Viterbi algorithm in java - java

I'm doing the coursera NLP course and the first programming assignment is to build a Viterbi decoder. I think I'm really close to finishing it but there is some elusive bug which I cannot seem to be able to trace. Here is my code:
http://pastie.org/private/ksmbns3gjctedu1zxrehw
http://pastie.org/private/ssv6tc8dwnamn2qegdvww
So far I've debugged the "teaching" related functions so I can say that the parameters for the algorithms are being correctly estimated. Of particular interest is the viterbi() and findW() methods. The definition of the algorithm I'm using can be found here: http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf on page 18.
One thing which I'm having hard time wrapping my head around is how am I supposed to update the backpointers for the special cases when K = {1, 2} (in my case this is 0 and 1, since I'm zero-indexing my array) respectively the parameters I'm using in those cases are q({TAGSET} | *, *) and q ({TAGSET} | *, {TAGSET}).
Hints rather than spoon-fed answers will also be highly appreciated!

Here's a simple implementation of viterbi decoder by Yusuke Shunyama =) http://cs.nyu.edu/yusuke/course/NLP/viterbi/Viterbi.java
/*
* Viterbi.java
* Toy Viterbi Decorder
*
* by Yusuke Shinyama <yusuke at cs . nyu . edu>
*
* Permission to use, copy, modify, distribute this software
* for any purpose is hereby granted without fee, provided
* that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice
* appear in supporting documentation.
*/
import java.awt.*;
import java.util.*;
import java.text.*;
import java.awt.event.*;
import java.applet.*;
class Symbol {
public String name;
public Symbol(String s) {
name = s;
}
}
class SymbolTable {
Hashtable table;
public SymbolTable() {
table = new Hashtable();
}
public Symbol intern(String s) {
s = s.toLowerCase();
Object sym = table.get(s);
if (sym == null) {
sym = new Symbol(s);
table.put(s, sym);
}
return (Symbol)sym;
}
}
class SymbolList {
Vector list;
public SymbolList() {
list = new Vector();
}
public int size() {
return list.size();
}
public void set(int index, Symbol sym) {
list.setElementAt(sym, index);
}
public void add(Symbol sym) {
list.addElement(sym);
}
public Symbol get(int index) {
return (Symbol) list.elementAt(index);
}
}
class IntegerList {
Vector list;
public IntegerList() {
list = new Vector();
}
public int size() {
return list.size();
}
public void set(int index, int i) {
list.setElementAt(new Integer(i), index);
}
public void add(int i) {
list.addElement(new Integer(i));
}
public int get(int index) {
return ((Integer)list.elementAt(index)).intValue();
}
}
class ProbTable {
Hashtable table;
public ProbTable() {
table = new Hashtable();
}
public void put(Object obj, double prob) {
table.put(obj, new Double(prob));
}
public double get(Object obj) {
Double prob = (Double)table.get(obj);
if (prob == null) {
return 0.0;
}
return prob.doubleValue();
}
// normalize probability
public void normalize() {
double total = 0.0;
for(Enumeration e = table.elements() ; e.hasMoreElements() ;) {
total += ((Double)e.nextElement()).doubleValue();
}
if (total == 0.0) {
return; // div by zero!
}
for(Enumeration e = table.keys() ; e.hasMoreElements() ;) {
Object k = e.nextElement();
double prob = ((Double)table.get(k)).doubleValue();
table.put(k, new Double(prob / total));
}
}
}
class State {
public String name;
ProbTable emits;
ProbTable linksto;
public State(String s) {
name = s;
emits = new ProbTable();
linksto = new ProbTable();
}
public void normalize() {
emits.normalize();
linksto.normalize();
}
public void addSymbol(Symbol sym, double prob) {
emits.put(sym, prob);
}
public double emitprob(Symbol sym) {
return emits.get(sym);
}
public void addLink(State st, double prob) {
linksto.put(st, prob);
}
public double transprob(State st) {
return linksto.get(st);
}
}
class StateTable {
Hashtable table;
public StateTable() {
table = new Hashtable();
}
public State get(String s) {
s = s.toUpperCase();
State st = (State)table.get(s);
if (st == null) {
st = new State(s);
table.put(s, st);
}
return st;
}
}
class StateIDTable {
Hashtable table;
public StateIDTable() {
table = new Hashtable();
}
public void put(State obj, int i) {
table.put(obj, new Integer(i));
}
public int get(State obj) {
Integer i = (Integer)table.get(obj);
if (i == null) {
return 0;
}
return i.intValue();
}
}
class StateList {
Vector list;
public StateList() {
list = new Vector();
}
public int size() {
return list.size();
}
public void set(int index, State st) {
list.setElementAt(st, index);
}
public void add(State st) {
list.addElement(st);
}
public State get(int index) {
return (State) list.elementAt(index);
}
}
class HMMCanvas extends Canvas {
static final int grid_x = 60;
static final int grid_y = 40;
static final int offset_x = 70;
static final int offset_y = 30;
static final int offset_y2 = 10;
static final int offset_y3 = 65;
static final int col_x = 40;
static final int col_y = 10;
static final int state_r = 10;
static final Color state_fill = Color.white;
static final Color state_fill_maximum = Color.yellow;
static final Color state_fill_best = Color.red;
static final Color state_boundery = Color.black;
static final Color link_normal = Color.green;
static final Color link_processed = Color.blue;
static final Color link_maximum = Color.red;
HMMDecoder hmm;
public HMMCanvas() {
setBackground(Color.white);
setSize(400,300);
}
public void setHMM(HMMDecoder h) {
hmm = h;
}
private void drawState(Graphics g, int x, int y, Color c) {
x = x * grid_x + offset_x;
y = y * grid_y + offset_y;
g.setColor(c);
g.fillOval(x-state_r, y-state_r, state_r*2, state_r*2);
g.setColor(state_boundery);
g.drawOval(x-state_r, y-state_r, state_r*2, state_r*2);
}
private void drawLink(Graphics g, int x, int y0, int y1, Color c) {
int x0 = grid_x * x + offset_x;
int x1 = grid_x * (x+1) + offset_x;
y0 = y0 * grid_y + offset_y;
y1 = y1 * grid_y + offset_y;
g.setColor(c);
g.drawLine(x0, y0, x1, y1);
}
private void drawCenterString(Graphics g, String s, int x, int y) {
x = x - g.getFontMetrics().stringWidth(s)/2;
g.setColor(Color.black);
g.drawString(s, x, y+5);
}
private void drawRightString(Graphics g, String s, int x, int y) {
x = x - g.getFontMetrics().stringWidth(s);
g.setColor(Color.black);
g.drawString(s, x, y+5);
}
public void paint(Graphics g) {
if (hmm == null) {
return;
}
DecimalFormat form = new DecimalFormat("0.0000");
int nsymbols = hmm.symbols.size();
int nstates = hmm.states.size();
// complete graph.
for(int i = 0; i < nsymbols; i++) {
int offset_ymax = offset_y2+nstates*grid_y;
if (i < nsymbols-1) {
for(int y1 = 0; y1 < nstates; y1++) {
for(int y0 = 0; y0 < nstates; y0++) {
Color c = link_normal;
if (hmm.stage == i+1 && hmm.i0 == y0 && hmm.i1 == y1) {
c = link_processed;
}
if (hmm.matrix_prevstate[i+1][y1] == y0) {
c = link_maximum;
}
drawLink(g, i, y0, y1, c);
if (c == link_maximum && 0 < i) {
double transprob = hmm.states.get(y0).transprob(hmm.states.get(y1));
drawCenterString(g, form.format(transprob),
offset_x + i*grid_x + grid_x/2, offset_ymax);
offset_ymax = offset_ymax + 16;
}
}
}
}
// state circles.
for(int y = 0; y < nstates; y++) {
Color c = state_fill;
if (hmm.matrix_prevstate[i][y] != -1) {
c = state_fill_maximum;
}
if (hmm.sequence.size() == nsymbols &&
hmm.sequence.get(nsymbols-1-i) == y) {
c = state_fill_best;
}
drawState(g, i, y, c);
}
}
// max probability.
for(int i = 0; i < nsymbols; i++) {
for(int y1 = 0; y1 < nstates; y1++) {
if (hmm.matrix_prevstate[i][y1] != -1) {
drawCenterString(g, form.format(hmm.matrix_maxprob[i][y1]),
offset_x+i*grid_x, offset_y+y1*grid_y);
}
}
}
// captions (symbols atop)
for(int i = 0; i < nsymbols; i++) {
drawCenterString(g, hmm.symbols.get(i).name, offset_x+i*grid_x, col_y);
}
// captions (states in left)
for(int y = 0; y < nstates; y++) {
drawRightString(g, hmm.states.get(y).name, col_x, offset_y+y*grid_y);
}
// status bar
g.setColor(Color.black);
g.drawString(hmm.status, col_x, offset_y3+nstates*grid_y);
g.drawString(hmm.status2, col_x, offset_y3+nstates*grid_y+16);
}
}
class HMMDecoder {
StateList states;
int state_start;
int state_end;
public IntegerList sequence;
public double[][] matrix_maxprob;
public int[][] matrix_prevstate;
public SymbolList symbols;
public double probmax;
public int stage, i0, i1;
public boolean laststage;
public String status, status2;
public HMMDecoder() {
status = "Not initialized.";
status2 = "";
states = new StateList();
}
public void addStartState(State st) {
state_start = states.size(); // get current index
states.add(st);
}
public void addNormalState(State st) {
states.add(st);
}
public void addEndState(State st) {
state_end = states.size(); // get current index
states.add(st);
}
// for debugging.
public void showmatrix() {
for(int i = 0; i < symbols.size(); i++) {
for(int j = 0; j < states.size(); j++) {
System.out.print(matrix_maxprob[i][j]+" "+matrix_prevstate[i][j]+", ");
}
System.out.println();
}
}
// initialize for decoding
public void initialize(SymbolList syms) {
// symbols[syms.length] should be END
symbols = syms;
matrix_maxprob = new double[symbols.size()][states.size()];
matrix_prevstate = new int[symbols.size()][states.size()];
for(int i = 0; i < symbols.size(); i++) {
for(int j = 0; j < states.size(); j++) {
matrix_prevstate[i][j] = -1;
}
}
State start = states.get(state_start);
for(int i = 0; i < states.size(); i++) {
matrix_maxprob[0][i] = start.transprob(states.get(i));
matrix_prevstate[0][i] = 0;
}
stage = 0;
i0 = -1;
i1 = -1;
sequence = new IntegerList();
status = "Ok, let's get started...";
status2 = "";
}
// forward procedure
public boolean proceed_decoding() {
status2 = "";
// already end?
if (symbols.size() <= stage) {
return false;
}
// not started?
if (stage == 0) {
stage = 1;
i0 = 0;
i1 = 0;
matrix_maxprob[stage][i1] = 0.0;
} else {
i0++;
if (states.size() <= i0) {
// i0 should be reinitialized.
i0 = 0;
i1++;
if (states.size() <= i1) {
// i1 should be reinitialized.
// goto next stage.
stage++;
if (symbols.size() <= stage) {
// done.
status = "Decoding finished.";
return false;
}
laststage = (stage == symbols.size()-1);
i1 = 0;
}
matrix_maxprob[stage][i1] = 0.0;
}
}
// sym1: next symbol
Symbol sym1 = symbols.get(stage);
State s0 = states.get(i0);
State s1 = states.get(i1);
// precond: 1 <= stage.
double prob = matrix_maxprob[stage-1][i0];
DecimalFormat form = new DecimalFormat("0.0000");
status = "Prob:" + form.format(prob);
if (1 < stage) {
// skip first stage.
double transprob = s0.transprob(s1);
prob = prob * transprob;
status = status + " x " + form.format(transprob);
}
double emitprob = s1.emitprob(sym1);
prob = prob * emitprob;
status = status + " x " + form.format(emitprob) + "(" + s1.name+":"+sym1.name + ")";
status = status + " = " + form.format(prob);
// System.out.println("stage: "+stage+", i0:"+i0+", i1:"+i1+", prob:"+prob);
if (matrix_maxprob[stage][i1] < prob) {
matrix_maxprob[stage][i1] = prob;
matrix_prevstate[stage][i1] = i0;
status2 = "(new maximum found)";
}
return true;
}
// backward proc
public void backward() {
int probmaxstate = state_end;
sequence.add(probmaxstate);
for(int i = symbols.size()-1; 0 < i; i--) {
probmaxstate = matrix_prevstate[i][probmaxstate];
if (probmaxstate == -1) {
status2 = "Decoding failed.";
return;
}
sequence.add(probmaxstate);
//System.out.println("stage: "+i+", state:"+probmaxstate);
}
}
}
public class Viterbi extends Applet implements ActionListener, Runnable {
SymbolTable symtab;
StateTable sttab;
HMMDecoder myhmm = null;
HMMCanvas canvas;
Panel p;
TextArea hmmdesc;
TextField sentence;
Button bstart, bskip;
static final String initialHMM =
"start: go(cow,1.0)\n" +
"cow: emit(moo,0.9) emit(hello,0.1) go(cow,0.5) go(duck,0.3) go(end,0.2)\n" +
"duck: emit(quack,0.6) emit(hello,0.4) go(duck,0.5) go(cow,0.3) go(end,0.2)\n";
final int sleepmillisec = 100; // 0.1s
// setup hmm
// success:true.
boolean setupHMM(String s) {
myhmm = new HMMDecoder();
symtab = new SymbolTable();
sttab = new StateTable();
State start = sttab.get("start");
State end = sttab.get("end");
myhmm.addStartState(start);
boolean success = true;
StringTokenizer lines = new StringTokenizer(s, "\n");
while (lines.hasMoreTokens()) {
// foreach line.
String line = lines.nextToken();
int i = line.indexOf(':');
if (i == -1) break;
State st0 = sttab.get(line.substring(0,i).trim());
if (st0 != start && st0 != end) {
myhmm.addNormalState(st0);
}
//System.out.println(st0.name+":"+line.substring(i+1));
StringTokenizer tokenz = new StringTokenizer(line.substring(i+1), ", ");
while (tokenz.hasMoreTokens()) {
// foreach token.
String t = tokenz.nextToken().toLowerCase();
if (t.startsWith("go(")) {
State st1 = sttab.get(t.substring(3).trim());
// fetch another token.
if (!tokenz.hasMoreTokens()) {
success = false; // err. nomoretoken
break;
}
String n = tokenz.nextToken().replace(')', ' ');
double prob;
try {
prob = Double.valueOf(n).doubleValue();
} catch (NumberFormatException e) {
success = false; // err.
prob = 0.0;
}
st0.addLink(st1, prob);
//System.out.println("go:"+st1.name+","+prob);
} else if (t.startsWith("emit(")) {
Symbol sym = symtab.intern(t.substring(5).trim());
// fetch another token.
if (!tokenz.hasMoreTokens()) {
success = false; // err. nomoretoken
break;
}
String n = tokenz.nextToken().replace(')', ' ');
double prob;
try {
prob = Double.valueOf(n).doubleValue();
} catch (NumberFormatException e) {
success = false; // err.
prob = 0.0;
}
st0.addSymbol(sym, prob);
//System.out.println("emit:"+sym.name+","+prob);
} else {
// illegal syntax, just ignore
break;
}
}
st0.normalize(); // normalize probability
}
end.addSymbol(symtab.intern("end"), 1.0);
myhmm.addEndState(end);
return success;
}
// success:true.
boolean setup() {
if (! setupHMM(hmmdesc.getText()))
return false;
// initialize words
SymbolList words = new SymbolList();
StringTokenizer tokenz = new StringTokenizer(sentence.getText());
words.add(symtab.intern("start"));
while (tokenz.hasMoreTokens()) {
words.add(symtab.intern(tokenz.nextToken()));
}
words.add(symtab.intern("end"));
myhmm.initialize(words);
canvas.setHMM(myhmm);
return true;
}
public void init() {
canvas = new HMMCanvas();
setLayout(new BorderLayout());
p = new Panel();
sentence = new TextField("moo hello quack", 20);
bstart = new Button(" Start ");
bskip = new Button("Auto");
bstart.addActionListener(this);
bskip.addActionListener(this);
p.add(sentence);
p.add(bstart);
p.add(bskip);
hmmdesc = new TextArea(initialHMM, 4, 20);
add("North", canvas);
add("Center", p);
add("South", hmmdesc);
}
void setup_fallback() {
// adjustable
State cow = sttab.get("cow");
State duck = sttab.get("duck");
State end = sttab.get("end");
cow.addLink (cow, 0.5);
cow.addLink (duck, 0.3);
cow.addLink (end, 0.2);
duck.addLink (cow, 0.3);
duck.addLink (duck, 0.5);
duck.addLink (end, 0.2);
cow.addSymbol(symtab.intern("moo"), 0.9);
cow.addSymbol(symtab.intern("hello"), 0.1);
duck.addSymbol(symtab.intern("quack"), 0.6);
duck.addSymbol(symtab.intern("hello"), 0.4);
}
public void destroy() {
remove(p);
remove(canvas);
}
public void processEvent(AWTEvent e) {
if (e.getID() == Event.WINDOW_DESTROY) {
System.exit(0);
}
}
public void run() {
if (myhmm != null) {
while (myhmm.proceed_decoding()) {
canvas.repaint();
try {
Thread.sleep(sleepmillisec);
} catch (InterruptedException e) {
;
}
}
myhmm.backward();
canvas.repaint();
bstart.setLabel(" Start ");
bstart.setEnabled(true);
bskip.setEnabled(true);
myhmm = null;
}
}
public void actionPerformed(ActionEvent ev) {
String label = ev.getActionCommand();
if (label.equalsIgnoreCase(" start ")) {
if (!setup()) {
// error
return;
}
bstart.setLabel("Proceed");
canvas.repaint();
} else if (label.equalsIgnoreCase("proceed")) {
// next
if (! myhmm.proceed_decoding()) {
myhmm.backward();
bstart.setLabel(" Start ");
myhmm = null;
}
canvas.repaint();
} else if (label.equalsIgnoreCase("auto")) {
// skip
if (myhmm == null) {
if (!setup()) {
// error
return;
}
}
bstart.setEnabled(false);
bskip.setEnabled(false);
Thread me = new Thread(this);
me.setPriority(Thread.MIN_PRIORITY);
// start animation.
me.start();
}
}
public static void main(String args[]) {
Frame f = new Frame("Viterbi");
Viterbi v = new Viterbi();
f.add("Center", v);
f.setSize(400, 400);
f.show();
v.init();
v.start();
}
public String getAppletInfo() {
return "A Sample Viterbi Decoder Applet";
}
}

Here are some suggestions:
You should draw out the HMM lattice if you have any confusion about how transitions are occurring in your model.
For instance, you can view transitions to the first hidden state as originating from a single start hidden state, so the backpointer for k=0 would always have to point to this start state. In your code, you probably should not be looping over hidden states for k=0 in findW (which seems correct), but you probably should be looping for k=1.
Usually multiplying transition and emission probabilities in HMM inference lead to very small floating point values, which can lead to numerical errors. You should add log probabilities instead of multiplying probabilities.
To check viterbi or forward-backward implementations, I usually also write a brute force method and compare the output of each. If the brute-force and dynamic-programming algorithm match on short sequences, then that gives a reasonable measure of confidence that both are correct.

Related

A* Pathfinding really slow

I have an A* pathfinding algorithm that I've used for a Spigot plugin which worked fine. I then added a requirements system so it won't try and pathfind through places it shouldn't. Now it seems REALLY slow, and it looks like it has nothing to do with the requirements code itself, and more to do with the algorithm having many more incorrect paths when calculating. I seem to be getting 1500ms+ on this, which is definitely not good xD
Here is the pathfinder code:
public Path calculate(PathfinderGoal goal, PathScorer scorer, List<PathRequirement> requirements, int maxNodes) {
PathNode start = toNode(npc.getLocation());
PathNode end = toNode(goal.getLocation());
List<PathNode> open = new ArrayList<>() {{ add(start); }};
List<PathNode> navigated = new ArrayList<>();
start.setF(scorer.computeCost(start, end));
Timer timer = new Timer().start();
while (!open.isEmpty()) {
PathNode current = null;
for (PathNode node : open) {
if (current == null || node.getH() < current.getH()) {
current = node;
}
}
if (scorer.computeCost(current, end) < 1 || (navigated.size() >= maxNodes && maxNodes != -1)) {
navigated.add(navigated.size() < maxNodes ? end : current);
return reconstruct(navigated, navigated.size() - 1);
}
open.remove(current);
current.close();
for (PathNode node : current.getNeighbors()) {
if (node.isClosed()) {
continue;
}
double tentG = current.getG() + scorer.computeCost(current, node);
if (!open.contains(node) || tentG < node.getG()) {
boolean requirementsMet = true;
for (PathRequirement requirement : requirements) {
requirement.setNavigated(navigated);
if (!navigated.isEmpty() && !requirement.canMoveToNewNode(navigated.get(navigated.size() - 1), node)) {
requirementsMet = false;
break;
}
}
if (!navigated.contains(current)) {
navigated.add(current);
}
node.setG(tentG);
node.setH(scorer.computeCost(node, end));
node.setF(tentG + node.getH());
if (!open.contains(node) && requirementsMet) {
open.add(node);
}
}
}
Bukkit.broadcastMessage("Open Set Size: " + open.size());
Bukkit.broadcastMessage(timer.stop() + "ms");
}
return null;
}
private Path reconstruct(List<PathNode> navigated, int index) {
final PathNode current = navigated.get(index);
Path withCurrent = new Path(new ArrayList<>() {{ add(current); }});
if (index > 0 && navigated.contains(current)) {
return reconstruct(navigated, index - 1).append(withCurrent);
}
return withCurrent;
}
And here is the PathNode class:
public PathNode(Pathfinder pathfinder, int x, int y, int z) {
this.pathfinder = pathfinder;
this.x = x;
this.y = y;
this.z = z;
}
#Override
public boolean equals(Object other) {
if (!(other instanceof PathNode otherNode)) {
return false;
}
return otherNode.x == x && otherNode.y == y && otherNode.z == z;
}
public List<PathNode> getNeighbors() {
return new ArrayList<>() {
{
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
for (int z = -1; z <= 1; z++) {
add(new PathNode(pathfinder, PathNode.this.x + x, PathNode.this.y + y, PathNode.this.z + z));
}
}
}
}
};
}
public Location getLocation() {
return new Location(pathfinder.getNPC().getLocation().getWorld(), x, y, z);
}
public double getF() {
return F;
}
public void setF(double f) {
this.F = f;
}
public double getG() {
return G;
}
public void setG(double g) {
this.G = g;
}
public double getH() {
return H;
}
public void setH(double h) {
this.H = h;
}
public boolean isClosed() {
return closed;
}
public void close() {
this.closed = true;
}
Valid Requirements Class:
public class ValidPathRequirement extends PathRequirement {
#Override
public boolean canMoveToNewNode(PathNode from, PathNode to) {
Block fromBlock = from.getLocation().getBlock();
Block toBlock = to.getLocation().getBlock();
boolean validHeight = toBlock.getType().isAir() && toBlock.getRelative(BlockFace.UP).getType().isAir(); // checks if is player height
boolean validGround = toBlock.getRelative(BlockFace.DOWN).getType().isSolid(); // is there a block underneath that they can stand on?
boolean validFromPrev = toBlock.getLocation().subtract(fromBlock.getLocation()).getY() <= 1; // is it max one block higher than the last one?
// is this one causing issues?
Location fromLocDist = from.getLocation().clone();
Location toLocDist = to.getLocation().clone();
toLocDist.setY(fromLocDist.getY());
boolean validDistance = fromLocDist.distance(toLocDist) <= 1;
return validHeight && validGround && validFromPrev;
}
}
Without looking at the rest of the algorithm, the first thing that stands out is that your data structures are incorrect. The "open" list needs to be a Priority Queue, and "closed" (or "navigated") should be a set.

Java A* algorithm not finding any path

Trying to create a program that takes an image of a maze and outputs the maze with a highlighted solution but my implementation of A* is flawed.
I'm basing the algorithm on Wikipedia's pseudocode and Coding Train's implementation which is the inspiration for this project. I've compared the code for the algorithm and didn't notice anything out of the ordinary.
public class Main {
public static void main(String[] args) {
ImageConverter a = new ImageConverter("file path");
Node[][] nodes = a.to2Darray();
Solver solve = new Solver(nodes);
ArrayList<Node> solution = solve.aStar(new Node(0,1, 0),new Node(14,13,0));
System.out.println(solution);
a.toImage(nodes, solution);
}
}
public class Solver {
private Node[][] graph;
public Solver(Node[][] graph) {
this.graph = graph;
}
public ArrayList<Node> aStar(Node start, Node finish){ // solves maze using A*
ArrayList<Node> closeSet = new ArrayList<>();
ArrayList<Node> openSet = new ArrayList<>();
openSet.add(start);
ArrayList<Node> path = new ArrayList<>();
while (openSet.size()>0){
int bestF = 0;
for (int i = 0; i < openSet.size(); i++){ // find next least costly node
if (openSet.get(i).getF() < openSet.get(bestF).getF()){
bestF = i;
}
}
Node current = openSet.get(bestF);
if (current.equals(finish)){ // check if current node is end node
Node temp = current;
path.add(temp);
while(temp.getPrevious()!=null){
path.add(temp.getPrevious());
temp = temp.getPrevious();
}
return path;
}
openSet.remove(current);
closeSet.add(current);
ArrayList<Node> neighbors = current.getNeighbors();
for (int i = 0; i < neighbors.size(); i++){ // check neighbors
Node n = neighbors.get(i);
boolean isNewPath = false;
if (!closeSet.contains(n) && n.getState()!=1){
double tempG = current.getG()+heuristic(n,current);
if (openSet.contains(n)){
if (tempG < n.getG()){
n.setG(tempG);
isNewPath = true;
}
else{
n.setG(tempG);
openSet.add(n);
isNewPath = true;
}
}
if (isNewPath) {
n.setH(heuristic(n, finish));
n.setF(n.getG() + n.getH());
n.setPrevious(current);
}
}
}
}
return null; // no solution
}
private static double heuristic(Node end, Node finish) {
int y1 = end.getCol();
int x1 = end.getRow();
int y2 = finish.getCol();
int x2 = finish.getRow();
return Math.sqrt((x1-x2)*(x1-x2)+(y2-y1)*(y2-y1)); // order doesn't matter in because of squaring
}
}
public class Node {
private double f, g, h;
private int row, col; // row and col
private int state;
private ArrayList<Node> neighbors = new ArrayList<>();
private Node previous = null;
public Node(int r, int c, int state) {
this.state = state;
row = r;
col = c;
}
public int getRow() {
return row;
}
public int getCol() {
return col;
}
public double getF() {
return f;
}
public double getG() {
return g;
}
public double getH() {
return h;
}
public void setF(double f) {
this.f = f;
}
public void setG(double g) {
this.g = g;
}
public void setH(double h) {
this.h = h;
}
public int getState() {
return state;
}
public void setState(int state) {
this.state = state;
}
public void addNeighbor(Node b){
neighbors.add(b);
}
public void setPrevious(Node n){
previous = n;
}
public Node getPrevious(){
return previous;
}
#Override
public String toString(){
return "["+row+"]["+col+"]";
}
public ArrayList<Node> getNeighbors(){
return neighbors;
}
#Override
public boolean equals(Object o){
if (o ==this){
return true;
}
if (!(o instanceof Node)){
return false;
}
Node n = (Node) o;
return row == n.getRow() && col==n.getRow();
}
}
public class ImageConverter {
private BufferedImage image;
private int x;
private int y;
private String path;
public ImageConverter(String path) {
try {
image = ImageIO.read(new FileInputStream(path));
}
catch (IOException e) {
e.printStackTrace();
}
this.path = path;
this.x = image.getWidth(); // done for readability of to2Darray()
this.y = image.getHeight();
}
public Node[][] to2Darray() { // nested loop does [j][i] as [i][j] reflects along line from top left to bot right
Node[][] nodes = new Node[x][y];
for (int i = 0; i < nodes.length; i++){ // inital assignment/null pointer
for (int j = 0; j < nodes.length; j++){
nodes[i][j] = new Node(i,j,0); // the [j][i] thing doesn't matter here
}
}
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
Color t = new Color(image.getRGB(i, j));
if (t.equals(Color.BLACK)) {
nodes[j][i].setState(1); //black pixels are walls
}
else if (t.equals(Color.WHITE)) {
nodes[j][i].setState(0); //white pixels are paths
}
else { // is not black or white
try {
throw new Exception("Pixel at [" + i + "][" + j + "]" + " is not black or white");
}
catch (Exception e) {
System.out.println("Java threw an exception while throwing an exception. God help you" +
" if you ever see this. But if you do, there might be a pixel in the maze that is not b/w");
}
}
}
}
for (int row = 0; row < x; row++){ // add neighbors, if neighbor does not exist (out of bounds) it makes it null
for (int col = 0; col < y; col++){
try{
nodes[row][col].addNeighbor(nodes[row-1][col]); // Node to the top
}
catch (IndexOutOfBoundsException e){
nodes[row][col].addNeighbor(null);
}
try{
nodes[row][col].addNeighbor(nodes[row][col+1]); // Node to the right
}
catch (IndexOutOfBoundsException e){
nodes[row][col].addNeighbor(null);
}
try{
nodes[row][col].addNeighbor(nodes[row+1][col]); // Node to the bottom
}
catch (IndexOutOfBoundsException e){
nodes[row][col].addNeighbor(null);
}
try{
nodes[row][col].addNeighbor(nodes[row][col-1]); // Node to the left
}
catch (IndexOutOfBoundsException e){
nodes[row][col].addNeighbor(null);
}
}
}
return nodes;
}
public void toImage(Node[][] graph, ArrayList<Node> solution) { // converts to image and saves it at location from constructor
BufferedImage imageCopy = this.image;
int index = path.lastIndexOf("\\"); // change this to \\ if on Windows
File file = new File(path.substring(0, index) + "\\solved.png"); // remove the filename from filepath
final int RED = new Color(255, 0, 0).getRGB(); // for readability
final int BLACK = new Color(0, 0, 0).getRGB();
final int WHITE = new Color(255, 255, 255).getRGB();
/*for (int i = 0; i < x; i++) { // convert to BufferedImage
for (int j = 0; j < y; j++) {
if (graph[i][j].getState() == 0) { // empty path
image.setRGB(j, i, WHITE);
}
else if (graph[i][j].getState() == 1) { // wall
image.setRGB(j, i, BLACK);
}
if
}
}*/
for (int i = 0; i < x; i++) { // convert to BufferedImage
for (int j = 0; j < y; j++) {
System.out.println(i+" "+j);
if (solution.contains(graph[j][i])){
imageCopy.setRGB(i,j,RED);
}
}
}
try {
ImageIO.write(image, "png", file);
}
catch (IOException e) {
e.printStackTrace();
}
}
}
In Main, solution should have an ArrayList<Node> of the Node objects that create the best path, however it returns null showing that it doesn't find a solution.
There is an error in the Node.equals() method:
return row == n.getRow() && col==n.getRow();
Should be
return row == n.getRow() && col==n.getCol();
Maybe that is the problem.

Using an Array Implementation to Configure a Stack in order to build a Koch Snowflake

I'm trying to use the idea of stack to build a Koch snowflake. I have it working with a linked list, but for some reason, I cannot get it to work with an array. I keep getting an ArrayIndexOutOfBoundsException 1, then at 0. I can't seem to figure out where my error is. Any input would be appreciated. Thanks.
class SnowflakeStack extends Frame {
private Stack<Line> line = new ArrayStack();
private LinkedList<Line> complete = new LinkedList<Line>();
public Snowflake() {
setTitle("Stack-based Snowflake");
setSize(400, 400);
addWindowListener(new CloseQuit());
}
public void run() {
// insert first lines into snowflake
Point a = new Point(50, 140);
Point b = new Point(350, 140);
Point c = new Point(200, 360);
this.line.push(new Line(a, b));
this.line.push(new Line(b, c));
this.line.push(new Line(c, a));
// now make the snowflake
while (!this.line.isEmpty()) {
Line lne = this.line.pop();
processLine(lne);
try {
Thread.sleep(100);
} catch (Exception exception) {
System.out.println(exception.getMessage());
}
repaint();
}
}
private void processLine(Line lne) {
// first compute line lengths
int dx = (lne.stop.x - lne.start.x) / 3;
int dy = (lne.stop.y - lne.start.y) / 3;
if ((dx * dx + dy * dy) < 10) {
this.complete.addFirst(lne); // line is too small
} else {
Point a = new Point(lne.start.x + dx, lne.start.y + dy);
Point b = new Point(lne.start.x + 3 * dx / 2 + dy, lne.start.y + 3
* dy / 2 - dx);
Point c = new Point(lne.start.x + 2 * dx, lne.start.y + 2 * dy);
this.lines.push(new Line(lne.start, a));
this.lines.push(new Line(a, b));
this.lines.push(new Line(b, c));
this.lines.push(new Line(c, lne.stop));
}
}
public void paint(Graphics g) {
Iterator<Line> iter = this.lines.iterator();
while (iter.hasNext()) {
Line lne = (Line) iter.next();
lne.draw(g);
}
iter = this.complete.iterator();
while (iter.hasNext()) {
Line lne = (Line) iter.next();
lne.draw(g);
}
}
public static void main(String[] args) {
Snowflake snowflake = new Snowflake();
snowflake.setVisible(true);
snowflake.run();
}
}
Is the class that makes the snowflake from the stack. Below is the class that has the array in it.
public class ArrayStack implements Stack<Line> {
private Line[] lines;
private int top = -1;
/**
* Creates array of Line objects
*/
public ArrayStack() {
this.lines = new Line[0];
top = lines.length;
}
#Override
public boolean isEmpty() {
return this.lines.length == 0;
}
/**
* Sees if array is full since not dynamically allocated like a linked list
*
* #return true if array is full
*/
public boolean isFull() {
return this.size() == this.lines.length;
}
#Override
public int size() {
return this.lines.length;
}
#Override
public Iterator<Line> iterator() {
return new ListIterator(this.lines);
}
#Override
public void push(Line newValue) {
if (newValue == null) {
throw new IllegalArgumentException("Item is null");
}
Line[] holder = new Line[this.size() + 1];
for (int i = 0; i < this.size(); i++) {
holder[i] = this.lines[i];
}
holder[this.size() + 1] = newValue;
this.lines = new Line[this.size() + 1];
this.lines = holder;
}
#Override
public Line peek() {
return this.lines[this.lines.length];
}
#Override
public Line pop() {
Line poppedVal = null;
poppedVal = this.lines[this.size()];
Line[] holder = new Line[this.size() - 1];
for (int i = 0; i <= (this.size() - 1); i++) {
holder[i] = this.lines[i];
}
this.lines = new Line[this.size() - 1];
this.lines = holder;
return poppedVal;
}
protected class ListIterator implements Iterator<Line> {
private Line[] array;
private int index = 0;
private int size;
public ListIterator(Line[] anArray) {
array = anArray;
size = array.length;
}
public boolean hasNext() {
return (index + 1) >= size;
}
public Line next() {
Line nextVal = this.array[size];
return nextVal;
}
#Override
public void remove() {
throw new UnsupportedOperationException();
}
}
}
The errors I get are at lines:
holder[this.size() + 1] = newValue;
this.lines.push(new Line(a, b));
AND
Line nextVal = this.array[size];
Line lne = (Line) iter.next();
Thanks again.
here the size of the holder is this.size() + 1
Line[] holder = new Line[this.size() + 1];
but here you are trying to add values to the size index
holder[this.size() + 1] = newValue;
for example if size() returns 5 then the size of holder is 5. So the maximum index will be 4. but you are adding values to holder[5];
I hope you understood the situation
so add the value like
holder[this.size()] = newValue;

How to implement Karger's min cut algorithm in Java?

I am trying to implement Karger's min cut algorithm but I am unable to get the correct answer. Can someone please have a look at my code and help me figure out what I am doing wrong? Would really appreciate the help.
package a3;
import java.util.*;
import java.io.*;
public class Graph {
private ArrayList<Integer>[] adjList;
private int numOfVertices = 0;
private int numOfEdges = 0;
public Graph(String file) throws IOException {
FileInputStream wordsFile = new FileInputStream(file);
BufferedReader br = new BufferedReader(new InputStreamReader(wordsFile));
adjList = (ArrayList<Integer>[]) new ArrayList[201];
for (int i = 1; i < 201; i++) {
adjList[i] = new ArrayList<Integer>();
}
while (true) {
String s = br.readLine();
if (s == null)
break;
String[] tokens = s.split("\t");
int vertex = Integer.parseInt(tokens[0]);
this.numOfVertices++;
for (int i = 1; i < tokens.length; i++) {
Integer edge = Integer.parseInt(tokens[i]);
addEdge(vertex, edge);
this.numOfEdges++;
}
}
}
public void addEdge(int v, int w) {
adjList[v].add(w);
//this.numOfEdges++;
}
public ArrayList<Integer> getNeighbors(Integer v) {
return adjList[v];
}
public boolean hasEdge(Integer i, Integer j) {
return adjList[i].contains(j);
}
public boolean removeEdge(Integer i, Integer j) {
if (hasEdge(i, j)) {
adjList[i].remove(j);
adjList[j].remove(i);
this.numOfEdges -= 2;
return true;
}
return false;
}
public int getRandomVertex(){
Random rand = new Random();
return (rand.nextInt(this.getNumOfVertices()) + 1);
}
//Returns an array which consists of vertices connected by chosen edge
public int[] getRandomEdge(){
int arr[] = new int[2];
arr[0] = this.getRandomVertex();
while (adjList[arr[0]].size() == 0) {
arr[0] = this.getRandomVertex();
}
Random rand = new Random();
arr[1] = adjList[arr[0]].get(rand.nextInt(adjList[arr[0]].size()));
return arr;
}
//Algorithm for min cut
public int minCut() {
while (this.getNumOfVertices() > 2) {
int[] edge = this.getRandomEdge();
this.removeEdge(edge[0], edge[1]);
//Adding edges of second vertex to first vertex
for (Integer v: adjList[edge[1]]) {
if (!adjList[edge[0]].contains(v)) {
addEdge(edge[0], v);
}
}
//Removing edges of second vertex
for (Iterator<Integer> it = adjList[edge[1]].iterator(); it.hasNext();) {
Integer v = it.next();
it.remove();
this.numOfEdges--;
}
//Removing self-loops
for (Iterator<Integer> it = adjList[edge[0]].iterator(); it.hasNext();) {
Integer v = it.next();
if (v == edge[0])
it.remove();
//this.numOfEdges--;
}
this.numOfVertices--;
}
return this.numOfEdges;
}
public int getNumOfVertices() {
return this.numOfVertices;
}
public int getNumOfEdges() {
return (this.numOfEdges) / 2;
}
public String toString() {
String s = "";
for (int v = 1; v < 201; v++) {
s += v + ": ";
for (int e : adjList[v]) {
s += e + "-> ";
}
s += null + "\n";
//s += "\n";
}
return s;
}
/**
* #param args
* #throws IOException
*/
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
int min = 1000;
//Graph test = new Graph("C:\\Users\\UE\\Desktop\\kargerMinCut.txt");
for (int i = 0; i < 10; i++) {
Graph test = new Graph("C:\\Users\\UE\\Desktop\\kargerMinCut.txt");
int currMin = test.minCut();
min = Math.min( min, currMin );
}
System.out.println(min);
}
}

Convert java applet to java application

i try to implement this java applet source code into java application with using JFrame but it doesn't work. and i changed little bit to read file from my computer but it also doesn't work.
how can i convert this into application?
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.io.*;
import java.net.URL;
class Node {
int x;
int y;
int delta_plus; /* edge starts from this node */
int delta_minus; /* edge terminates at this node */
int dist; /* distance from the start node */
int prev; /* previous node of the shortest path */
int succ,pred; /* node in Sbar with finite dist. */
int w;
int h;
int pw;
int dx;
int dy;
String name;
}
class Edge {
int rndd_plus; /* initial vertex of this edge */
int rndd_minus; /* terminal vertex of this edge */
int delta_plus; /* edge starts from rndd_plus */
int delta_minus; /* edge terminates at rndd_minus */
int len; /* length */
String name;
}
public class Prim extends Applet implements MouseListener {
int n,m;
int u,snode; /* start node */
int pre_s_first, pre_s_last;
boolean isdigraph;
int iteration, step;
Node v[] = new Node[100];
Edge e[] = new Edge[200];
int findNode(String name) {
for (int i=0; i<n; i++)
if (v[i].name.equals(name))
return i;
return -1;
}
void input_graph(InputStream is) throws IOException {
int x,y,l;
String s;
Reader r = new BufferedReader(new InputStreamReader(is));
StreamTokenizer st = new StreamTokenizer(r);
st.commentChar('#');
st.nextToken(); n = (int)st.nval;
st.nextToken(); m = (int)st.nval;
st.nextToken(); s = st.sval;
isdigraph = "digraph".equals(s);
for (int i = 0; i<n; i++) {
Node node = new Node();
st.nextToken(); node.name = st.sval;
st.nextToken(); node.x = (int)st.nval;
st.nextToken(); node.y = (int)st.nval;
v[i] = node;
}
for (int i = 0; i<m; i++) {
Edge edge = new Edge();
st.nextToken(); edge.name = st.sval;
switch (st.nextToken()) {
case StreamTokenizer.TT_NUMBER:
edge.rndd_plus = (int)st.nval;
break;
case StreamTokenizer.TT_WORD:
edge.rndd_plus = findNode(st.sval);
break;
default:
break;
}
switch (st.nextToken()) {
case StreamTokenizer.TT_NUMBER:
edge.rndd_minus = (int)st.nval;
break;
case StreamTokenizer.TT_WORD:
edge.rndd_minus = findNode(st.sval);
break;
default:
break;
}
st.nextToken(); edge.len = (int)st.nval;
e[i] = edge;
}
for (int i=0; i<n; i++) {
v[i].succ = v[i].pred = -2;
v[i].prev = v[i].dist = -1;
v[i].pw = 0;
}
iteration = step = 0;
}
void rdb() {
int i,k;
for (i=0; i<n; i++)
v[i].delta_plus = v[i].delta_minus = -1;
for (i=0; i<m; i++)
e[i].delta_plus = e[i].delta_minus = -1;
for (i=0; i<m; i++) {
k = e[i].rndd_plus;
if (v[k].delta_plus == -1)
v[k].delta_plus = i;
else {
k = v[k].delta_plus;
while(e[k].delta_plus >= 0)
k = e[k].delta_plus;
e[k].delta_plus = i;
}
k = e[i].rndd_minus;
if (v[k].delta_minus == -1)
v[k].delta_minus = i;
else {
k = v[k].delta_minus;
while(e[k].delta_minus >= 0)
k = e[k].delta_minus;
e[k].delta_minus = i;
}
}
}
void append_pre_s(int i) {
v[i].succ = v[i].pred = -1;
if (pre_s_first<0)
pre_s_first = i;
else
v[pre_s_last].succ = i;
v[i].pred = pre_s_last;
pre_s_last = i;
}
void remove_pre_s(int i) {
int succ = v[i].succ;
int pred = v[i].pred;
if (succ>=0)
v[succ].pred = pred;
else
pre_s_last = pred;
if (pred>=0)
v[pred].succ = succ;
else
pre_s_first = succ;
}
void step1() { /* initialize */
u = snode;
for (int i=0; i<n; i++) {
v[i].succ = v[i].pred = -2;
v[i].prev = v[i].dist = -1;
}
v[u].succ = -3;
v[u].dist = 0;
pre_s_first = pre_s_last = -1;
}
void step2() { /* replace labels */
int i,j;
j = v[u].delta_plus;
while (j>=0) {
i = e[j].rndd_minus;
if ((v[i].succ>=-2)&&((v[i].dist<0)||
(v[i].dist>e[j].len))) {
if (v[i].dist<0)
append_pre_s(i);
v[i].dist = e[j].len;
v[i].prev = u; /* label */
}
j = e[j].delta_plus;
}
if (!isdigraph) {
j = v[u].delta_minus;
while (j>=0) {
i = e[j].rndd_plus;
if ((v[i].succ>=-2)&&((v[i].dist<0)||
(v[i].dist>e[j].len))) {
if (v[i].dist<0)
append_pre_s(i);
v[i].dist = e[j].len;
v[i].prev = u; /* label */
}
j = e[j].delta_minus;
}
}
v[u].succ = -4;
}
void step3() { /* find the shortest node in Sbar */
int i,rho;
rho = -1;
for (i = pre_s_first; i>=0; i = v[i].succ) {
if ((rho < 0)||(rho>v[i].dist)) {
rho = v[i].dist;
u = i;
}
}
remove_pre_s(u);
v[u].succ = -3;
}
void step4() {
v[u].succ = -4;
}
double weight(Node n, double x, double y) {
double w,z,xx,yy;
w = 0;
for (int j = n.delta_plus; j>=0; j=e[j].delta_plus) {
xx = (double)(v[e[j].rndd_minus].x - n.x);
yy = (double)(v[e[j].rndd_minus].y - n.y);
z = (x*xx+y*yy)/Math.sqrt((x*x+y*y)*(xx*xx+yy*yy))+1.0;
w += z*z*z*z;
}
for (int j = n.delta_minus; j>=0; j=e[j].delta_minus) {
xx = (double)(v[e[j].rndd_plus].x - n.x);
yy = (double)(v[e[j].rndd_plus].y - n.y);
z = (x*xx+y*yy)/Math.sqrt((x*x+y*y)*(xx*xx+yy*yy))+1.0;
w += z*z*z*z;
}
return w;
}
void init_sub() {
int x[] = {1, 0, -1, 1, 0, -1};
int y[] = {1, 1, 1, -1, -1, -1};
int i,j,k;
double w,z;
for (i=0; i<n; i++) {
k=0;
w=weight(v[i],(double)x[0],(double)y[0]);
for (j=1; j<6; j++) {
z=weight(v[i],(double)x[j],(double)y[j]);
if (z<w) {
w = z;
k = j;
}
}
v[i].dx = x[k];
v[i].dy = y[k];
}
}
public void init() {
try {
InputStream is;
is = new URL("input address").openStream();
input_graph(is);
try {
if (is != null)
is.close();
} catch(Exception e) {
}
} catch (FileNotFoundException e) {
System.err.println("File not found.");
} catch (IOException e) {
System.err.println("Cannot access file.");
}
String s = getParameter("start");
if (s != null)
snode = Integer.parseInt(s);
else
snode = 0;
setBackground(Color.white);
rdb();
init_sub();
addMouseListener(this);
}
public void paintNode(Graphics g, Node n, FontMetrics fm) {
String s;
int x = n.x;
int y = n.y;
int w = fm.stringWidth(n.name) + 10;
int h = fm.getHeight() + 4;
n.w = w;
n.h = h;
if (n.succ<-2)
g.setColor(Color.blue);
else if (n.succ==-2)
g.setColor(Color.gray);
else
g.setColor(Color.red);
g.drawRect(x-w/2,y-h/2,w,h);
if (n.succ==-4)
g.setColor(Color.cyan);
else if (n.succ==-3)
g.setColor(Color.pink);
else if (n.succ>-2)
g.setColor(Color.yellow);
else
g.setColor(getBackground());
g.fillRect(x-w/2+1,y-h/2+1,w-1,h-1);
g.setColor(Color.black);
g.drawString(n.name,x-(w-10)/2,(y-(h-4)/2)+fm.getAscent());
if (n.dist<0)
s = "";
else
s = ""+n.dist;
w = fm.stringWidth(s) + 10;
x += (h+1)*n.dx; y += (h+1)*n.dy;
g.setColor(getBackground());
g.fillRect(x-n.pw/2,y-h/2,n.pw,h);
n.pw = w;
if (n.succ<-2)
g.setColor(Color.blue);
else
g.setColor(Color.red);
g.drawString(s,x-(w-10)/2,y-(h-4)/2+fm.getAscent());
}
int [] xy(int a, int b, int w, int h) {
int x[] = new int[2];
if (Math.abs(w*b)>=Math.abs(h*a)) {
x[0] = ((b>=0)?1:-1)*a*h/b/2;
x[1] = ((b>=0)?1:-1)*h/2;
} else {
x[0] = ((a>=0)?1:-1)*w/2;
x[1] = ((a>=0)?1:-1)*b*w/a/2;
}
return x;
}
void drawArrow(Graphics g,int x1,int y1,int x2,int y2) {
int a = x1-x2;
int b = y1-y2;
if (isdigraph) {
double aa = Math.sqrt(a*a+b*b)/16.0;
double bb = b/aa;
aa = a/aa;
g.drawLine(x2,y2,x2+(int)((aa*12+bb*5)/13),y2+(int)((-aa*5+bb*12)/13));
g.drawLine(x2,y2,x2+(int)((aa*12-bb*5)/13),y2+(int)((aa*5+bb*12)/13));
}
g.drawLine(x1,y1,x2,y2);
}
public void paintEdge(Graphics g, Edge e, FontMetrics fm) {
Node v1 = v[e.rndd_plus];
Node v2 = v[e.rndd_minus];
int a = v1.x-v2.x;
int b = v1.y-v2.y;
int x1[] = xy(-a,-b,v1.w,v1.h);
int x2[] = xy(a,b,v2.w,v2.h);
if (v2.prev == e.rndd_plus) {
if ((v1.succ<-2)&&(v2.succ>=-2))
g.setColor(Color.red);
else
g.setColor(Color.blue);
} else {
g.setColor(Color.lightGray);
}
if ((!isdigraph)&&(v1.prev == e.rndd_minus)) {
if ((v2.succ<-2)&&(v1.succ>=-2))
g.setColor(Color.red);
else
g.setColor(Color.blue);
}
drawArrow(g,v1.x+x1[0],v1.y+x1[1],v2.x+x2[0],v2.y+x2[1]);
int w = fm.stringWidth("" + e.len);
int h = fm.getHeight();
g.setColor(getBackground());
g.fillRect((v1.x+v2.x-w)/2,(v1.y+v2.y-h)/2,w,h);
if ((v2.prev == e.rndd_plus)||
((!isdigraph)&&(v1.prev == e.rndd_minus)))
g.setColor(Color.black);
else
g.setColor(Color.lightGray);
g.drawString("" + e.len,(v1.x+v2.x-w)/2,(v1.y+v2.y-h)/2+fm.getAscent());
}
public void paint(Graphics g) {
FontMetrics fm = g.getFontMetrics();
for (int i=0; i<n; i++)
paintNode(g,v[i],fm);
for (int i=0; i<m; i++)
paintEdge(g,e[i],fm);
}
public void update(Graphics g) {
paint(g);
}
public void mousePressed(MouseEvent ev) {
if (iteration==0) {
step1();
iteration++;
step = 2;
} else if (iteration>=n) {
step4();
// iteration = 0;
} else {
if (step == 2) {
step2();
step = 3;
} else {
step3();
iteration++;
step = 2;
}
}
repaint();
}
public void mouseClicked(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}
}
Here are some links for you to read:
Turning an Applet into a Standalone Application
Converting an Applet to an Application
And there are lots of others. (Google is your friend.)
If this doesn't help, feel free to ask a specific question.
You can try adding this:
public static void main(String[] args) {
Prim prim = new Prim() {
#Override
public String getParameter(String key) {
if ("start".equals(key)) {
return "0";
}
else {
return "";
}
}
};
prim.init();
}
BTW, you should put in a real value for URL("input address").

Categories

Resources