This is my Problem for which i made the program
Ali baba did a trick on the forty thieves and was able to trap them
inside a big cave which was the home of wild wolves. The thieves are
without any weapons, only the chief of the thieves has knife. With no
weapons they will not be able to fight with the wolves, so they decide
to kill themselves rather than being eaten alive.
They all decide that they will stand in a circle and they every third
person will kill himself but the chief of the thieves does not like
this idea and has no intention of killing himself. He calculates where
should he stand so that he is the last one left.
HackerMan wants to build a game based on this story, but instead of
killing he decides that the participant will leave the game, and
instead of every 3rd position it will be every 2nd position. Of course
the number of participants will be much more than 40 in this game.
Input
The first line of input is an integer N (1 <= N <= 1000) that
specifies the number of test cases. After that every line contains an
integer X (5 <= X <= 100000000) which is the number of participants in
the game.
Output
For each test case generate a line containing the position of the
participant who survives. Assume that the participants have serial
numbers from 1 to n and that the counting starts with person 1, i.e.,
the first person leaving is the one with number 2.
Sample Input
3 5 11 45
Sample Output
3 7 27
Here is my Solution Program
class SurvivalStrategy {
public int next;
public int value;
public boolean alive;
SurvivalStrategy(int n, int v)
{
this.next = n;
this.value = v;
this.alive = true;
}
public int getNext(){
return this.next;
}
public void kill(){
this.alive = false;
}
public void changeNext(int n){
this.next = n;
}
public static void main(String[] args) throws IOException {
System.out.println("Enter the number of cases");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
int N = Integer.parseInt(line);
int[] array = new int[N];
for(int a = 0; a < N; a++)
{
System.out.println("Enter No. of theives in case " + (a + 1));
array[a] = Integer.parseInt(br.readLine());
}
for(int b = 0; b < N; b++)
{
try{
int theives = 0;
theives = array[b];
SurvivalStrategy[] people = new SurvivalStrategy[theives];
int i = 0;
int nextctr = 2;
for(i = 0; i < people.length; i++)
{
people[i] = new SurvivalStrategy(nextctr, i + 1);
if(nextctr > people.length)
{
people[i] = new SurvivalStrategy(1, i + 1);
}
nextctr++;
}
int k = 0;
int nextguy = 0;
int survivers = people.length;
boolean CarryOnJatta = true;
int lastSurviver = 0;
while(CarryOnJatta)
{
if(k >= people.length)
{
k = 0;
k = k + 2;
}
if(people[k].alive)
{
//System.out.println(people[k].value + " is Alive");
nextguy = people[k].getNext();
if(people[nextguy - 1].alive)
{
people[nextguy - 1].kill();
people[k].changeNext(people[nextguy - 1].next);
lastSurviver = people[k].value;
survivers--;
}else{
k = k + 2;
}
k = k + 2;
}else{
k = k + 2;
}
if (survivers == 1)
{
CarryOnJatta = false;
System.out.println("" + lastSurviver);
}
}
} catch(Exception e)
{
e.printStackTrace();
}
}
}
}
My program is giving an output for small values but not for large ones.
if i try it with the input(23987443) i get java heap size exceeded error.
is there any way i can improve the space as well as time complexity of this program.
i am open for other algorithms also if they are generating the desired output.
You are allocating at least 23987443 * sizeof(SurvivalStrategy) memory on the heap - that would be around 300MB per single case, and that is only before this line of code:
SurvivalStrategy[] people = new SurvivalStrategy[theives];
I guess the challenge was designed to teach you with merits of efficient memory handling - so instead of allocating the whole memory at once, you need to process your items one by one, so that you allocate only a few items at a time, letting the no-longer-needed ones to be collected by GC.
You could try to assign more memory to the JVM, there's a recent post about this:
Java Heap Space error from command line
you could use a circular LinkedList. Add your nodes to the list, and use the counting algorithm to traverse the list. Everytime someone loses, simply call a remove on that person, which will mark it eligible for garbage collection (assuming the list contains the only ref to your node).
Better yet, no need to add everyone all at once on the first cycle through the list. You can simply not add someone if they are a multiple of V iterations. This should chop your memory usage up quite a bit.
This will save space on your heap, since you are maintaining a max size of N, but will have more allocation / deallocation overhead. Still, linkedList.remove offers O(1) complexity. I think it would clean your code up a lot to and make it easier to understand
Related
public class Problem3 {
public static void main (String [] args){
Scanner sc= new Scanner (System.in);
System.out.println("Enter no. of Islands");
int n= sc.nextInt();
Graph g = new Graph (n);
System.out.println("Enter no. of one-way bridges");
int m= sc.nextInt();
System.out.println("Enter no. of island you want to be intially on");
int r= sc.nextInt();
try{ for (int i=0; i<m;i++){
System.out.println("This one-way bridge connects between");
int u = sc.nextInt();
int v = sc.nextInt();
if(u == v || u>n || v>n){ throw new Bounds("");}
else{ g.addEgde(u-1, v-1);}
}
g.topoSort();}
catch(IndexOutOfBoundsException e){
System.out.println("Please enter a valid input!");
}
catch(Bounds e){
System.out.println("Please enter a valid input!");
}
}
public static class Bounds extends Exception{
public Bounds (String message){
super(message);
}}
static class Graph {
int V;
LinkedList<Integer>[] adjList;
Graph(int V) {
this.V = V;
adjList = new LinkedList[V];
for (int i = 0; i < V; i++) {
adjList[i] = new LinkedList<>();
}
}
public void addEgde(int u, int v) {
adjList[u].addFirst(v);
}
public void topoSort() {
boolean[] visited = new boolean[V];
stack stack = new stack();
for (int i = 0; i < V; i++) {
if (!visited[i]) {
topoSortRE(i, visited, stack);
}
}
System.out.println("Topological Sort: ");
int size = stack.size();
for (int i = 0; i <size ; i++) {
System.out.print(stack.pop()+ 1 + " ");
}
}
public void topoSortRE(int s, boolean[] visited, stack stack) {
visited[s] = true;
for (int i = 0; i < adjList[s].size(); i++) {
int vertex = adjList[s].get(i);
if (!visited[vertex])
topoSortRE(vertex, visited, stack);
}
stack.push(s);
}}}
The following code is an attempt to solve the following problem:
There are many islands that are connected by one-way bridges, that is, if a bridge connects
islands a and b, then you can only use the bridge to go from a to b but you cannot travel back
by using the same. If you are on island a, then you select (uniformly and randomly) one of
the islands that are directly reachable from a through the one-way bridge and move to that
island. You are stuck on an island if you cannot move any further. It is guaranteed that if
there is a directed path from one island to the second there is no path that leads from the
second back to the first. In other words the formed graph is a Directed Acyclic Graph.
Find the island that you are most likely to get stuck on; that is the island that you can
possibly reach with the maximum number of paths from all other islands.
Input format:
First line: Three integers n (the number of islands), m (the number of one-way bridges), and r
(the index of the island you are initially on)
Next m lines: Two integers ui and vi representing a one-way bridge from island ui to vi.
Output format:
Print the index of the island that you are most likely to get stuck on. If there are multiple
islands, then print them in the increasing order of indices (space separated values in a single
line).
Sample input
5, 7, 1
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
Sample output
4
I wrote the code to topologically sort the graph but I am having issues with how to make the input r the intial island and also how to make the output be the most probable island to be stuck on. I know that the island I'm most likely to be stuck on is the island that has the most indegrees and no outdegrees but don't know how to implement that.
For each node make a value (real number) representing probability that you will reach it from your starting island. At first, set this value for initial node to 1 and 0 for other nodes.
During the topological sort, when you're in node v, add its probability value divided by number of neighbors to each neighbor's value (in other words, since you know that the probability of getting to v is v.value, then the probability of reaching its neighbor should be increased by v.value * ppb of choosing this neighbor, that is 1 / #_of_neighbors). In this way, whenever you're in some node during topological sort, its value will be equal to the total probability of reaching it.
Your answer is an ending island (node with outdegree 0) with largest value.
Your topological sort seems wrong, you're doing something that looks like DFS. In topological sort you want to visit each vertex after visiting all vertices with an edge ending in it.
About implementation, I changed your DFS into topological sort and added those probabilities I've talked about. I left the part about choosing best ending vertex to you, I don't think doing all the work for someone is educational in any way. Also, I do not guarantee that my changes below do not contain any spelling mistakes, etc. I did my best, but I have not run this code.
static class Graph {
int V;
LinkedList<Integer>[] adjList;
Graph(int V) {
this.V = V;
adjList = new LinkedList[V];
probability = new double[V];
for (int i = 0; i < V; i++) {
adjList[i] = new LinkedList<>();
}
}
public void addEgde(int u, int v) {
adjList[u].addFirst(v);
}
public void topoSort(int start) {
double[] probability;
probability[start] = 1;
int[] indegree = new int[V];
stack stack = new stack();
for (int i = 0; i < V; i++) {
probability[i] = 0;
for (int j = 0; j < adjList[i].size(); ++j) {
indegree[adjList[i][j]] += 1;
}
}
probability[start] = 1;
for(int i = 0; i < V; ++i)
{
if(indegree[i] == 0)
stack.push(i);
}
while(stack.size())
{
int v = stack.pop();
for (int i = 0; i < adjList[v].size(); ++i)
{
indegree[adjList[v][i]] -= 1;
probability[adjList[v][i]] += probability[v] / (double)(adjList[v].size());
if(indegree[adjList[v][i]] == 0)
stack.push(adjList[v][i]);
}
}
//probability array now contains all probabilities to visit each node
}
}
}
Please refer to this problem from Hackerrank
HackerLand National Bank has a simple policy for warning clients about possible fraudulent account activity. If the amount spent by a client on a particular day is greater than or equal to the client's median spending for a trailing number of days, they send the client a notification about potential fraud. The bank doesn't send the client any notifications until they have at least that trailing number of prior days' transaction data.
I have written the following code. However, the code is working for some of the test cases and is getting 'terminated due to timeout' for some. Can anyone please tell how can I improve the code?
import java.io.*;
import java.math.*;
import java.security.*;
import java.text.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.regex.*;
public class Solution {
// Complete the activityNotifications function below.
static int activityNotifications(int[] expenditure, int d) {
//Delaring Variables
int iterations,itr,length,median,midDummy,midL,midR, midDummy2,i,i1,temp,count;
float mid,p,q;
length = expenditure.length;
iterations = length-d;
i=0;
i1=0;
itr=0;
count = 0;
int[] exSub = new int[d];
while(iterations>0)
{
// Enter the elements in the subarray
while(i1<d)
{
exSub[i1]=expenditure[i+i1];
//System.out.println(exSub[i1]);
i1++;
}
//Sort the exSub array
for(int k=0; k<(d-1); k++)
{
for(int j=k+1; j<d; j++)
{
if(exSub[j]<exSub[k])
{
temp = exSub[j];
exSub[j] = exSub[k];
exSub[k] = temp;
}
}
}
//Printing the exSub array in each iteration
for(int l = 0 ; l<d ; l++)
{
System.out.println(exSub[l]);
}
i1=0;
//For each iteration claculate the median
if(d%2 == 0) // even
{
midDummy = d/2;
p= (float)exSub[midDummy];
q= (float)exSub[midDummy-1];
mid = (p+q)/2;
//mid = (exSub[midDummy]+exSub [midDummy-1])/2;
//System.out.println(midDummy);
}
else // odd
{
midDummy2 =d/2;
mid=exSub[midDummy2];
//System.out.println(midDummy2);
}
if(expenditure[itr+d]>=2*mid)
{
count++;
}
itr++;
i++;
iterations--;
System.out.println("Mid:"+mid);
System.out.println("---------");
}
System.out.println("Count:"+count);
return count;
}
private static final Scanner scanner = new Scanner(System.in);
public static void main(String[] args) throws IOException {
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
String[] nd = scanner.nextLine().split(" ");
int n = Integer.parseInt(nd[0]);
int d = Integer.parseInt(nd[1]);
int[] expenditure = new int[n];
String[] expenditureItems = scanner.nextLine().split(" ");
scanner.skip("(\r\n|[\n\r\u2028\u2029\u0085])?");
for (int i = 0; i < n; i++) {
int expenditureItem = Integer.parseInt(expenditureItems[i]);
expenditure[i] = expenditureItem;
}
int result = activityNotifications(expenditure, d);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
bufferedWriter.close();
scanner.close();
}
}
The first rule on performance improvement is: Don't improve the performance if it's not needed.
Performance improvements usually lead to code that is less readable and therefore it should only be done when it's really needed.
The second rule is: Improve algorithms and data-structures before low-level improvements.
If you need to improve the performance of your code always try to use more efficient algorithms and data-structures before going to low-level improvement. In your code example that would be: Don't use BubbleSort, but try to use more efficient algorithms like Quicksort or Mergesort, because they use time complexity of O(n*log(n) while Bubble sort has a time complexity of O(n^2) which is much slower when you have to sort big arrays. You can use Arrays.sort(int[]) to do this.
Your data-structures are only arrays so this can't be improved in your code.
This will give your code quite some speedup, and will not lead to a code that can't be read anymore. Improvements like changing simple calculations to slightly faster calculations using bitshifts and other fast calculations (that are pretty hard to understand if used to often) will almost always lead to a code that is only slightly faster but no one will be able to easily understand it anymore.
Some improvements that could be applied to your code (that will also only slightly improve the performance) are:
Replace while loops with for loops if possible (they can be improved by the compiler)
Don't use System.out.println for many texts if it's not totaly needed (because it's quite slow for big texts)
Try to copy arrays using System.arraycopy which usually is faster than copying using while loops
So an improved code of yours could look like this (I marked the changed parts with comments):
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
// Complete the activityNotifications function below.
static int activityNotifications(int[] expenditure, int d) {
//Delaring Variables
int iterations, itr, length, median, midDummy, midL, midR, midDummy2, i, i1, temp, count;
float mid, p, q;
length = expenditure.length;
iterations = length - d;
i = 0;
i1 = 0;
itr = 0;
count = 0;
int[] exSub = new int[d];
//EDIT: replace while loops with for loops if possible
//while (iterations > 0) {
for (int iter = 0; iter < iterations; iter++) {
//EDIT: here you can again use a for loop or just use System.arraycopy which should be (slightly) fasters
// Enter the elements in the subarray
/*while (i1 < d) {
exSub[i1] = expenditure[i + i1];
//System.out.println(exSub[i1]);
i1++;
}*/
System.arraycopy(expenditure, i, exSub, 0, d);
//EDIT: Don't use bubble sort!!! It's one of the worst sorting algorithms, because it's really slow
//Bubble sort uses time complexity O(n^2); others (like merge-sort or quick-sort) only use O(n*log(n))
//The easiest and fastest solution is: don't implement sorting by yourself, but use Arrays.sort(int[]) from the java API
//Sort the exSub array
/*for (int k = 0; k < (d - 1); k++) {
for (int j = k + 1; j < d; j++) {
if (exSub[j] < exSub[k]) {
temp = exSub[j];
exSub[j] = exSub[k];
exSub[k] = temp;
}
}
}*/
Arrays.sort(exSub);
//Printing the exSub array in each iteration
//EDIT: printing many results also takes much time, so only print the results if it's really needed
/*for (int l = 0; l < d; l++) {
System.out.println(exSub[l]);
}*/
i1 = 0;
//For each iteration claculate the median
if (d % 2 == 0) // even
{
midDummy = d / 2;
p = (float) exSub[midDummy];
q = (float) exSub[midDummy - 1];
mid = (p + q) / 2;
//mid = (exSub[midDummy]+exSub [midDummy-1])/2;
//System.out.println(midDummy);
}
else // odd
{
midDummy2 = d / 2;
mid = exSub[midDummy2];
//System.out.println(midDummy2);
}
if (expenditure[itr + d] >= 2 * mid) {
count++;
}
itr++;
i++;
//iterations--;//EDIT: don't change iterations anymore because of the for loop
System.out.println("Mid:" + mid);
System.out.println("---------");
}
System.out.println("Count:" + count);
return count;
}
private static final Scanner scanner = new Scanner(System.in);
public static void main(String[] args) throws IOException {
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
String[] nd = scanner.nextLine().split(" ");
int n = Integer.parseInt(nd[0]);
int d = Integer.parseInt(nd[1]);
int[] expenditure = new int[n];
String[] expenditureItems = scanner.nextLine().split(" ");
scanner.skip("(\r\n|[\n\r\u2028\u2029\u0085])?");
for (int i = 0; i < n; i++) {
int expenditureItem = Integer.parseInt(expenditureItems[i]);
expenditure[i] = expenditureItem;
}
int result = activityNotifications(expenditure, d);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
bufferedWriter.close();
scanner.close();
}
}
Edit:
You can make the solution even faster if you don't sort the complete (sub-)array in every iteration, but instead only remove one value (the first day that is not used anymore) and add a new value (the new day that is now used) in the correct position (like #Vojtěch Kaiser mentioned in his answer)
This will make it even faster, because sorting an array takes the time O(d*log(d)), while adding a new value into an array, that is already sorted only takes the time O(log(d)) if you are using a search tree. When using an array (like I did in the example below) it takes the time O(d) because when using an array you need to copy the array values which takes linear time (like #dyukha mentioned in the comments). So the improvement (again) can be done by using a better algorithm (This solution could also be improved by using a search tree instead of an array).
So the new solution could look like this:
import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
// Complete the activityNotifications function below.
static int activityNotifications(int[] expenditure, int d) {
//Delaring Variables
int iterations, length, midDummy, midDummy2, count;//EDIT: removed some unused variables here
float mid, p, q;
length = expenditure.length;
iterations = length - d;
count = 0;
//EDIT: add the first d values to the sub-array and sort it (only once)
int[] exSub = new int[d];
System.arraycopy(expenditure, 0, exSub, 0, d);
Arrays.sort(exSub);
for (int iter = 0; iter < iterations; iter++) {
//EDIT: don't sort the complete array in every iteration
//instead remove the one value (the first day that is not used anymore) and add the new value (of the new day) into the sorted array
//sorting is done in O(n * log(n)); deleting and inserting a new value into a sorted array is done in O(log(n))
if (iter > 0) {//not for the first iteration
int remove = expenditure[iter - 1];
int indexToRemove = find(exSub, remove);
//remove the index and move the following values one index to the left
exSub[indexToRemove] = 0;//not needed; just to make it more clear what's happening
System.arraycopy(exSub, indexToRemove + 1, exSub, indexToRemove, exSub.length - indexToRemove - 1);
exSub[d - 1] = 0;//not needed again; just to make it more clear what's happening
int newValue = expenditure[iter + d - 1];
//insert the new value to the correct position
insertIntoSortedArray(exSub, newValue);
}
//For each iteration claculate the median
if (d % 2 == 0) // even
{
midDummy = d / 2;
p = exSub[midDummy];
q = exSub[midDummy - 1];
mid = (p + q) / 2;
//mid = (exSub[midDummy]+exSub [midDummy-1])/2;
//System.out.println(midDummy);
}
else // odd
{
midDummy2 = d / 2;
mid = exSub[midDummy2];
//System.out.println(midDummy2);
}
if (expenditure[iter + d] >= 2 * mid) {
count++;
}
}
System.out.println("Count:" + count);
return count;
}
/**
* Find the position of value in expenditure
*/
private static int find(int[] array, int value) {
int index = -1;
for (int i = 0; i < array.length; i++) {
if (array[i] == value) {
index = i;
}
}
return index;
}
/**
* Find the correct position to insert value into the array by bisection search
*/
private static void insertIntoSortedArray(int[] array, int value) {
int[] indexRange = new int[] {0, array.length - 1};
while (indexRange[1] - indexRange[0] > 0) {
int mid = indexRange[0] + (indexRange[1] - indexRange[0]) / 2;
if (value > array[mid]) {
if (mid == indexRange[0]) {
indexRange[0] = mid + 1;
}
else {
indexRange[0] = mid;
}
}
else {
if (mid == indexRange[1]) {
indexRange[1] = mid - 1;
}
else {
indexRange[1] = mid;
}
}
}
System.arraycopy(array, indexRange[0], array, indexRange[0] + 1, array.length - indexRange[0] - 1);
array[indexRange[0]] = value;
}
private static final Scanner scanner = new Scanner(System.in);
public static void main(String[] args) throws IOException {
BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(System.getenv("OUTPUT_PATH")));
String[] nd = scanner.nextLine().split(" ");
int n = Integer.parseInt(nd[0]);
int d = Integer.parseInt(nd[1]);
int[] expenditure = new int[n];
String[] expenditureItems = scanner.nextLine().split(" ");
scanner.skip("(\r\n|[\n\r\u2028\u2029\u0085])?");
for (int i = 0; i < n; i++) {
int expenditureItem = Integer.parseInt(expenditureItems[i]);
expenditure[i] = expenditureItem;
}
int result = activityNotifications(expenditure, d);
bufferedWriter.write(String.valueOf(result));
bufferedWriter.newLine();
bufferedWriter.close();
scanner.close();
//Just for testing; can be deleted if you don't need it
/*int[] exp = new int[] {2, 3, 4, 2, 3, 6, 8, 4, 5};
int d = 5;
activityNotifications(exp, d);
int[] exp2 = new int[] {1, 2, 3, 4, 4};
d = 4;
activityNotifications(exp2, d);*/
}
}
Your main concern is that you are sorting the partial array in every iteration, costing you total complexity of the problem O(n d log(d)), which can get pretty hairy for large d values.
What you want is to keep the array sorted between iterations and sort in/out changed values. For that you would implement binary search tree (BST) or some other balanced option (AVL, ...), perform O(log(d)) removal of oldest value, then perform O(log(d)) insertion of new value, and simply look in the middle for median. Total asymptotic complexity would be O(n log(d)) which is as far as I know the best you can get - rest of the optimization is low level dirty work.
Take a look at java https://docs.oracle.com/javase/10/docs/api/java/util/TreeSet.html, which should take care of the most of the work, but keep in mind that underlying structure is made out of objects that will be slower than arrays.
I'm a first-year computer science student and I am currently dabbling in some algorithmic competitions. The code below that I made has a flaw that I'm not sure how to fix
Here is the problem statement:
http://www.usaco.org/index.php?page=viewproblem2&cpid=811
In the statement, I missed where it said that Farmer John could only switch boots on tiles that both boots can stand on. I tried adding constraints in different places but none seemed to address the problem fully. I don't really see a way to do it without butchering the code
Basically, the problem is that John keeps switching boots on tiles where the new boots can't stand on, and I can't seem to fix it
Here is my code (sorry for the one letter variables):
import java.io.*;
import java.util.*;
public class snowboots {
static int n,k;
static int[] field,a,b; //a,b --> strength, distance
static int pos;
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new FileReader("snowboots.in"));
PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("snowboots.out")));
StringTokenizer st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
k = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
field = new int[n];
a = new int[k];
b = new int[k];
for (int i = 0; i < n; i++)
field[i] = Integer.parseInt(st.nextToken());
for (int i = 0; i < k; i++) {
st = new StringTokenizer(br.readLine());
a[i] = Integer.parseInt(st.nextToken());
b[i] = Integer.parseInt(st.nextToken());
}
pw.println(solve());
pw.close();
}
static int solve() {
pos = 0;
int i = 0; //which boot are we on?
while(pos < n-1) {
while(move(i)); //move with boot i as far as possible
i++; //use the next boot
}
i--;
return i;
}
static boolean move(int c) {
for (int i = pos+b[c]; i > pos; i--) {
if (i < n && field[i] <= a[c]) { //snow has to be less than boot strength
pos = i;
return true;
}
}
return false;
}
}
I tried adding a constraint in the "move" method, and one when updating I, but they both are too strict and activate at unwanted times
Is it salvageable?
Yes, it's possible to salvage your solution, by adding an extra for-loop.
What you need to do is, if you find that your previous pair of boots can get you all the way to a tile that's too deep in snow for your next pair, then you need to try "backtracking" to the latest tile that's not too deep. This ends up giving a solution in worst-case O(N·B) time and O(1) extra space.
It may not be obvious why it's OK to backtrack to that tile — after all, just because you can reach a given tile, that doesn't necessarily mean that you were able to reach all the tiles before it — so let me explain a bit why it is OK.
Let maxReachableTileNum be the number (between 1 and N) of the last tile that you were able to reach with your previous boots, and let lastTileNumThatsNotTooDeep be the number (between 1 and N) of the last tile on or before maxReachableTileNum that's not too deeply snow-covered for your next pair. (We know that there is such a tile, because tile #1 has no snow at all, so if nothing else we know that we can backtrack to the very beginning.) Now, since we were able to get to maxReachableTileNum, then some previous boot must have either stepped on lastTileNumThatsNotTooDeep (in which case, no problem, it's reachable) or skipped over it to some later tile (on or before maxReachableTileNum). But that later tile must be deeper than lastTileNumThatsNotTooDeep (because that later tile's depth is greater than scurrentBootNum, which is at least at great as the depth of lastTileNumThatsNotTooDeep), which means that the boot that skipped over lastTileNumThatsNotTooDeep certainly could have stepped on lastTileNumThatsNotTooDeep instead: it would have meant taking a shorter step (OK) onto a less-deeply-covered tile (OK) than what it actually did. So, either way, we know that lastTileNumThatsNotTooDeep was reachable. So it's safe for us to try backtracking to lastTileNumThatsNotTooDeep. (Note: the below code uses the name reachableTileNum instead of lastTileNumThatsNotTooDeep, because it continues to use the reachableTileNum variable for searching forward to find reachable tiles.)
However, we still have to hold onto the previous maxReachableTileNum: backtracking might turn out not to be helpful (because it may not let us make any further forward progress than we already have), in which case we'll just discard these boots, and move on to the next pair, with maxReachableTileNum at its previous value.
So, overall, we have this:
public static int solve(
final int[] tileSnowDepths, // tileSnowDepths[0] is f_1
final int[] bootAllowedDepths, // bootAllowedDepths[0] is s_1
final int[] bootAllowedTilesPerStep // bootAllowedTilesPerStep[0] is d_1
) {
final int numTiles = tileSnowDepths.length;
final int numBoots = bootAllowedDepths.length;
assert numBoots == bootAllowedTilesPerStep.length;
int maxReachableTileNum = 1; // can reach tile #1 even without boots
for (int bootNum = 1; bootNum <= numBoots; ++bootNum) {
final int allowedDepth = bootAllowedDepths[bootNum-1];
final int allowedTilesPerStep = bootAllowedTilesPerStep[bootNum-1];
// Find the starting-point for this boot -- ideally the last tile
// reachable so far, but may need to "backtrack" if that tile is too
// deep; see explanation above of why it's safe to assume that we
// can backtrack to the latest not-too-deep tile:
int reachableTileNum = maxReachableTileNum;
while (tileSnowDepths[reachableTileNum-1] > allowedDepth) {
--reachableTileNum;
}
// Now see how far we can go, updating both maxReachableTileNum and
// reachableTileNum when we successfully reach new tiles:
for (int tileNumToTry = maxReachableTileNum + 1;
tileNumToTry <= numTiles
&& tileNumToTry <= reachableTileNum + allowedTilesPerStep;
++tileNumToTry
) {
if (tileSnowDepths[tileNumToTry-1] <= allowedDepth) {
maxReachableTileNum = reachableTileNum = tileNumToTry;
}
}
// If we've made it to the last tile, then yay, we're done:
if (maxReachableTileNum == numTiles) {
return bootNum - 1; // had to discard this many boots to get here
}
}
throw new IllegalArgumentException("Couldn't reach last tile with any boot");
}
(I tested this on USACO's example data, and it returned 2, as expected.)
This can potentially be optimized further, e.g. with logic to skip pairs of boots that clearly aren't helpful (because they're neither stronger nor more agile than the previous successful pair), or with an extra data structure to keep track of the positions of latest minima (to optimize the backtracking process), or with logic to avoid backtracking further than is conceivably useful; but given that N·B ≤ 2502 = 62,500, I don't think any such optimizations are warranted.
Edited to add (2019-02-23): I've thought about this further, and it occurs to me that it's actually possible to write a solution in worst-case O(N + B log N) time (which is asymptotically better than O(N·B)) and O(N) extra space. But it's much more complicated; it involves three extra data-structures (one to keep track of the positions of latest minima, to allow backtracking in O(log N) time; one to keep track of the positions of future minima, to allow checking in O(log N) time if the backtracking is actually helpful (and if so to move forward to the relevant minimum); and one to maintain the necessary forward-looking information in order to let the second one be maintained in amortized O(1) time). It's also complicated to explain why that solution is guaranteed to be within O(N + B log N) time (because it involves a lot of amortized analysis, and making a minor change that might seem like an optimization — e.g., replacing a linear search with a binary search — can break the analysis and actually increase the worst-case time complexity. Since N and B are both known to be at most 250, I don't think all the complication is worth it.
You can solve this problem by Dynamic Programming. You can see the concept in this link (Just read the Computer programming part).
It has following two steps.
First solve the problem recursively.
Memoize the states.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mx 100005
#define mod 1000000007
int n, b;
int f[333], s[333], d[333];
int dp[251][251];
int rec(int snowPos, int bootPos)
{
if(snowPos == n-1){
return 0;
int &ret = dp[snowPos][bootPos];
if(ret != -1) return ret;
ret = 1000000007;
for(int i = bootPos+1; i<b; i++)
{
if(s[i] >= f[snowPos]){
ret = min(ret, i - bootPos + rec(snowPos, i));
}
}
for(int i = 1; i<=d[bootPos] && snowPos+i < n; i++){
if(f[snowPos + i] <= s[bootPos]){
ret = min(ret, rec(snowPos+i, bootPos));
}
}
return ret;
}
int main()
{
freopen("snowboots.in", "r", stdin);
freopen("snowboots.out", "w", stdout);
scanf("%d %d", &n, &b);
for(int i = 0; i<n; i++)
scanf("%d", &f[i]);
for(int i = 0; i<b; i++){
scanf("%d %d", &s[i], &d[i]);
}
memset(dp, -1, sizeof dp);
printf("%d\n", rec(0, 0));
return 0;
}
This is my solution to this problem (in C++).
This is just a recursion. As problem says,
you can change boot, Or
you can do a jump by current boot.
Memoization part is done by the 2-Dimensional array dp[][].
One way which to solve it using BFS. You may refer below code for details. Hope this helps.
import java.util.*;
import java.io.*;
public class SnowBoots {
public static int n;
public static int[] deep;
public static int nBoots;
public static Boot[] boots;
public static void main(String[] args) throws Exception {
// Read the grid.
Scanner stdin = new Scanner(new File("snowboots.in"));
// Read in all of the input.
n = stdin.nextInt();
nBoots = stdin.nextInt();
deep = new int[n];
for (int i = 0; i < n; ++i) {
deep[i] = stdin.nextInt();
}
boots = new Boot[nBoots];
for (int i = 0; i < nBoots; ++i) {
int d = stdin.nextInt();
int s = stdin.nextInt();
boots[i] = new boot(d, s);
}
PrintWriter out = new PrintWriter(new FileWriter("snowboots.out"));
out.println(bfs());
out.close();
stdin.close();
}
// Breadth First Search Algorithm [https://en.wikipedia.org/wiki/Breadth-first_search]
public static int bfs() {
// These are all valid states.
boolean[][] used = new boolean[n][nBoots];
Arrays.fill(used[0], true);
// Put each of these states into the queue.
LinkedList<Integer> q = new LinkedList<Integer>();
for (int i = 0; i < nBoots; ++i) {
q.offer(i);
}
// Usual bfs.
while (q.size() > 0) {
int cur = q.poll();
int step = cur / nBoots;
int bNum = cur % nBoots;
// Try stepping with this boot...
for (int i = 1; ((step + i) < n) && (i <= boots[bNum].maxStep); ++i) {
if ((deep[step+i] <= boots[bNum].depth) && !used[step+i][bNum]) {
q.offer(nBoots * (step + i) + bNum);
used[step + i][bNum] = true;
}
}
// Try switching to another boot.
for (int i = bNum + 1; i < nBoots; ++i) {
if ((boots[i].depth >= deep[step]) && !used[step][i]) {
q.offer(nBoots * step + i);
used[step][i] = true;
}
}
}
// Find the earliest boot that got us here.
for (int i = 0; i < nBoots; ++i) {
if (used[n - 1][i]) {
return i;
}
}
// Should never get here.
return -1;
}
}
class Boot {
public int depth;
public int maxStep;
public Boot(int depth, int maxStep) {
this.depth = depth;
this.maxStep = maxStep;
}
}
I am trying to prepare for a contest but my program speed is always dreadfully slow as I use O(n). First of all, I don't even know how to make it O(log n), or I've never heard about this paradigm. Where can I learn about this?
For example,
If you had an integer array with zeroes and ones, such as [ 0, 0, 0, 1, 0, 1 ], and now you wanted to replace every 0 with 1 only if one of it's neighbors has the value of 1, what is the most efficient way to go about doing if this must occur t number of times? (The program must do this for a number of t times)
EDIT:
Here's my inefficient solution:
import java.util.Scanner;
public class Main {
static Scanner input = new Scanner(System.in);
public static void main(String[] args) {
int n;
long t;
n = input.nextInt();
t = input.nextLong();
input.nextLine();
int[] units = new int[n + 2];
String inputted = input.nextLine();
input.close();
for(int i = 1; i <= n; i++) {
units[i] = Integer.parseInt((""+inputted.charAt(i - 1)));
}
int[] original;
for(int j = 0; j <= t -1; j++) {
units[0] = units[n];
units[n + 1] = units[1];
original = units.clone();
for(int i = 1; i <= n; i++) {
if(((original[i - 1] == 0) && (original[i + 1] == 1)) || ((original[i - 1] == 1) && (original[i + 1] == 0))) {
units[i] = 1;
} else {
units[i] = 0;
}
}
}
for(int i = 1; i <= n; i++) {
System.out.print(units[i]);
}
}
}
This is an elementary cellular automaton. Such a dynamical system has properties that you can use for your advantages. In your case, for example, you can set to value 1 every cell at distance at most t from any initial value 1 (cone of light property). Then you may do something like:
get a 1 in the original sequence, say it is located at position p.
set to 1 every position from p-t to p+t.
You may then take as your advantage in the next step that you've already set position p-t to p+t... This can let you compute the final step t without computing intermediary steps (good factor of acceleration isn't it?).
You can also use some tricks as HashLife, see 1.
As I was saying in the comments, I'm fairly sure you can keep out the array and clone operations.
You can modify a StringBuilder in-place, so no need to convert back and forth between int[] and String.
For example, (note: This is on the order of an O(n) operation for all T <= N)
public static void main(String[] args) {
System.out.println(conway1d("0000001", 7, 1));
System.out.println(conway1d("01011", 5, 3));
}
private static String conway1d(CharSequence input, int N, long T) {
System.out.println("Generation 0: " + input);
StringBuilder sb = new StringBuilder(input); // Will update this for all generations
StringBuilder copy = new StringBuilder(); // store a copy to reference current generation
for (int gen = 1; gen <= T; gen++) {
// Copy over next generation string
copy.setLength(0);
copy.append(input);
for (int i = 0; i < N; i++) {
conwayUpdate(sb, copy, i, N);
}
input = sb.toString(); // next generation string
System.out.printf("Generation %d: %s\n", gen, input);
}
return input.toString();
}
private static void conwayUpdate(StringBuilder nextGen, final StringBuilder currentGen, int charPos, int N) {
int prev = (N + (charPos - 1)) % N;
int next = (charPos + 1) % N;
// **Exactly one** adjacent '1'
boolean adjacent = currentGen.charAt(prev) == '1' ^ currentGen.charAt(next) == '1';
nextGen.setCharAt(charPos, adjacent ? '1' : '0'); // set cell as alive or dead
}
For the two samples in the problem you posted in the comments, this code generates this output.
Generation 0: 0000001
Generation 1: 1000010
1000010
Generation 0: 01011
Generation 1: 00011
Generation 2: 10111
Generation 3: 10100
10100
The BigO notation is a simplification to understand the complexity of the Algorithm. Basically, two algorithms O(n) can have very different execution times. Why? Let's unroll your example:
You have two nested loops. The outer loop will run t times.
The inner loop will run n times
For each time the loop executes, it will take a constant k time.
So, in essence your algorithm is O(k * t * n). If t is in the same order of magnitude of n, then you can consider the complexity as O(k * n^2).
There is two approaches to optimize this algorithm:
Reduce the constant time k. For example, do not clone the whole array on each loop, because it is very time consuming (clone needs to do a full array loop to clone).
The second optimization in this case is to use Dynamic Programing (https://en.wikipedia.org/wiki/Dynamic_programming) that can cache information between two loops and optimize the execution, that can lower k or even lower the complexity from O(nˆ2) to O(n * log n).
Sorry; I wasn't sure how to title this, so the question is a little shoddy.
I'm finishing up a small program for an extra credit assignment, and there are two very small details that are ruining it.
The purpose of the program is to read some data, divide it into a customer number and a flight number, then determine if the flight is suitable. I have an image screenshot of the file here, because it's a bit of a hassle to explain in short detail. Sorry for having to send a link.
Here is my code:
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class prog475a {
static Scanner inFile = null;
public static void main(String[] args) {
// make the flight plan array
boolean[][] flightPlan = new boolean[7][7];
// fill the true
flightPlan[1][2]=true;
flightPlan[1][3]=true;
flightPlan[1][6]=true;
flightPlan[2][1]=true;
flightPlan[2][3]=true;
flightPlan[2][6]=true;
flightPlan[3][4]=true;
flightPlan[4][2]=true;
flightPlan[4][5]=true;
flightPlan[4][6]=true;
flightPlan[5][2]=true;
flightPlan[5][4]=true;
flightPlan[6][2]=true;
flightPlan[6][5]=true;
// read for file
try {
// create scanner to read file
inFile = new Scanner(new File ("prog475a.dat"));
} catch (FileNotFoundException e) {
System.out.println("File not found!");
System.exit(0);
}
/*
* read customer number
* method to translate flight plan into coordinates
*
*/
int customer = 0;
int flight = 0;
while (inFile.hasNext()) {
customer = inFile.nextInt();
flight = inFile.nextInt();
translator(customer, flight, flightPlan);
}
}
public static void translator(int c, int f, boolean[][] fl) {
System.out.println("Customer Number " + c + "\tFlight Plan " + f);
// change int f into individual numbers?
int[] coo = new int[6];
int a = 10000;
// boolean ok = true;
for (int x = 0; x < coo.length - 1; x ++) {
coo[x] = (f / a) % 10;
a /= 10;
}
// test if your array has all the right numbers
// for (int x = 0; x < coo.length - 1; x++) {
//
// System.out.println(coo[x]);
//
// }
// instantiate variables to act as parameters to navigate boolean
int n = 0; // the actual coordinate
int p = 0; // placeholders
int q = 0;
while (q < coo.length) { // q has to end when it equals length of coo
p = coo[n];
q = coo[n + 1];
if (fl[p][q]) {
System.out.println(p + "\t" + q + "\t" + "Available");
n++;
} else {
System.out.println(p + "\t" + q + "\t" + "Unavailable\t Flight Plan invalid");
break; // if unavailable, break
}
}
System.out.println("");
}
}
Here is the data:
10123 13426
11305 62000
13427 42320
18211 34212
19006 65426
20831 52500
21475 32000
22138 13424
24105 65231
24216 34250
25009 43621
The issue I am having is very simple-- my program works perfectly fine, except I've tried various different ways to print "Flight Plan is Valid" at the end of the program to no avail. I've honestly done everything; I've added an extra if/else statement to account for when q = coo[coo.length - 1], tried to append it on the outside of the while-loop. I just can't get it to work.
Another issue I'm having is, for flight 34212, an extra line is arbitrarily printed out, indicating a flight from 2 to 0, which doesn't exist in the number at all. It's the only flight that's having this problem.
I'm really not sure what I'm doing wrong, and I hope that someone can give some advice on how to fix my code to make sure these errors are dealt with somewhat. Again, thank you for your time. I'm a bit of an arse, so I've spent a really long time trying to figure out what I was doing wrong, and I feel a bit frustrated.
Okay there are a lot of logical errors in the translator function, so I'll just list them and then provide some fixed code. However since this sounds like this is for a course, DO NOT JUST COPY AND PASTE. I think actually walking through some of the errors in your program would be highly beneficial.
The length of coo is 6. This may be intentional, but is unnecessary.
When you fill coo. You only fill 5 out of the 6 spots.
You never change the ok variable.
You never use the n variable.
I think in the first part of the while loop, comparing with q is a typo/logical mistake, I think you meant to compare with n.
Using both a check in the while loop for ok, and a break statement is redundant.
You didn't add in an if to do run code depending on the state of ok.
With all these errors, I think that you should definitely ask your teacher or whatever with help, because this is a lot to change in one post. Either way, I hope you don't misuse this code ;). Here's the new translate function:
public static void translator(int c, int f, boolean[][] fl) {
System.out.println("Customer Number " + c + " Flight Plan " + f);
int[] coo = new int[5];
int a = 10000;
for (int x = 0; x < coo.length; x++) {
coo[x] = (f / a) % 10;
a /= 10;
}
for (int x = 0; x < coo.length - 1; x++) {
int p = coo[x];
int q = coo[x + 1];
if (fl[p][q]) {
System.out.print(p + "\t" + q + "\tAvailable");
if (x == coo.length - 2) {
System.out.print("\tFlight Plan is Valid");
}
System.out.println();
}
else {
System.out.println(p + "\t" + q + "\tUnavailable\tFlight Plan is Invalid");
break;
}
}
}
Explanation: I used basically the same code until the last for loop except that I changed the length of coo to 5 and made the first for loop run 5 times. You will also notice that I removed ok because it was redundant. This is because once I have a bad flight, I just print the invalid flight message and then break. There's no need of a variable in there. For the last loop you can see, I use a for loop instead of a while loop. Why did I do this? Pretty much just cause of taste. I typically use a for loop when I know how many times I am going to loop, and a while when the number isn't clear cut. Also, in this case, since you were using a counting variable n anyways, that's just the kind of thing a for loop is good for (haha). The rest of the code is pretty self-explanatory. If the flight is valid, you do the print for that. And if it's the last loop, hence if (x == coo.length - 2) (this checks that its the last loop), then you print that the flight plan is valid. Otherwise you print it's not valid and you break. I have done a little testing with this code, and it works so far. I hope this helps you!