I'm using StyledText 400x100 widget and it's working like a console where the program interacts with the user.
This is how I update the widget:
private static Shell MainShell = null;
public void createPartControl(Composite parent){
MainShell = parent.getShell();
}
public static void updateConsole(final String newMessage){
if(MainShell.isDisposed() || myStyledText.isDisposed() ) return;
MainShell.getDisplay().syncExec(new Runnable(){
myStyledText.setText( newMessage + "\n" + myStyledText.getText() );
});
}
Similar to append(), but this one insert to the first line and inserts a line break "\n".
I'm using CycleBarrier to handle Threads. Currently it's running 300+ threads, and I'm allowing only 10 threads / cycle to not kill the CPU.
// divide 300/10 because there is an inner for() which runs 10 threads / cycle
for(int n = 0; n < 300/10; n++){
// allow only 10 threads to work
final CycleBarrier br = new CycleBarrier(10);
for(int i = 0; i < 10; i++){
new Thread(new MyClass(cb).start();
}
//waiting for Threads to reach the barrier
br.await();
}
And now the MyClass class:
public MyClass implements Runnable{
private CycleBarrier cb;
public MyClass(CycleBarrier cb){
this.cb = cb;
}
#Override
public void run(){
for(int i = 0; i < 256; i++){
for(int j = 0; j < 256; j++){
//View is the main class (eclipse RCP) and updateing the widget
View.updateConsole("matrix["+i+"]["+j+"]");
// Just an integer which counts the number of the loops
View.TOTAL_LOOPS++;
}
}
cb.await();
}
}
This was an example. It should write to the View widget in asynchronous ways (not in order) because the Threads doesn't reaches the barrier in order.
I'm using eclipse RCP (3.8).
ISSUE
Why the program is working correct in DEBUG mode? I have set a breakpoint where I'm starting new Threads (in the inner for() ) and I'm clicking the Resume button to start threads one by one.
When I'm trying to open in normal mode (RUN or exported) there are "leaks" (I don't know how to name), there are less lines in the console.
View.TOTAL_LOOPS
Should have in total:
256*256*10*30 = 19660800 // View.TOTAL_LOOPS++; in the MyClass
and in normal run it's having dynamic results: 174614904, 17025759, etc. In DEBUG mode it's reaching the exact value.
Question:
Are the Threads being killed?
It has nothing to do with SWT. You are incrementing a single shared variable from 10 threads at once. This is a classic example of a race condition. Since ++ isn't an atomic operation, something like this can happen:
int temp = View.TOTAL_LOOPS; // in thread 1
int temp = View.TOTAL_LOOPS; // in thread 2
int temp2 = temp + 1; // in thread 1
View.TOTAL_LOOPS = temp2; // in thread 1
int temp2 = temp + 1; // in thread 2
View.TOTAL_LOOPS = temp2; // in thread 2
Note View.TOTAL_LOOPS only increases by 1 after this, and obviously it won't happen if you start threads one-by-one.
Use an AtomicInteger instead if you just want a thread-safe counter or otherwise synchronize your threads properly.
Related
I'm working on an 8-core machine and am performing a computationally heavy task. However, each execution of the task (i.e., iteration of for loop) is rather independent of the previous one. There are only some variables that are 'summed up' from one execution to the next. I'm guessing this is a good example for parallelizing/threading but I'm not sure how to go about it.
Here's how the code looks. As of now, it's just part of the main method in my main executor class:
double testerPayoffSum = 0.0, developerPayoffSum = 0.0;
Random seed = new Random();
try {
for (int i = 0; i < GameConstants.MAX_GAMES; i++) {
EraserSimulator eraser = new EraserSimulator(GameConstants.MAX_TARGETS, GameConstants.MAX_RESOURCES, GameConstants.NUM_ATTACKER_TYPES, seed.nextInt());
Map<Set<SingleObjectiveTarget>, Double> gameStrategy = eraser.run();
assert (gameStrategy != null);
TestingGameSimulator testingGame = new TestingGameSimulator(GameConstants.MAX_TARGETS, gameStrategy, GameConstants.NUM_GAMES_TO_STORE_FOR_HISTORY, GameConstants.NUM_TESTING_GAMES_TO_PLAY);
PlayerPayoffs payoffs = testingGame.run(eraser.getEraserInstance());
testerPayoffSum += payoffs.getAverageTesterPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
developerPayoffSum += payoffs.getAverageDeveloperPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
System.out.print("Output: ERASER Games played; Number of developers caught");
System.out.print(", " + GameConstants.NUM_TESTING_GAMES_TO_PLAY + ", " + payoffs.getNumTimesCaught() + "\n");
} catch(Exception e){sendEmailAlert("Execution Failed with Exception");}
I'd like to parallelize the for-loop computation if possible and keep summing up the testerPayoffSum and developerPayofffSum variables. How might I achieve this?
Note: Each execution of the for loop takes about 20-30 minutes depending on the input size (as set by the various GameConstants). Even for a small number of MAX_GAMES the above takes close to 2-3 hours.
Create a thread object implementing Callable which returns a Future object containing your testerPayoffSum and developerPayoffSum, start the calculation and sum the results obtained from the Futures (See also https://blogs.oracle.com/CoreJavaTechTips/entry/get_netbeans_6).
are you absolutely sure you have no dependency ?
1.used classes must not share any variables
if it does then you have to add locks
but it will affect performance
if some shared variables are used extensively
then the performance can drop significantly even bellow the non-parallel execution
2.used classes must not use any kind of machine learning.
there is no solution for this
because parallelization will corrupt your results
Now how to do it (I am not JAVA coder so I stick to C++ code).
//--- globals and headers -----------------------------------------------------
unsigned long __stdcall function(LPVOID p);
Random seed = new Random();
const int N=8; // threads count (<=CPU count)
int id[N]; // thread id
int max[N]; // number of games per thread
double testerPayoffSum[N]; // sum to separate variables to avoid locks need
double developerPayoffSum[N];
volatile int run=0,stop=0; // thread control variables run is number of running threads and stop force stop...
//--- main code ---------------------------------------------------------------
// init some variables ... may be the seed init will be better here too
int i;
for (i = 0; i < N; i++)
{
id[i]=i;
max[i]=GameConstants.MAX_GAMES / N;
testerPayoffSum[i]=0.0;
developerPayoffSum[i]=0.0;
}
max[0]=GameConstants.MAX_GAMES % N;
// create threads
for (i = 0; i < N; i++)
{
HANDLE hnd=CreateThread(0,0,function,&id[i],0,0);
if (hnd!=NULL) CloseHandle(hnd); // this line is important !!!
// because if you do not close Handle it will be allocated until the end of app
// handle leaks are nasty and cause weird OS behaviour
// I saw many times this bug in commercial drivers
// it is a nightmare for 24/7 software
}
// wait for them
while (run) Sleep(200);
// sum the results to [0]
for (i = 1; i < N; i++)
{
testerPayoffSum[0] +=testerPayoffSum[i];
developerPayoffSum[0]+=developerPayoffSum[i];
}
// here do what you need to do with the results
//--- thread function ---------------------------------------------------------
unsigned long __stdcall function(LPVOID p)
{
run++;
int ix=((int*)p)[0];
for (i = 0; i < max[ix]; i++)
{
if (stop) break;
EraserSimulator eraser = new EraserSimulator(GameConstants.MAX_TARGETS, GameConstants.MAX_RESOURCES, GameConstants.NUM_ATTACKER_TYPES, seed.nextInt());
Map<Set<SingleObjectiveTarget>, Double> gameStrategy = eraser.run();
assert (gameStrategy != null);
TestingGameSimulator testingGame = new TestingGameSimulator(GameConstants.MAX_TARGETS, gameStrategy, GameConstants.NUM_GAMES_TO_STORE_FOR_HISTORY, GameConstants.NUM_TESTING_GAMES_TO_PLAY);
PlayerPayoffs payoffs = testingGame.run(eraser.getEraserInstance());
testerPayoffSum[ix] += payoffs.getAverageTesterPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
developerPayoffSum[ix] += payoffs.getAverageDeveloperPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
// do not call any visual stuff from thread !!! sometimes it can cause a lot of problems ...
// instead cretae some global string variable and set it to what shoud be printed out
// and inside wait while loop in main code add if string != "" then System.out.print(string);
// but in that case you should add lock to it.
// System.out.print("Output: ERASER Games played; Number of developers caught");
// System.out.print(", " + GameConstants.NUM_TESTING_GAMES_TO_PLAY + ", " + payoffs.getNumTimesCaught() + "\n");
//Sleep(100); // well placed sleep
}
run--;
}
[Notes]
from your code I am assuming that GameConstants is shared variable !!!
if it is only for read than it is OK
but if you do also write to it inside thread (I suspect that yes)
then you have a big problem because you need to add locks inside your game class then ...
if no machine learning is done then you could avoid this
by creating separate GameConstants variables for each thread like ... GameConstants[N]
but you need to rewrite the code so it access the GameConstants[ix] and not GameConstants
[lock]
have no clue how locks are implemented in JAVA
but you can also use your own something like this
class _lock
{
public:
volatile bool locked;
_lock() { locked=false; }
void lock() { while(locked) Sleep(1); locked=true; }
void unlock() { locked=false; }
};
// now for each shared variable (or group of variables) add one global _lock variable
_lock l1; int sv1; // shared variable 1 and her lock
// any write access and sometimes also read access needs lock
l1.lock();
sv1++;
l1.unlock();
beware that locks can sometimes cause App freeze especially while heavy duty use.
does not matter if it is own lock or OS lock
this occurs mainly while mixing visual stuff or some OS calls inside threads and not in main thread
in that case sometimes a well placed sleep helps but avoid OS calls inside threads if you can
because it cause very many other problems ...
also try to be locked as small time as possible because in case of conflict the conflicting threads are stopped !!!
therefore you cannot just add lock at the start of loop and unlock at the end
because the parallelism speedup will be lost then
Declare a queue to collect results and submit tasks to a thread pool:
final ArrayBloclingQueue<PlayerPayoffs> queue=new ArrayBloclingQueue<PlayerPayoffs>();
Executor exec=new Executors.newFixedThreadPool(N); // number of threads depends on hardware
for (int i = 0; i < GameConstants.MAX_GAMES; i++) {
exec.execute(new Runnable(){
EraserSimulator eraser = new EraserSimulator(GameConstants.MAX_TARGETS, GameConstants.MAX_RESOURCES, GameConstants.NUM_ATTACKER_TYPES, seed.nextInt());
Map<Set<SingleObjectiveTarget>, Double> gameStrategy = eraser.run();
assert (gameStrategy != null);
TestingGameSimulator testingGame = new TestingGameSimulator(GameConstants.MAX_TARGETS, gameStrategy, GameConstants.NUM_GAMES_TO_STORE_FOR_HISTORY, GameConstants.NUM_TESTING_GAMES_TO_PLAY);
PlayerPayoffs payoffs = testingGame.run(eraser.getEraserInstance());
queue.put(payoffs);
});
}
Then collect and sum results:
double testerPayoffSum = 0.0, developerPayoffSum = 0.0;
for (int i = 0; i < GameConstants.MAX_GAMES; i++) {
PlayerPayoffs payoffs=queue.take();
testerPayoffSum += payoffs.getAverageTesterPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
developerPayoffSum += payoffs.getAverageDeveloperPayoff(GameConstants.NUM_TESTING_GAMES_TO_PLAY);
System.out.print("Output: ERASER Games played; Number of developers caught");
System.out.print(", " + GameConstants.NUM_TESTING_GAMES_TO_PLAY + ", " + payoffs.getNumTimesCaught() + "\n");
}
I've got a little bit of work that is easily parallelizable, and I want to use Java threads to split up the work across my four core machine. It's a genetic algorithm applied to the traveling salesman problem. It doesn't sound easily parallelizable, but the first loop is very easily so. The second part where I talk about the actual evolution may or may not be, but I want to know if I'm getting slow down because of the way I'm implementing threading, or if its the algorithm itself.
Also, if anyone has better ideas on how I should be implementing what I'm trying to do, that would be very much appreciated.
In main(), I have this:
final ArrayBlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(numThreads*numIter);
ThreadPoolExecutor tpool = new ThreadPoolExecutor(numThreads, numThreads, 10, TimeUnit.SECONDS, queue);
barrier = new CyclicBarrier(numThreads);
k.init(tpool);
I have a loop that is done inside of init() and looks like this:
for (int i = 0; i < numCities; i++) {
x[i] = rand.nextInt(width);
y[i] = rand.nextInt(height);
}
That I changed to this:
int errorCities = 0, stepCities = 0;
stepCities = numCities/numThreads;
errorCities = numCities - stepCities*numThreads;
// Split up work, assign to threads
for (int i = 1; i <= numThreads; i++) {
int startCities = (i-1)*stepCities;
int endCities = startCities + stepCities;
// This is a bit messy...
if(i <= numThreads) endCities += errorCities;
tpool.execute(new citySetupThread(startCities, endCities));
}
And here is citySetupThread() class:
public class citySetupThread implements Runnable {
int start, end;
public citySetupThread(int s, int e) {
start = s;
end = e;
}
public void run() {
for (int j = start; j < end; j++) {
x[j] = ThreadLocalRandom.current().nextInt(0, width);
y[j] = ThreadLocalRandom.current().nextInt(0, height);
}
try {
barrier.await();
} catch (InterruptedException ie) {
return;
} catch (BrokenBarrierException bbe) {
return;
}
}
}
The above code is run once in the program, so it was sort of a test case for my threading constructs (this is my first experience with Java threads). I implemented the same sort of thing in a real critical section, specifically the evolution part of the genetic algorithm, whose class is as follows:
public class evolveThread implements Runnable {
int start, end;
public evolveThread(int s, int e) {
start = s;
end = e;
}
public void run() {
// Get midpoint
int n = population.length/2, m;
for (m = start; m > end; m--) {
int i, j;
i = ThreadLocalRandom.current().nextInt(0, n);
do {
j = ThreadLocalRandom.current().nextInt(0, n);
} while(i == j);
population[m].crossover(population[i], population[j]);
population[m].mutate(numCities);
}
try {
barrier.await();
} catch (InterruptedException ie) {
return;
} catch (BrokenBarrierException bbe) {
return;
}
}
}
Which exists in a function evolve() that is called in init() like so:
for (int p = 0; p < numIter; p++) evolve(p, tpool);
Yes I know that's not terribly good design, but for other reasons I'm stuck with it. Inside of evolve is the relevant parts, shown here:
// Threaded inner loop
int startEvolve = popSize - 1,
endEvolve = (popSize - 1) - (popSize - 1)/numThreads;
// Split up work, assign to threads
for (int i = 0; i < numThreads; i++) {
endEvolve = (popSize - 1) - (popSize - 1)*(i + 1)/numThreads + 1;
tpool.execute(new evolveThread(startEvolve, endEvolve));
startEvolve = endEvolve;
}
// Wait for our comrades
try {
barrier.await();
} catch (InterruptedException ie) {
return;
} catch (BrokenBarrierException bbe) {
return;
}
population[1].crossover(population[0], population[1]);
population[1].mutate(numCities);
population[0].mutate(numCities);
// Pick out the strongest
Arrays.sort(population, population[0]);
current = population[0];
generation++;
What I really want to know is this:
What role does the "queue" have? Am I right to create a queue for as many jobs as I think will be executed for all threads in the pool? If the size isn't sufficiently large, I get RejectedExecutionException's. I just decided to do numThreads*numIterations because that's how many jobs there would be (for the actual evolution method that I mentioned earlier). It's weird though.. I shouldn't have to do this if the barrier.await()'s were working, which leads me to...
Am I using the barrier.await() correctly? Currently I have it in two places: inside the run() method for the Runnable object, and after the for loop that executes all the jobs. I would've thought only one would be required, but I get errors if I remove one or the other.
I'm suspicious of contention for the threads, as that is the only thing I can glean from the absurd slowdown (which does scale with the input parameters). I want to know if it is anything to do with how I'm implementing the thread pool and barriers. If not, then I'll have to look inside the crossover() and mutate() methods, I suppose.
First, I think you may have a bug with how you intended to use the CyclicBarrier. Currently you are initializing it with the number of executor threads as the number of parties. You have an additional party, however; the main thread. So I think you need to do:
barrier = new CyclicBarrier(numThreads + 1);
I think this should work, but personally I find it an odd use of the barrier.
When using a worker-queue thread-pool model I find it easier to use a Semaphore or Java's Future model.
For a semaphore:
class MyRunnable implements Runnable {
private final Semaphore sem;
public MyRunnable(Semaphore sem) {
this.sem = sem;
}
public void run() {
// do work
// signal complete
sem.release()
}
}
Then in your main thread:
Semaphore sem = new Semaphore(0);
for (int i = 0; i < numJobs; ++i) {
threadPool.execute(new MyRunnable(sem));
}
sem.acquire(numJobs);
Its really doing the same thing as the barrier, but I find it easier to think about the worker tasks "signaling" that they are done instead of "sync'ing up" with the main thread again.
For example, if you look at the example code in the CyclicBarrier JavaDoc the call to barrier.await() is inside the loop inside the worker. So it is really synching up the multiple long running worker threads and the main thread is not participating in the barrier. Calling barrier.await() at the end of the worker outside the loop is more signaling completion.
As you increase the number of tasks, you increase the overhead using each task adds. This means you want to minimise the number of tasks i.e. the same as the number of cpus you have. For some tasks using double the number of cpus can be better when the work load is not even.
BTW: You don't need a barrier in each task, you can wait for the future of each task to complete by calling get() on each one.
public class SieveGenerator{
static int N = 50;
public static void main(String args[]){
int cores = Runtime.getRuntime().availableProcessors();
int f[] = new int[N];
//fill array with 0,1,2...f.length
for(int j=0;j<f.length;j++){
f[j]=j;
}
f[0]=0;f[1]=0;//eliminate these cases
int p=2;
removeNonPrime []t = new removeNonPrime[cores];
for(int i = 0; i < cores; i++){
t[i] = new removeNonPrime(f,p);
}
while(p <= (int)(Math.sqrt(N))){
t[p%cores].start();//problem here because you cannot start a thread which has already started(IllegalThreadStateException)
try{
t[p%cores].join();
}catch(Exception e){}
//get the next prime
p++;
while(p<=(int)(Math.sqrt(N))&&f[p]==0)p++;
}
//count primes
int total = 0;
System.out.println();
for(int j=0; j<f.length;j++){
if(f[j]!=0){
total++;
}
}
System.out.printf("Number of primes up to %d = %d",f.length,total);
}
}
class removeNonPrime extends Thread{
int k;
int arr[];
public removeNonPrime(int arr[], int k){
this.arr = arr;
this.k = k;
}
public void run(){
int j = k*k;
while(j<arr.length){
if(arr[j]%k == 0)arr[j]=0;
j=j+arr[k];
}
}
}
Hi I'm getting an IllegalThreadStateException when I run my code and I've figured it's because I am trying to start a thread that has already been started. So how could I kill
or stop the thread each time, to get around this problem?
how could I kill or stop the thread each time, to get around this problem?
The answer is, you can't. Once started, a Thread may not be restarted. This is clearly documented in the javadoc for Thread. Instead, what you really want to do is new an instance of RemoveNonPrime each time you come around in your loop.
You have a few other problems in your code.
First, you need to increment p before using it again:
for(int i = 0; i < cores; i++){
t[i] = new removeNonPrime(f,p); //<--- BUG, always using p=2 means only multiples of 2 are cleared
}
Second, you might be multithreaded, but you aren't concurrent. The code you have basically only allows one thread to run at a time:
while(p <= (int)(Math.sqrt(N))){
t[p%cores].start();//
try{
t[p%cores].join(); //<--- BUG, only the thread which was just started can be running now
}catch(Exception e){}
//get the next prime
p++;
while(p<=(int)(Math.sqrt(N))&&f[p]==0)p++;
}
Just my $0.02, but what you are trying to do might work, but the logic for selecting the next smallest prime will not always pick a prime, for example if one of the other threads hasn't processed that part of the array yet.
Here is an approach using an ExecutorService, there are some blanks (...) that you will have to fill in:
/* A queue to trick the executor into blocking until a Thread is available when offer is called */
public class SpecialSyncQueue<E> extends SynchronousQueue<E> {
#Override
public boolean offer(E e) {
try {
put(e);
return true;
} catch (InterruptedException ex) {
Thread.currentThread().interrupt();
return false;
}
}
}
ExecutorService executor = new ThreadPoolExecutor(cores, cores, new SpecialSyncQueue(), ...);
void pruneNonPrimes() {
//...
while(p <= (int)(Math.sqrt(N))) {
executor.execute(new RemoveNonPrime(f, p));
//get the next prime
p++;
while(p<=(int)(Math.sqrt(N))&&f[p]==0)p++;
}
//count primes
int total = 0;
System.out.println();
for(int j=0; j<f.length;j++){
if(f[j]!=0){
total++;
}
}
System.out.printf("Number of primes up to %d = %d",f.length,total);
}
class RemoveNonPrime extends Runnable {
int k;
int arr[];
public RemoveNonPrime(int arr[], int k){
this.arr = arr;
this.k = k;
}
public void run(){
int j = k*k;
while(j<arr.length){
if(arr[j]%k == 0)arr[j]=0;
j+=k;
}
}
}
You could implement Runnable instead and use new Thread( $Runnable here ).start() or use a ExecutorService to reuse threads.
* It is never legal to start a thread more than once.
* In particular, a thread may not be restarted once it has completed
* execution.
*
* #exception IllegalThreadStateException if the thread was already started
*/
public synchronized void start() {
In Android, document still mention that we will get IllegalThreadStateException if the thread was already started.
However for some device it will not throw this exception (tested on Kyocera 7.0). In some popular device like Samsung, HTC, it throw throw the exception normally
I answer here because the Android question is mark as duplicated to this question.
Why does an IllegalThreadStateException occur when Thread.start is
called again
Because JDK/JVM implementers coded Thread.start() method that way. Its a reasonable functional expectation to be able to restart a thread after a thread has completed its execution and that is what being suggested in chrisbunney's answer ( and I have put in a comment in that answer ) but if you look at Thread.start() implementation , the very first line is ,
if (threadStatus != 0)
throw new IllegalThreadStateException();
where threadStatus == 0 means NEW state so my guess is that implementation doesn't resets this state to zero after execution has completed & thread is left in TERMINATED state ( non - zero state ). So when you create a new Thread instance on same Runnable , you basically reset this state to zero.
Also, I noticed the usage of word - may & never in same paragraph as different behavior is being pointed out by Phan Van Linh on some OSes,
It is never legal to start a thread more than once. In particular, a
thread may not be restarted once it has completed execution.
I guess what they are trying to say in above Javadoc that even if you don't get IllegalThreadStateException on certain OS, its not legal in Java/Thread class way & you might get unexpected behavior.
The famous thread state diagrams depict the same scenario - no going back from dead state to new.
ThreadPools can be used for delivering tasks to set number of threads. When initiating you set the number of threads. Then you add tasks for the pool. And after you can block until all tasks have finished processing. Here is some sample code.
I am not at all sure I understand the question. All the methods for stopping threads that are executed from other threads are deprecated; the way to stop a thread is to have it check a variable that it and another thread can access (perhaps a volatile variable), and have the running thread check it occasionally to see if it should exit on its own.
I cannot tell why/whether you want to eliminate the running thread and use another one, and I cannot see how the different threads are going to help execute your overall goal any faster. But it's possible I'm just not understanding the math.
The Thread.isAlive() method can tell you if the Thread has already been started. Simply do this where you want to start your thread:
if(!t[p%cores].isAlive()){
t[p%cores].start();
}
I'm writing a code that will run a multithreaded bank. I first create an array of threads with one program, then pass them into another thread that runs a loop to start them. For part of the application, I have a CPU intensive method that basically runs a series of loops within one another. Only problem is, for some reason it is not yielding the way that I think it should. Here is the code that is running the threads:
public void run(){
this.setPriority(MAX_PRIORITY);
int count = 0;
while(count<transactions.length){
int copy = count;
if(transactions[copy] instanceof Jumbler){
System.out.println(copy + " is a jumbler.");
}
else{
System.out.println(copy + " is not a jumbler");
}
transactions[copy].run();
count++;
}
}
Then here is the Jumbler run method:
public void run(){
System.out.println("running jumbler");
Thread.yield();
Thread.currentThread().yield();
try{
Thread.currentThread().sleep(5000);
}catch(InterruptedException e){}
//this.setPriority(MIN_PRIORITY);
System.out.println("still running.");
Thread.yield();
nums = new int[1000];
int i = 0;
do{
Thread.yield();
for(int x=0;x<1000;x++){
Thread.yield();
//System.out.println("in the loop");
nums[x]=(int)(Math.random()*10000)+1;
for(int y = 0;y<1000;y++){
Thread.yield();
//System.out.println("in the the loop");
for(int z = 0;z<100;z++){
Thread.yield();
}
}
}
Thread.yield();
i++;
System.out.println(whichJumble + ": " + i);
}while(i<1000);
}
So, the problem is that I want it to yield, allowing the main method to continue running more threads, but it blocks and waits for the Jumbler to complete (which takes a long time). Any idea why that would happen or how to fix it?
I suppose the issue comes with transactions[copy].run(); in your main loop. This one calls the run method directly but not in another system thread. Instead start the thread with transactions[copy].start();.
It seems that you're spawning the thread correctly (in fact, you're not spawning them at all)
If you want a Thread to start running (concurrently to the current thread) you need to call the start() method of that Thread object, which you don't.
If I understand your code correctly, you want the first snippet to spawn the other threads. Therefore you should change transactions[copy].run() to transactions[copy].start().
(This an educated guess. It would be nice if you showed the definition of the transaction array.)
Here's the typical scheme of launching several Threads:
class MyThread extends Thread {
public void run() {
// Do something here ...
}
}
// Prepare the array
MyThread[] arr = new MyThread[10];
for(int i = 0; i < arr.length; ++i)
arr[i] = new MyThread();
...
// Launch the threads
for(int i = 0; i < arr.length; ++i)
arr[i].start();
Once the thread is running, i don't think you can be guaranteed that priority changes when you call setPriority.
these two statements do the same thing:
Thread.yield();
Thread.currentThread().yield();
but you probably shouldn't be calling yield, let the os do that.
There are certain algorithms whose running time can decrease significantly when one divides up a task and gets each part done in parallel. One of these algorithms is merge sort, where a list is divided into infinitesimally smaller parts and then recombined in a sorted order. I decided to do an experiment to test whether or not I could I increase the speed of this sort by using multiple threads. I am running the following functions in Java on a Quad-Core Dell with Windows Vista.
One function (the control case) is simply recursive:
// x is an array of N elements in random order
public int[] mergeSort(int[] x) {
if (x.length == 1)
return x;
// Dividing the array in half
int[] a = new int[x.length/2];
int[] b = new int[x.length/2+((x.length%2 == 1)?1:0)];
for(int i = 0; i < x.length/2; i++)
a[i] = x[i];
for(int i = 0; i < x.length/2+((x.length%2 == 1)?1:0); i++)
b[i] = x[i+x.length/2];
// Sending them off to continue being divided
mergeSort(a);
mergeSort(b);
// Recombining the two arrays
int ia = 0, ib = 0, i = 0;
while(ia != a.length || ib != b.length) {
if (ia == a.length) {
x[i] = b[ib];
ib++;
}
else if (ib == b.length) {
x[i] = a[ia];
ia++;
}
else if (a[ia] < b[ib]) {
x[i] = a[ia];
ia++;
}
else {
x[i] = b[ib];
ib++;
}
i++;
}
return x;
}
The other is in the 'run' function of a class that extends thread, and recursively creates two new threads each time it is called:
public class Merger extends Thread
{
int[] x;
boolean finished;
public Merger(int[] x)
{
this.x = x;
}
public void run()
{
if (x.length == 1) {
finished = true;
return;
}
// Divide the array in half
int[] a = new int[x.length/2];
int[] b = new int[x.length/2+((x.length%2 == 1)?1:0)];
for(int i = 0; i < x.length/2; i++)
a[i] = x[i];
for(int i = 0; i < x.length/2+((x.length%2 == 1)?1:0); i++)
b[i] = x[i+x.length/2];
// Begin two threads to continue to divide the array
Merger ma = new Merger(a);
ma.run();
Merger mb = new Merger(b);
mb.run();
// Wait for the two other threads to finish
while(!ma.finished || !mb.finished) ;
// Recombine the two arrays
int ia = 0, ib = 0, i = 0;
while(ia != a.length || ib != b.length) {
if (ia == a.length) {
x[i] = b[ib];
ib++;
}
else if (ib == b.length) {
x[i] = a[ia];
ia++;
}
else if (a[ia] < b[ib]) {
x[i] = a[ia];
ia++;
}
else {
x[i] = b[ib];
ib++;
}
i++;
}
finished = true;
}
}
It turns out that function that does not use multithreading actually runs faster. Why? Does the operating system and the java virtual machine not "communicate" effectively enough to place the different threads on different cores? Or am I missing something obvious?
The problem is not multi-threading: I've written a correctly multi-threaded QuickSort in Java and it owns the default Java sort. I did this after witnessing a gigantic dataset being process and had only one core of a 16-cores machine working.
One of your issue (a huge one) is that you're busy looping:
// Wait for the two other threads to finish
while(!ma.finished || !mb.finished) ;
This is a HUGE no-no: it is called busy looping and you're destroying the perfs.
(Another issue is that your code is not spawning any new threads, as it has already been pointed out to you)
You need to use other way to synchronize: an example would be to use a CountDownLatch.
Another thing: there's no need to spawn two new threads when you divide the workload: spawn only one new thread, and do the other half in the current thread.
Also, you probably don't want to create more threads than there are cores availables.
See my question here (asking for a good Open Source multithreaded mergesort/quicksort/whatever). The one I'm using is proprietary, I can't paste it.
Multithreaded quicksort or mergesort
I haven't implemented Mergesort but QuickSort and I can tell you that there's no array copying going on.
What I do is this:
pick a pivot
exchange values as needed
have we reached the thread limit? (depending on the number of cores)
yes: sort first part in this thread
no: spawn a new thread
sort second part in current thread
wait for first part to finish if it's not done yet (using a CountDownLatch).
The code spawning a new thread and creating the CountDownLatch may look like this:
final CountDownLatch cdl = new CountDownLatch( 1 );
final Thread t = new Thread( new Runnable() {
public void run() {
quicksort(a, i+1, r );
cdl.countDown();
}
} };
The advantage of using synchronization facilities like the CountDownLatch is that it is very efficient and that your not wasting time dealing with low-level Java synchronization idiosynchrasies.
In your case, the "split" may look like this (untested, it is just to give an idea):
if ( threads.getAndIncrement() < 4 ) {
final CountDownLatch innerLatch = new CountDownLatch( 1 );
final Thread t = new Merger( innerLatch, b );
t.start();
mergeSort( a );
while ( innerLatch.getCount() > 0 ) {
try {
innerLatch.await( 1000, TimeUnit.SECONDS );
} catch ( InterruptedException e ) {
// Up to you to decide what to do here
}
}
} else {
mergeSort( a );
mergeSort( b );
}
(don't forget to "countdown" the latch when each merge is done)
Where you'd replace the number of threads (up to 4 here) by the number of available cores. You may use the following (once, say to initialize some static variable at the beginning of your program: the number of cores is unlikely to change [unless you're on a machine allowing CPU hotswapping like some Sun systems allows]):
Runtime.getRuntime().availableProcessors()
As others said; This code isn't going to work because it starts no new threads. You need to call the start() method instead of the run() method to create new threads. It also has concurrency errors: the checks on the finished variable are not thread safe.
Concurrent programming can be pretty difficult if you do not understand the basics. You might read the book Java Concurrency in Practice by Brian Goetz. It explains the basics and explains constructs (such as Latch, etc) to ease building concurrent programs.
The overhead cost of synchronization may be comparatively large and prevent many optimizations.
Furthermore you are creating way too many threads.
The other is in the 'run' function of a class that extends thread, and recursively creates two new threads each time it is called.
You would be better off with a fixed number of threads, suggestively 4 on a quad core. This could be realized with a thread pool (tutorial) and the pattern would be "bag of tasks". But perhaps it would be better yet, to initially divide the task into four equally large tasks and do "single-threaded" sorting on those tasks. This would then utilize the caches a lot better.
Instead of having a "busy-loop" waiting for the threads to finish (stealing cpu-cycles) you should have a look at Thread.join().
How many elements in the array you have to do sort? If there are too few elements, the time of sync and CPU switching will over the time you save for dividing the job for paralleling