5, total-iterations= 5*5 =25
For input of size "n" the program is growing at speed of "n*n" iterations in array. Hence Big-O is N2 expressed as O(n2)
A simple straightforward answer can be:
Big O represents the worst possible time/space for that algorithm. The algorithm will never take more space/time above that limit. Big O represents time/space complexity in the extreme case.
Big O notation is a way of describing the upper bound of an algorithm in terms of space or running time. The n is the number of elements in the the problem (i.e size of an array, number of nodes in a tree, etc.) We are interested in describing the running time as n gets big.
When we say some algorithm is O(f(n)) we are saying that the running time (or space required) by that algorithm is always lower than some constant times f(n).
To say that binary search has a running time of O(logn) is to say that there exists some constant c which you can multiply log(n) by that will always be larger than the running time of binary search. In this case you will always have some constant factor of log(n) comparisons.
In other words where g(n) is the running time of your algorithm, we say that g(n) = O(f(n)) when g(n) <= c*f(n) when n > k, where c and k are some constants.
"What is a plain English explanation of Big O? With as little formal
definition as possible and simple mathematics."
Such a beautifully simple and short question seems at least to deserve an equally short answer, like a student might receive during tutoring.
Big O notation simply tells how much time* an algorithm can run within,
in terms of only the amount of input data**.
( *in a wonderful, unit-free sense of time!)
(**which is what matters, because people will always want more, whether they live today or tomorrow)
Well, what's so wonderful about Big O notation if that's what it does?
Practically speaking, Big O analysis is so useful and important because Big O puts the focus squarely on the algorithm's own complexity and completely ignores anything that is merely a proportionality constant—like a JavaScript engine, the speed of a CPU, your Internet connection, and all those things which become quickly become as laughably outdated as a Model T. Big O focuses on performance only in the way that matters equally as much to people living in the present or in the future.
Big O notation also shines a spotlight directly on the most important principle of computer programming/engineering, the fact which inspires all good programmers to keep thinking and dreaming: the only way to achieve results beyond the slow forward march of technology is to invent a better algorithm.
Algorithm example (Java):
public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
for(/* each */Integer i:/* in */L)
{
if(i == K)
{
return true;
}
}
return false;
}
Algorithm description:
This algorithm searches a list, item by item, looking for a key,
Iterating on each item in the list, if it's the key then return True,
If the loop has finished without finding the key, return False.
Big-O notation represents the upper-bound on the Complexity (Time, Space, ..)
To find The Big-O on Time Complexity:
Calculate how much time (regarding input size) the worst case takes:
Worst-Case: the key doesn't exist in the list.
Time(Worst-Case) = 4n+1
Time: O(4n+1) = O(n) | in Big-O, constants are neglected
O(n) ~ Linear
There's also Big-Omega, which represent the complexity of the Best-Case:
Best-Case: the key is the first item.
Time(Best-Case) = 4
Time: Ω(4) = O(1) ~ Instant\Constant
Big O notation is a way of describing how quickly an algorithm will run given an arbitrary number of input parameters, which we'll call "n". It is useful in computer science because different machines operate at different speeds, and simply saying that an algorithm takes 5 seconds doesn't tell you much because while you may be running a system with a 4.5 Ghz octo-core processor, I may be running a 15 year old, 800 Mhz system, which could take longer regardless of the algorithm. So instead of specifying how fast an algorithm runs in terms of time, we say how fast it runs in terms of number of input parameters, or "n". By describing algorithms in this way, we are able to compare the speeds of algorithms without having to take into account the speed of the computer itself.
Big O
f(x) = O(g(x)) when x goes to a (for example, a = +∞) means that there is a function k such that:
f(x) = k(x)g(x)
k is bounded in some neighborhood of a (if a = +∞, this means that there are numbers N and M such that for every x > N, |k(x)| < M).
In other words, in plain English: f(x) = O(g(x)), x → a, means that in a neighborhood of a, f decomposes into the product of g and some bounded function.
Small o
By the way, here is for comparison the definition of small o.
f(x) = o(g(x)) when x goes to a means that there is a function k such that:
f(x) = k(x)g(x)
k(x) goes to 0 when x goes to a.
Examples
sin x = O(x) when x → 0.
sin x = O(1) when x → +∞,
x2 + x = O(x) when x → 0,
x2 + x = O(x2) when x → +∞,
ln(x) = o(x) = O(x) when x → +∞.
Attention! The notation with the equal sign "=" uses a "fake equality": it is true that o(g(x)) = O(g(x)), but false that O(g(x)) = o(g(x)). Similarly, it is ok to write "ln(x) = o(x) when x → +∞", but the formula "o(x) = ln(x)" would make no sense.
More examples
O(1) = O(n) = O(n2) when n → +∞ (but not the other way around, the equality is "fake"),
O(n) + O(n2) = O(n2) when n → +∞
O(O(n2)) = O(n2) when n → +∞
O(n2)O(n3) = O(n5) when n → +∞
Here is the Wikipedia article: https://en.wikipedia.org/wiki/Big_O_notation
You want to know all there is to know of big O? So do I.
So to talk of big O, I will use words that have just one beat in them. One sound per word. Small words are quick. You know these words, and so do I. We will use words with one sound. They are small. I am sure you will know all of the words we will use!
Now, let’s you and me talk of work. Most of the time, I do not like work. Do you like work? It may be the case that you do, but I am sure I do not.
I do not like to go to work. I do not like to spend time at work. If I had my way, I would like just to play, and do fun things. Do you feel the same as I do?
Now at times, I do have to go to work. It is sad, but true. So, when I am at work, I have a rule: I try to do less work. As near to no work as I can. Then I go play!
So here is the big news: the big O can help me not to do work! I can play more of the time, if I know big O. Less work, more play! That is what big O helps me do.
Now I have some work. I have this list: one, two, three, four, five, six. I must add all things in this list.
Wow, I hate work. But oh well, I have to do this. So here I go.
One plus two is three… plus three is six... and four is... I don’t know. I got lost. It is too hard for me to do in my head. I don’t much care for this kind of work.
So let's not do the work. Let's you and me just think how hard it is. How much work would I have to do, to add six numbers?
Well, let’s see. I must add one and two, and then add that to three, and then add that to four… All in all, I count six adds. I have to do six adds to solve this.
Here comes big O, to tell us just how hard this math is.
Big O says: we must do six adds to solve this. One add, for each thing from one to six. Six small bits of work... each bit of work is one add.
Well, I will not do the work to add them now. But I know how hard it would be. It would be six adds.
Oh no, now I have more work. Sheesh. Who makes this kind of stuff?!
Now they ask me to add from one to ten! Why would I do that? I did not want to add one to six. To add from one to ten… well… that would be even more hard!
How much more hard would it be? How much more work would I have to do? Do I need more or less steps?
Well, I guess I would have to do ten adds… one for each thing from one to ten. Ten is more than six. I would have to work that much more to add from one to ten, than one to six!
I do not want to add right now. I just want to think on how hard it might be to add that much. And, I hope, to play as soon as I can.
To add from one to six, that is some work. But do you see, to add from one to ten, that is more work?
Big O is your friend and mine. Big O helps us think on how much work we have to do, so we can plan. And, if we are friends with big O, he can help us choose work that is not so hard!
Now we must do new work. Oh, no. I don’t like this work thing at all.
The new work is: add all things from one to n.
Wait! What is n? Did I miss that? How can I add from one to n if you don’t tell me what n is?
Well, I don’t know what n is. I was not told. Were you? No? Oh well. So we can’t do the work. Whew.
But though we will not do the work now, we can guess how hard it would be, if we knew n. We would have to add up n things, right? Of course!
Now here comes big O, and he will tell us how hard this work is. He says: to add all things from one to N, one by one, is O(n). To add all these things, [I know I must add n times.][1] That is big O! He tells us how hard it is to do some type of work.
To me, I think of big O like a big, slow, boss man. He thinks on work, but he does not do it. He might say, "That work is quick." Or, he might say, "That work is so slow and hard!" But he does not do the work. He just looks at the work, and then he tells us how much time it might take.
I care lots for big O. Why? I do not like to work! No one likes to work. That is why we all love big O! He tells us how fast we can work. He helps us think of how hard work is.
Uh oh, more work. Now, let’s not do the work. But, let’s make a plan to do it, step by step.
They gave us a deck of ten cards. They are all mixed up: seven, four, two, six… not straight at all. And now... our job is to sort them.
Ergh. That sounds like a lot of work!
How can we sort this deck? I have a plan.
I will look at each pair of cards, pair by pair, through the deck, from first to last. If the first card in one pair is big and the next card in that pair is small, I swap them. Else, I go to the next pair, and so on and so on... and soon, the deck is done.
When the deck is done, I ask: did I swap cards in that pass? If so, I must do it all once more, from the top.
At some point, at some time, there will be no swaps, and our sort of the deck would be done. So much work!
Well, how much work would that be, to sort the cards with those rules?
I have ten cards. And, most of the time -- that is, if I don’t have lots of luck -- I must go through the whole deck up to ten times, with up to ten card swaps each time through the deck.
Big O, help me!
Big O comes in and says: for a deck of n cards, to sort it this way will be done in O(N squared) time.
Why does he say n squared?
Well, you know n squared is n times n. Now, I get it: n cards checked, up to what might be n times through the deck. That is two loops, each with n steps. That is n squared much work to be done. A lot of work, for sure!
Now when big O says it will take O(n squared) work, he does not mean n squared adds, on the nose. It might be some small bit less, for some case. But in the worst case, it will be near n squared steps of work to sort the deck.
Now here is where big O is our friend.
Big O points out this: as n gets big, when we sort cards, the job gets MUCH MUCH MORE HARD than the old just-add-these-things job. How do we know this?
Well, if n gets real big, we do not care what we might add to n or n squared.
For big n, n squared is more large than n.
Big O tells us that to sort things is more hard than to add things. O(n squared) is more than O(n) for big n. That means: if n gets real big, to sort a mixed deck of n things MUST take more time, than to just add n mixed things.
Big O does not solve the work for us. Big O tells us how hard the work is.
I have a deck of cards. I did sort them. You helped. Thanks.
Is there a more fast way to sort the cards? Can big O help us?
Yes, there is a more fast way! It takes some time to learn, but it works... and it works quite fast. You can try it too, but take your time with each step and do not lose your place.
In this new way to sort a deck, we do not check pairs of cards the way we did a while ago. Here are your new rules to sort this deck:
One: I choose one card in the part of the deck we work on now. You can choose one for me if you like. (The first time we do this, “the part of the deck we work on now” is the whole deck, of course.)
Two: I splay the deck on that card you chose. What is this splay; how do I splay? Well, I go from the start card down, one by one, and I look for a card that is more high than the splay card.
Three: I go from the end card up, and I look for a card that is more low than the splay card.
Once I have found these two cards, I swap them, and go on to look for more cards to swap. That is, I go back to step Two, and splay on the card you chose some more.
At some point, this loop (from Two to Three) will end. It ends when both halves of this search meet at the splay card. Then, we have just splayed the deck with the card you chose in step One. Now, all the cards near the start are more low than the splay card; and the cards near the end are more high than the splay card. Cool trick!
Four (and this is the fun part): I have two small decks now, one more low than the splay card, and one more high. Now I go to step one, on each small deck! That is to say, I start from step One on the first small deck, and when that work is done, I start from step One on the next small deck.
I break up the deck in parts, and sort each part, more small and more small, and at some time I have no more work to do. Now this may seem slow, with all the rules. But trust me, it is not slow at all. It is much less work than the first way to sort things!
What is this sort called? It is called Quick Sort! That sort was made by a man called C. A. R. Hoare and he called it Quick Sort. Now, Quick Sort gets used all the time!
Quick Sort breaks up big decks in small ones. That is to say, it breaks up big tasks in small ones.
Hmmm. There may be a rule in there, I think. To make big tasks small, break them up.
This sort is quite quick. How quick? Big O tells us: this sort needs O(n log n) work to be done, in the mean case.
Is it more or less fast than the first sort? Big O, please help!
The first sort was O(n squared). But Quick Sort is O(n log n). You know that n log n is less than n squared, for big n, right? Well, that is how we know that Quick Sort is fast!
If you have to sort a deck, what is the best way? Well, you can do what you want, but I would choose Quick Sort.
Why do I choose Quick Sort? I do not like to work, of course! I want work done as soon as I can get it done.
How do I know Quick Sort is less work? I know that O(n log n) is less than O(n squared). The O's are more small, so Quick Sort is less work!
Now you know my friend, Big O. He helps us do less work. And if you know big O, you can do less work too!
You learned all that with me! You are so smart! Thank you so much!
Now that work is done, let’s go play!
[1]: There is a way to cheat and add all the things from one to n, all at one time. Some kid named Gauss found this out when he was eight. I am not that smart though, so don't ask me how he did it.
Not sure I'm further contributing to the subject but still thought I'd share: I once found this blog post to have some quite helpful (though very basic) explanations & examples on Big O:
Via examples, this helped get the bare basics into my tortoiseshell-like skull, so I think it's a pretty descent 10-minute read to get you headed in the right direction.
I've more simpler way to understand the time complexity
he most common metric for calculating time complexity is Big O notation. This removes all constant factors so that the running time can be estimated in relation to N as N approaches infinity. In general you can think of it like this:
statement;
Is constant. The running time of the statement will not change in relation to N
for ( i = 0; i < N; i++ )
statement;
Is linear. The running time of the loop is directly proportional to N. When N doubles, so does the running time.
for ( i = 0; i < N; i++ )
{
for ( j = 0; j < N; j++ )
statement;
}
Is quadratic. The running time of the two loops is proportional to the square of N. When N doubles, the running time increases by N * N.
while ( low <= high )
{
mid = ( low + high ) / 2;
if ( target < list[mid] )
high = mid - 1;
else if ( target > list[mid] )
low = mid + 1;
else break;
}
Is logarithmic. The running time of the algorithm is proportional to the number of times N can be divided by 2. This is because the algorithm divides the working area in half with each iteration.
void quicksort ( int list[], int left, int right )
{
int pivot = partition ( list, left, right );
quicksort ( list, left, pivot - 1 );
quicksort ( list, pivot + 1, right );
}
Is N * log ( N ). The running time consists of N loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and logarithmic.
In general, doing something with every item in one dimension is linear, doing something with every item in two dimensions is quadratic, and dividing the working area in half is logarithmic. There are other Big O measures such as cubic, exponential, and square root, but they're not nearly as common. Big O notation is described as O ( ) where is the measure. The quicksort algorithm would be described as O ( N * log ( N ) ).
Note: None of this has taken into account best, average, and worst case measures. Each would have its own Big O notation. Also note that this is a VERY simplistic explanation. Big O is the most common, but it's also more complex that I've shown. There are also other notations such as big omega, little o, and big theta. You probably won't encounter them outside of an algorithm analysis course.
See more at: Here
What is a plain English explanation of “Big O” notation?
Very Quick Note:
The O in "Big O" refers to as "Order"(or precisely "order of")
so you could get its idea literally that it's used to order something to compare them.
"Big O" does two things:
Estimates how many steps of the method your computer applies to accomplish a task.
Facilitate the process to compare with others in order to determine whether it's good or not?
"Big O' achieves the above two with standardized Notations.
There are seven most used notations
O(1), means your computer gets a task done with 1 step, it's excellent, Ordered No.1
O(logN), means your computer complete a task with logN steps, its good, Ordered No.2
O(N), finish a task with N steps, its fair, Order No.3
O(NlogN), ends a task with O(NlogN) steps, it's not good, Order No.4
O(N^2), get a task done with N^2 steps, it's bad, Order No.5
O(2^N), get a task done with 2^N steps, it's horrible, Order No.6
O(N!), get a task done with N! steps, it's terrible, Order No.7
Suppose you get notation O(N^2), not only you are clear the method takes N*N steps to accomplish a task, also you see that it's not good as O(NlogN) from its ranking.
Please note the order at line end, just for your better understanding.There's more than 7 notations if all possibilities considered.
In CS, the set of steps to accomplish a task is called algorithms.
In Terminology, Big O notation is used to describe the performance or complexity of an algorithm.
In addition, Big O establishes the worst-case or measure the Upper-Bound steps.
You could refer to Big-Ω (Big-Omega) for best case.
Big-Ω (Big-Omega) notation (article) | Khan Academy
Summary
"Big O" describes the algorithm's performance and evaluates it.
or address it formally, "Big O" classifies the algorithms and standardize the comparison process.
Assume we're talking about an algorithm A, which should do something with a dataset of size n.
Then O( <some expression X involving n> ) means, in simple English:
If you're unlucky when executing A, it might take as much as X(n) operations to
complete.
As it happens, there are certain functions (think of them as implementations of X(n)) that tend to occur quite often. These are well known and easily compared (Examples: 1, Log N, N, N^2, N!, etc..)
By comparing these when talking about A and other algorithms, it is easy to rank the algorithms according to the number of operations they may (worst-case) require to complete.
In general, our goal will be to find or structure an algorithm A in such a way that it will have a function X(n) that returns as low a number as possible.
If you have a suitable notion of infinity in your head, then there is a very brief description:
Big O notation tells you the cost of solving an infinitely large problem.
And furthermore
Constant factors are negligible
If you upgrade to a computer that can run your algorithm twice as fast, big O notation won't notice that. Constant factor improvements are too small to even be noticed in the scale that big O notation works with. Note that this is an intentional part of the design of big O notation.
Although anything "larger" than a constant factor can be detected, however.
When interested in doing computations whose size is "large" enough to be considered as approximately infinity, then big O notation is approximately the cost of solving your problem.
If the above doesn't make sense, then you don't have a compatible intuitive notion of infinity in your head, and you should probably disregard all of the above; the only way I know to make these ideas rigorous, or to explain them if they aren't already intuitively useful, is to first teach you big O notation or something similar. (although, once you well understand big O notation in the future, it may be worthwhile to revisit these ideas)
Say you order Harry Potter: Complete 8-Film Collection [Blu-ray] from Amazon and download the same film collection online at the same time. You want to test which method is faster. The delivery takes almost a day to arrive and the download completed about 30 minutes earlier. Great! So it’s a tight race.
What if I order several Blu-ray movies like The Lord of the Rings, Twilight, The Dark Knight Trilogy, etc. and download all the movies online at the same time? This time, the delivery still take a day to complete, but the online download takes 3 days to finish.
For online shopping, the number of purchased item (input) doesn’t affect the delivery time. The output is constant. We call this O(1).
For online downloading, the download time is directly proportional to the movie file sizes (input). We call this O(n).
From the experiments, we know that online shopping scales better than online downloading. It is very important to understand big O notation because it helps you to analyze the scalability and efficiency of algorithms.
Note: Big O notation represents the worst-case scenario of an algorithm. Let’s assume that O(1) and O(n) are the worst-case scenarios of the example above.
Reference : http://carlcheo.com/compsci
Definition :- Big O notation is a notation which says how a algorithm performance will perform if the data input increases.
When we talk about algorithms there are 3 important pillars Input , Output and Processing of algorithm. Big O is symbolic notation which says if the data input is increased in what rate will the performance vary of the algorithm processing.
I would encourage you to see this youtube video which explains Big O Notation in depth with code examples.
So for example assume that a algorithm takes 5 records and the time required for processing the same is 27 seconds. Now if we increase the records to 10 the algorithm takes 105 seconds.
In simple words the time taken is square of the number of records. We can denote this by O(n ^ 2). This symbolic representation is termed as Big O notation.
Now please note the units can be anything in inputs it can be bytes , bits number of records , the performance can be measured in any unit like second , minutes , days and so on. So its not the exact unit but rather the relationship.
For example look at the below function "Function1" which takes a collection and does processing on the first record. Now for this function the performance will be same irrespective you put 1000 , 10000 or 100000 records. So we can denote it by O(1).
void Function1(List<string> data)
{
string str = data[0];
}
Now see the below function "Function2()". In this case the processing time will increase with number of records. We can denote this algorithm performance using O(n).
void Function2(List<string> data)
{
foreach(string str in data)
{
if (str == "shiv")
{
return;
}
}
}
When we see a Big O notation for any algorithm we can classify them in to three categories of performance :-
Log and constant category :- Any developer would love to see their algorithm performance in this category.
Linear :- Developer will not want to see algorithms in this category , until its the last option or the only option left.
Exponential :- This is where we do not want to see our algorithms and a rework is needed.
So by looking at Big O notation we categorize good and bad zones for algorithms.
I would recommend you to watch this 10 minutes video which discusses Big O with sample code
https://www.youtube.com/watch?v=k6kxtzICG_g
Simplest way to look at it (in plain English)
We are trying to see how the number of input parameters, affects the running time of an algorithm. If the running time of your application is proportional to the number of input parameters, then it is said to be in Big O of n.
The above statement is a good start but not completely true.
A more accurate explanation (mathematical)
Suppose
n=number of input parameters
T(n)= The actual function that expresses the running time of the algorithm as a function of n
c= a constant
f(n)= An approximate function that expresses the running time of the algorithm as a function of n
Then as far as Big O is concerned, the approximation f(n) is considered good enough as long as the below condition is true.
lim T(n) ≤ c×f(n)
n→∞
The equation is read as
As n approaches infinity, T of n, is less than or equal to c times f of n.
In big O notation this is written as
T(n)∈O(n)
This is read as T of n is in big O of n.
Back to English
Based on the mathematical definition above, if you say your algorithm is a Big O of n, it means it is a function of n (number of input parameters) or faster. If your algorithm is Big O of n, then it is also automatically the Big O of n square.
Big O of n means my algorithm runs at least as fast as this. You cannot look at Big O notation of your algorithm and say its slow. You can only say its fast.
Check this out for a video tutorial on Big O from UC Berkley. It is actually a simple concept. If you hear professor Shewchuck (aka God level teacher) explaining it, you will say "Oh that's all it is!".
Preface
algorithm: procedure/formula for solving a problem
How do analyze algorithms and how can we compare algorithms against each other?
example: you and a friend are asked to create a function to sum the numbers from 0 to N. You come up with f(x) and your friend comes up with g(x). Both functions have the same result, but a different algorithm. In order to objectively compare the efficiency of the algorithms we use Big-O notation.
Big-O notation: describes how quickly runtime will grow relative to the input as the input get arbitrarily large.
3 key takeaways:
Compare how quickly runtime grows NOT compare exact runtimes (depends on hardware)
Only concerned with runtime grow relative to the input (n)
As n gets arbitrarily large, focus on the terms that will grow the fastest as n gets large (think infinity) AKA asymptotic analysis
Space complexity: aside from time complexity, we also care about space complexity (how much memory/space an algorithm uses). Instead of checking the time of operations, we check the size of the allocation of memory.
I found a really great explanation about big O notation especially for a someone who's not much into mathematics.
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
Big O notation is used in Computer Science to describe the performance
or complexity of an algorithm. Big O specifically describes the
worst-case scenario, and can be used to describe the execution time
required or the space used (e.g. in memory or on disk) by an
algorithm.
Anyone who's read Programming Pearls or any other Computer Science
books and doesn’t have a grounding in Mathematics will have hit a wall
when they reached chapters that mention O(N log N) or other seemingly
crazy syntax. Hopefully this article will help you gain an
understanding of the basics of Big O and Logarithms.
As a programmer first and a mathematician second (or maybe third or
fourth) I found the best way to understand Big O thoroughly was to
produce some examples in code. So, below are some common orders of
growth along with descriptions and examples where possible.
O(1)
O(1) describes an algorithm that will always execute in the same time
(or space) regardless of the size of the input data set.
bool IsFirstElementNull(IList<string> elements) {
return elements[0] == null;
}
O(N)
O(N) describes an algorithm whose performance will grow linearly and
in direct proportion to the size of the input data set. The example
below also demonstrates how Big O favours the worst-case performance
scenario; a matching string could be found during any iteration of the
for loop and the function would return early, but Big O notation will
always assume the upper limit where the algorithm will perform the
maximum number of iterations.
bool ContainsValue(IList<string> elements, string value) {
foreach (var element in elements)
{
if (element == value) return true;
}
return false;
}
O(N2)
O(N2) represents an algorithm whose performance is directly
proportional to the square of the size of the input data set. This is
common with algorithms that involve nested iterations over the data
set. Deeper nested iterations will result in O(N3), O(N4) etc.
bool ContainsDuplicates(IList<string> elements) {
for (var outer = 0; outer < elements.Count; outer++)
{
for (var inner = 0; inner < elements.Count; inner++)
{
// Don't compare with self
if (outer == inner) continue;
if (elements[outer] == elements[inner]) return true;
}
}
return false;
}
O(2N)
O(2N) denotes an algorithm whose growth doubles with each additon to
the input data set. The growth curve of an O(2N) function is
exponential - starting off very shallow, then rising meteorically. An
example of an O(2N) function is the recursive calculation of Fibonacci
numbers:
int Fibonacci(int number) {
if (number <= 1) return number;
return Fibonacci(number - 2) + Fibonacci(number - 1);
}
Logarithms
Logarithms are slightly trickier to explain so I'll use a common
example:
Binary search is a technique used to search sorted data sets. It works
by selecting the middle element of the data set, essentially the
median, and compares it against a target value. If the values match it
will return success. If the target value is higher than the value of
the probe element it will take the upper half of the data set and
perform the same operation against it. Likewise, if the target value
is lower than the value of the probe element it will perform the
operation against the lower half. It will continue to halve the data
set with each iteration until the value has been found or until it can
no longer split the data set.
This type of algorithm is described as O(log N). The iterative halving
of data sets described in the binary search example produces a growth
curve that peaks at the beginning and slowly flattens out as the size
of the data sets increase e.g. an input data set containing 10 items
takes one second to complete, a data set containing 100 items takes
two seconds, and a data set containing 1000 items will take three
seconds. Doubling the size of the input data set has little effect on
its growth as after a single iteration of the algorithm the data set
will be halved and therefore on a par with an input data set half the
size. This makes algorithms like binary search extremely efficient
when dealing with large data sets.

How to optimize checking if one of the given arrays is contained in yet another array

I have an array of integers which is updated every set interval of time with a new value (let's call it data). When that happens I want to check if that array contains any other array of integers from specified set (let's call that collection).
I do it like this:
separate a sub-array from the end of data of length X (arrays in the collection have a set max length of X);
iterate trough the collection and check if any array in it is contained in the separated data chunk;
It works, though it doesn't seem optimal. But every other idea I have involves creating more collections (e.g. create a collection of all the arrays from the original collection that end with the same integer as data, repeat). And that seems even more complex (on the other hand, it looks like the only way to deal with arrays in collections without limited max length).
Are there any standard algorithms to deal with such a problem? If not, are there any worthwhile optimizations I can apply to my approach?
EDIT:
To be precise, I:
separate a sub-array from the end of data of length X (arrays in the collection have a set max length of X and if the don't it's just the length of the longest one in the collection);
iterate trough the collection and for every array in it:
separate sub-array from the previous sub-array with length matching current array in collection;
use Java's List.equals to compare the arrays;
EDIT 2:
Thanks for all the replays, surely they'll come handy some day. In this case I decided to drop the last steps and just compare the arrays in my own loop. That eliminates creating yet another sub-array and it's already O(N), so in this specific case will do.
Take a look at the KMP algorithm. It's been designed with String matching in mind, but it really comes down to matching subsequences of arrays to given sequences. Since that algorithm has linear complexity (O(n)), it can be said that it's pretty optimal. It's also a basic staple in standard algorithms.
dfens proposal is smart in that it incurs no significant extra complexity iff you keep the current product along with the main array, and can be checked in O(1), but it is also quite fragile and produces many false positives and negatives. Just imagine a target array [1, 1, ..., 1], which will always produce a positive test for all non-trivial main arrays. It also breaks down when one bucket contains a 0. That means that a successful check against his test is always a necessary condition for a hit (0s aside), but is never sufficient - aka with that method alone, you can never be sure of the validity of that result.
look at the rsync algorithm... if i understand it correctly you could go about:
you've got a immense array of data [length L]
at the end of that data, you've got N Bytes of data, and you want to know whether those N bytes ever appeared before.
precalculate:
for every offset in the array, calculate the checksum over the next N data elements.
Hold that checksum in a seperate array.
Using a rolling checksum like rsync does, you can do this step in O(N) time for all elements..
Whenever new data arrives:
Calculate the checksum over the last N elements. Using a rolling checksum, this could be O(1)
Check that checksum against all the precalculated checksums. If it matches, check equality of the subarrays (subslices , whatever...). If that matches too, you've got a match.
I think, in essence this is the same as dfen's approach with the product of all numbers.
I think you can keep product of array to for immediate rejections.
So if your array is [n_1,n_2,n_3,...] you can say that it is not subarray of [m_1,m_2,m_3,...] if product m_1*m_2*... = M is not divisible by productn_1*n_2*... = N.
Example
Let's say you have array
[6,7]
And comparing with:
[6,10,12]
[4,6,7]
Product of you array is 6*7 = 42
6 * 10 * 12 = 720 which is not divisible by 42 so you can reject first array immediately
[4, 6, 7] is divisble by 42 (but you cannot reject it - it can have other multipliers)
In each interval of time you can just multiply product by new number to avoid computing whole product everytime.
Note that you don't have to allocate anything if you simulate List's equals yourself. Just one more loop.
Similar to dfens' answer, I'd offer other criteria:
As the product is too big to be handled efficiently, compute the GCD instead. It produces much more false positives, but surely fits in long or int or whatever your original datatype is.
Compute the total number of trailing zeros, i.e., the "product" ignoring all factors but powers of 2. Also pretty weak, but fast. Use this criterion before the more time-consuming ones.
But... this is a special case of DThought's answer. Use rolling hash.

How to intersect two sets of longs that don't fit into memory?

I've got an interesting problem. I want to intersect two Sets of Longs in Java, with each set having 1B members - this is 4GB per set. This will not fit into memory on the server that I need to run it on.
I'm wondering what interesting methods are out there for solving this problem.
What I've come up with so far is reading subsets of each original set from disk that are small enough to fit into memory, then intersecting each subset, and writing those to disk temporarily. Finally, I could go through and intersect these subsets. I get a feeling that this may turn into a map reduce job.
Maybe you'll have some better ideas :) I doubt I'm the first person to have come up with this problem.
Sort both sets A and B separately.
Take and remove first element from set A and first element from set B
If they are equal, add to the result set.
If item from one set is greater, take next item from the second set.
Go to 2 as long as you don't reach end of any set.
The advantage of this method is that you never keep more then 2 longs in memory (except sorting). Sorting can be done effectively on disk (merge sort).
Do a disk-based merge sort on both sets.
Once that's done you can simply go through the sorted files sequentially and record the intersections in a new file.
Here is what I think can be done. Obviously put on disk.You got to sort them.
Sort them using external sorting
compare,
if a. length < 1 or b.length < 1
exit
else if a[0] == b[0]
addToIntersectionSet(a[0])
remove a[0] from a
remove b[0] from b
else if a[0] < b[0]
remove a[0]
else
remove b[0]
A possibly more efficient way then sorting is to use hashing, and split the data into several bins - and do an intersection on each bin. The idea is to split the problem into subproblems that do fit in memory - and then you can do the intersection efficiently on RAM.
Let's say you want to find the intersection of R,S:
for each element in R:
write element in bucket_R[hash(element) % NUM_BUCKETS]
for each element in S:
write element in bucket_S[hash(element) % NUM_BUCKETS]
//assuming each bucket from bucket_S or bucket_R now fits memory - proceed.
//if it doesn't, you can repeat the previous step with a new hash function.
for each i from 0 to NUM_BUCKETS:
find bucket_S INTERSECTION bucket_R
IMPORTANT:
bucket_S,bucket_R or on DISK and not in RAM.
Number of disk accesses:
The total number of disk reads with this approach is 3 * (|R|+|S|)
reading each element in R and S while iterating the first two loops
Writing each element to the hash table
reading all the buckets
While any sorting-based algorithm is most likely to need more then 1 read + 1 write (and an extra traversal on the data) - which will yield much MORE then 3 * (|R|+|S|)
P.S. I am at the moment studying for a Files-System exam (which will take place on Monday), and the lecture notes says that this is the prefered solution in most data base systems, assuming you have one disk.
Initialize 2 big bit maps to zero (bitmap1 and bitmap2) in memory if available or disk.
for each value in set1, set the value-th bitmap1 position to 1.
for each value in set2, read value-th position in bitmap1 bit and if 1, set bitmap2 at value-th position to 1.
for each set bit value in bitmap2, output value of that position.
Edit: Jessop below in replies points out the flaw: it's Java 64 bit (8 byte) long ints, not 32 bit architecture C compiler 4 byte long ints. This solution is impractical with 64 bit longs.
This does feel like a map reduce job, but you have to be very careful about the subsets you choose. If you want your intersection to work, subsets from original sets must be cut at the same points. For example, suppose you have sets
A = {1 3 7 9}
B = {2 7 8 9}
And you cut them into two subsets each:
A1 = {1 3} A2 = {7 9}
B1 = {2 7} B2 = {8 9}
Then you intersect:
C1 = A1 inter B1 = {}
C2 = A2 inter B2 = {9}
You then suppose that:
C = A inter B = C1 union C2 = {9}
Which is obviously wrong. For your map reduce to work, you have to cut sets using some constant value, for instance A1 and B1 will contain values <5 and A2 and B2 values >=5.
You can also fetch regular parts of sets A and B from your disk and then intersect them in an intelligent way, which means looking at sorted elements incrementally and stopping when you get to the end of one of the two subsets. At that moment, you fetch an extra subset part.
One obvious thing that comes to mind is starting out with sorted sets on disk. Then you can simultaneously read from both files, find matches and write them out. Say you read 204 from one file, you'd read from the other until the first number >= 204. At that point you know whether this particular number belongs to the intersection.
Your first step might be to sort each set; sort smaller blocks & merge sort to build sorted files.
Once sorted, you can walk through both sets.
You can easily keep 512 files open, so you can pre-browse both sets into 256 chunks on disk, at most 16M items, sizing 64 megabytes each. You can do this based on the most significant byte of each Long, from set.A.00 to set.B.ff
Then you can load each corresponding pair of chunks (set.A.42 containing Longs starting with 0x42 corresponds to set.B.42) and use them to initialize a 16M Byte array - you initialize it to all 0s, and when you read the value i from the first chunk, you increment index i-th). Then you read in the second chunk, but this time incrementing by 2.
Upon completion, you do a scan of the array; 0 means the value was not present in either chunk, 1 means it was present only in the first set, 2 only in the second, 3 in both. And write the results to the result file.
You need no sorting, even if the result file will be sorted (since you'll check the chunks in order, and do the final scan in order).
This all runs in O(n) (all steps run in linear time) and requires at most 16M of RAM.
If 512 open files are too much, you can use the first 7 most significant bits and use 256 open files and 32M of RAM. Or 128 open files and 64M of RAM, and so on.
It is also possible (and maybe more efficient, if the filesystem cache isn't too good) to keep a series of 256 "buckets", each 16384 Longs in size (so it's again 16M). When a bucket approaches full, you open the corresponding chunk file on disk, dump the 16384 Longs found so far, and close the file. Then do the same for the set B. You end up with 512 files containing from 0 (unlikely) to 16 million Longs, never having kept open more than two files at a time.

Parallelizing Sieve of Eratosthenes Algorithm for finding Prime Number

Parallelize Sieve of Eratosthenes method in two ways
using Java and
using C/C++ with Pthreads
Find the best values for THRESHOLD for 2 and 4 Core CPUs.
can any one help me how to do it. i am learning threads of java & C/C++.what things will i need to parallelize this algorithm
Note that using the Sieve of Eratostheens method to find the prime numbers table, once you find a prime number i - you set i*n as non-prime for each n.
Note that for 2 elements that you know they are prime numbers - i,j you can do it in parallel, i does not require any information from j and vise versa.
The same of course holds for each k prime numbers.
Note however that finding if a number is prime - depends on last calculations! Thus, a barrier is needed between marking numbers as non-primes and finding next prime number to work with.
A good place to start could be:
repeat until finished filling the table:
1. Find k prime numbers [serially]
2. Fill the table for these k numbers [parallely]
3. after all threads finished step 2 [barrier] - return to 1
Since it seems homework, I'll only give these hints, and let you do the rest of the work. If you later have any specific problem - ask a new question and show us what you already did.
EDIT: one more important hint, note that if i is prime, the calculation of all the non prime numbers that derive from i will not affect the fact that j is prime for each i < j < 2i. Use this fact to find the k prime numbers, you don't want for example to take 2,3,4 as prime numbers on your first iteration of the algorithm.
Prime sieves use a lot of space.
In case of 1 bit per number, you'd need 1 giga-bit (2ˇ30) to store sieve for N = ~10ˇ9. And 1 terabit (2ˇ40) to store sieve for N = ~10ˇ12, which is 2ˇ37 bytes = 2ˇ7 GB = 128GB.
If only storing odd numbers, 16 numbers/B, 64GB is needed for N=10ˇ9. With your laptops 16GB you'll be limited to N < 2ˇ35. Good to start cracking RSA 70-bit.
If making algorithm much more complex and not storing multiples of 3 5 or 7 in the seive, 1 byte would hold sieve-bits for 30 numbers, which would let ~2ˇ36 = 2ˇ(30+6) = ~64 x 10ˇ9, dangerous for RSA72 :lol: To crack RSA1024, youd need (1024/2 = 512, 512-36 = 476)
2ˇ476 (~10ˇ159) times more memory.
So memory usage is the main problem.
After all, even fast RAM is hundreds of times slower than CPU's L1 cache, so you want to fit the data to 32KB or upto 256KB instead of zillion TBs.
As the sieve is accessesd pretty randomly, it is not automagically loaded to cache and you'd get contineous cache-misses. You need to go through the range of numbers finishing the whole job chunk by chunk. While chunk-size is your fastest memory (L1 L2 of CPU or GPU).
Let's skip the complex part...
You'll have a list of primes that are needed to unmark composites in current junk. If already sieving big numbers, lets say 10ˇ30 upto 10ˇ30+10ˇ8, the range of 100M numbers has around 1M primes waiting in the list just to unmark 1 of their composites, each prime of that size would need (i guess) around 128B to be stored, so that you'd need 128MB for it. Luckyly this list is accessed sequentially and it may be already in cache when needed. But anyway you'll need zillion bytes to store the prime-lists for the next sieves.
About multithreading, scalability to GPUs, thousands of threads e.g.
Each prime in the list to unmark 1 bit in sieve in the fastest memory, accesses it basically randomly. GPu doesn't write bit by bit, instead it writes a la 128B per operation, it would be 1024bits. While 1 thread tries to unmark 1 bit, the other thread unmarks the otherbit while the bit of the 1st thread will have value 1 again. To fence/barrier/lock the memory would stop all the threads and no speed increase althoough lots of threads running.
So threads should not share the sieve. Would need to share sieving-prime-lists instead, so that each thread would have its own chunk of a chunk of sieve, and would use the same primes for unmarking. But after unmarking, they need to "schedule" that prime to the shared primes-list for its future sieve, which will be executed after millions of sievings, at the same time while other threads are changing the same list. Pretyy much stuck again.
It is very easy to make it parallel while slowing it down. Rather often it would be faster to recalculate something in each thread than to ask it over a slow bus like RAM, PCIe, SSD, GBit-net... but it is possible and not very complex if you have only some threads.
An approach is to let a single thread find the next prime number in the sieve, and then let all threads mark the multiples concurently. Every thread will be assigned a different section of the array to avoid memory sharing as much as possible. So every thread needs to determine what range of multiples it will handle.
First, should the parallelization affect the creation of the table, or
simply using it to determine whether a number is prime or not. In a
real application, I'd do the first off line, so the table would appear
in the final C++ code as a statically initialized C style array. So the
question of parallelization would be irrelevant. And since nothing
should be modified in the second, you can access from as many threads as
you want, without concern.
I suspect, however, that the purpose of the exercise is for you to use
multiple threads to construct the table. (Otherwise, it doesn't make
sense.) In this case: the table is constructed by a series of loops,
with steps 2, 3, 5... Each of these loops can be executed in a separate
thread, but... some sort of synchronization will be needed for
concurrent accesses. If you treat the table as a single object, with
just one lock, you'll end up either running the loops sequencially
(because you're acquiring the lock outside of the loop), or spending
more time acquiring and releasing the lock than doing any real work.
(Acquiring and releasing an uncontested lock can be very fast. But not
as fast as just setting a bool. And in this case, the lock is going
to be very, very contested, since all of the threads want it most of the
time.) If you create a lock per bool, that's going to be an awful lot
of locks—it will probably take less time to construct the table in
a single thread than to create all of the mutexes.
Of course, in C++ (and perhaps in Java as well), you'll want to use a
bitmap, rather than one bool per entry; the larger the table, the
larger the maximum number you can handle. (Something like bool
sieve[INT_MAX]; is almost certain to fail; you might be able to get
away with unsigned char sieve[INT_MAX / 8 + 1];, however.) In this
case, you'll need a mutex per element, not per entry (which would be a
single bit in the element). Given that each mutex eats up some
resources as well, you probably want to divide the table into discrete
blocks, with a mutex per block, and use a nested loop:
int j = 0;
for ( int i = 0; i < numberOfBlocks; ++ i ) {
scoped_lock( mutex_table[i] );
while ( j < (i + 1) * bitsInBlock ) {
// ...
j += step;
}
Once this is working, a bit of tuning will be necessary to determine the
optimal block size (but I would guess fairly big).
Your teacher won't like this, but I guess there is a brutal approach which can be worth considering.
Just let every thread repeat
find the next prime in the sieve
mark all multiples of this prime
independently of all others and without any synchronization. Every thread stops when there it finds no more prime.
This is brutal because several threads may work on the same prime by accident, but the final sieve will be correct (all composites detected), and what you loose in terms of duplicate work could be regained by the absence of synchronization.

Categories

Resources