Annotation based JMX - java

How would you implement Spring like annotation based JMX feature. If class is marked by #ManagedResource methods of the class marked with #ManagedOperation are automatically exposed via JMX.
I would like to avoid creating interfaces with MBean notation. I'm using Play with Guice framework. The naive approach first comes to mind:
Iterate over all classes managed by Guice
If class is marked with annotation, create new interface which fits MBean notation. Amend class, amended class should implement new created interface.
Register instance of the class in MBean server.
Second step will be done using byte code manipulation tool, for example ASM. Is it possible to do it with ASM ? How would you implement such feature ?

Technically, you don't need an interface. MBeans are entirely described by metadata. You can implement your own custom implementation of DynamicMBean which returns the appropriate description of your management "interface" (without actually creating said interface). no crazy byte code manipulation necessary, just basic reflection.

Related

Significance of Delegate Design Pattern in Swagger Generated Code?

When i generate code for Spring from my swagger yaml , usually controller layer is generated using delegate pattern , such that for a single model three files are generated . For example , if i defined a model named Person in my swagger/open API yaml file , three files get generated as :
PersonApi (interface that contains signatures of all person operations/methods)
PersonApiDelegate ( interface that provides default implementation of all PersonApi methods . Meant to be overriden )
PersonApiController (Which has a reference to PersonApiDelegate so that any implementation can override and provide custom implementation)
My question is for anyone who is familiar with building swagger/openapi generated code based apis that what is the significance of having such a pattern , instead of just exposing your service endpoints using a PersonController class , and not going through a PersonApi interface and then to a PersonApiDelegate and finally exposing the service through a PersonApiController ?
What is the valuable design extensibility we gain through this pattern ? I tried to find information from other resources on internet , but couldn't find a good answer in context of swagger first API development approach . Any insights on this will be really helpful .
First of all a clarification: as already mentioned in a comment, you are not forced to use the delegation. On the contrary, the default behavior of the Spring generator is to not use the delegation pattern, as you can easily check in the docs. In this case it will generate only the PersonApi interface and PersonApiController.
Coming to your question, why using delegation?
This allows you to write a class that implements PersonApiDelegate, that can be easily injected in the generated code, without any need to manually touch generated sources, and keeping the implementation safe from possible future changes in the code generation.
Let's think what could happen without delegation.
A naive approach would be to generate the sources and then write directly the implementation inside the generated PersonController. Of course the next time there is a need to run the generator, it would be a big mess. All the implementation would be lost...
A slightly better scenario, but not perfect, would be to write a class that extends PersonController. That would keep the implementation safe from being overwritten during generation, but would not protect it from future changes of the generation engine: as a bare minimum the implementation class would need to implement the PersonController constructor. Right now the constructor of a generated controller has the following signature PersonApiController(ObjectMapper objectMapper, HttpServletRequest request), but the developers of the generator may need to change it in the future. So the implementation would need to change too.
A third approach would be to forget completely about the generated PersonApiController, and just write a class that implements the PersonApi interface. That would be fine, but every time the code is generated you would need to delete the PersonApiController, otherwise Spring router will complain. Still manual work...
But with the delegation, the implementation code is completely safe. No need to manually delete stuff, no need to adapt in case of future changes. Also the class that implements PersonApiDelegate can be treated as an independent service, so you can inject / autowire into it whatever you need.

Why in Spring AOP the object are wrapped into a JDK proxy that implements interfaces?

I am studying Spring and I have the followig
Consider the following bean definition:
<bean id="clientService" class="com.myapp.service.ClientServiceImpl" />
Now consider the case on which it is declared a pointcut* targetting all methods inside the **clientService bean.
Consider also that the ClientServiceImpl class implements 3 interfaces
Now I know that using AOP the clientService bean is proxied and that this proxy implements all the 3 interfaces.
But what is the exact reason for which all these 3 interface are implemented?
So it seems to me that exist 2 kinds of proxies (correct me if I am saying wrong assertions):
JDK Proxy: used by default from Spring (is it true?) in wicht I have an interface that define the method of the object that I want to proxify. So the concrete implementation of this interface is wrapped by the proxy. So when I call a method on my object I am calling it on its proxy. The call is recognized by a method interceptor that eventually perform the aspect and then is performed the invoked method.
CGLIB Proxy: in wich, it seems to me that, the proxy extend the implementation of the wrapped object adding to it the extra logic features
Something like this:
So it seems to me that Spring use the first kind of proxy that is based on the implementation of interfaces (is it right?):
I think that in AOP the extra logic is represented by the implementation of the method interceptor (is it true?) and the standard logic is represented by the implementation of the method defined into the interfaces.
But, if the previous reasoning are correct, my doubts is: why I need to define these interface and do that the object wrapped by the object implement these interfaces? (I can't understand if the proxy itself implement these interfaces).
Why? How exactly works?
Tnx
But what is the exact reason for which all these 3 interface are
implemented?
If the proxy didn't implement all of those interfaces, the bean couldn't be wired into other beans that use that interface (you'd get a ClassCastException). For example, autowiring all of the beans of that interface into a bean. Additionally, things like getBeanNamesForType wouldn't work if the proxy didn't implement the interface.
So it seems to me that exist 2 kinds of proxies (correct me if I am
saying wrong assertions)
Yes that's correct. See ScopedProxyMode. By default, Spring won't create a proxy. It only creates a proxy if it needs to wrap the bean to add additional behavior (AOP). Note that there's also a special case of the CGLIB based proxy that uses Objenesis to deal with subclassing targets that don't have a default constructor.
CGLIB Proxy: in wich, it seems to me that, the proxy extend the
implementation of the wrapped object adding to it the extra logic
features
When you use CGLIB based proxies, the constructor for your bean gets called twice: once when the dynamically generated subclass is instantiated (to create the proxy) and a second time when the actual bean is created (the target).
I think that in AOP the extra logic is represented by the
implementation of the method interceptor (is it true?)
The proxy is essentially just invoking the chain of advice needs to be applied. That advice isn't implemented in the proxy itself. For example, the advice for #Transactional lives in TransactionAspectSupport. Take a look at the source to JdkDynamicAopProxy.
and the standard logic is represented by the implementation of the
method defined into the interfaces.
Assuming that you're programming against interfaces and using JDK proxies that's correct.
But, if the previous reasoning are correct, my doubts is: why I need
to define these interface and do that the object wrapped by the object
implement these interfaces? (I can't understand if the proxy itself
implement these interfaces).
If you want to use interface based proxies you need to use interfaces. Just make sure all of your beans implement interfaces, all of your advised methods are defined by those interfaces, and that when one bean depends on another bean, that dependency is specified using an interface. Spring will take care of constructing the proxy and making sure it implements all of the interfaces.
In your diagram, you have "Spring AOP Proxy (this)". You have to be really careful with using this when you're using any type of proxying.
Calls within the same class won't have advice applied because those calls won't pass through the proxy.
If in one of your beans you pass this to some outside code, you're passing the target of the AOP advice. If some other code uses that reference, the calls won't have AOP advice applied (again, you're bypassing the proxy).

Implementing an interface from a framework vs simple java interface

This concept is unclear with me.
I have worked on several frameworks for an instance Spring.
To implement a feature we always implement some interfaces provided by the framework.
For an instance if I have to create a custom scope in Spring, my class implements a org.springframework.beans.factory.config.Scope interface. Which has some predefined low level functionality which helps in defining a custom scope for a bean.
Whereas in Java I read an interface is just a declaration which classes can implement & define their own functionality. The methods of an interface have no predefined functionality.
interface Car
{
topSpeed();
acclerate();
deaccelrate();
}
The methods here don't have any functionality. They are just declared.
Can anyone explain this discrepancy in the concept? How does the framework put some predefined functionality with interface methods?
It doesn't put predefined functionality in the methods. But when you implement
some interface (say I) in your class C, the framework knows that your object (of type C)
implements the I interface, and can call certain methods (defined in I) on your object
thus sending some signals/events to your object. These events can be e.g. 'app initialized',
'app started', 'app stopped', 'app destroyed'. So usually this is what frameworks do.
I am talking about frameworks in general here, not Spring in particular.
There is no conceptual difference, actually. Each java interface method has a very clear responsibility (usually described in its javadoc). Take Collection.size() as an example. It is defined to return the number of elements in your collection. Having it return a random number is possible, but will cause no end of grief for any caller. Interface methods have defined semantics ;)
As I mentioned in the comments, to some extent, implementing interfaces provided by the framework is replaced by the use of stereotype annotations. For example, you might annotate a class as #Entity to let Spring know to manage it and weave a Transaction manager into it.
I have a suspicion that what you are seeing relates to how Spring and other frameworks make use of dynamic proxies to inject functionality.
For an example of Spring injecting functionality, if you annotate a method as #Transactional, then the framework will attempt to create a dynamic proxy, which wraps access to your method. i.e. When something calls your "save()" method, the call is actually to the proxy, which might do things like starting a transaction before passing the call to your implementation, and then closing the transaction after your method has completed.
Spring is able to do this at runtime if you have defined an interface, because it is able to create a dynamic proxy which implements the same interface as your class. So where you have:
#Autowired
MyServiceInterface myService;
That is injected with SpringDynamicProxyToMyServiceImpl instead of MyServiceImpl.
However, with Spring you may have noticed that you don't always need to use interfaces. This is because it also permits AspectJ compile-time weaving. Using AspectJ actually injects the functionality into your class at compile-time, so that you are no longer forced to use an interface and implementation. You can read more about Spring AOP here:
http://docs.spring.io/spring/docs/4.0.0.RELEASE/spring-framework-reference/htmlsingle/#aop-introduction-defn
I should point out that although Spring does generally enable you to avoid defining both interface and implementation for your beans, it's not such a good idea to take advantage of it. Using separate interface and implementation is very valuable for unit testing, as it enables you to do things like inject a stub which implements an interface, instead of a full-blown implementation of something which needs database access and other rich functionality.

Factory class vs Spring DI

As per my understanding both Factory class and Spring DI follows the Dependency injection. I mean in both the cases external entity is used to push the dependency. Right?
My question is which one i should go for between factory classes and Spring DI when my intention is just to get the objects . Assume i don't want any other features like aop, dao support etc. Only purpose is to get the objects either from Factory class or Spring DI. Which one is preferable.
on some site read this statement
DI loosely coupled and less intrusive in comparison to Factory classes
But could not get how spring DI loosely coupled and less intrusive than factory classes?
in both the cases we have to insert some kind of get object code in our core program .
Spring DI promotes loosely coupled code because the Spring container injects your dependencies based on configuration. If you are injecting interface implementations, you don't have to change code to change which specific implementation gets injected, unless you consider your configuration code, which many do.
If you use a Factory to create configured objects that are used by the rest of your code, you are writing code to create the objects, configure them, etc. If you want to change what the factory returns, you have to change actual code, which some would argue is a more intrusive change.
Typically Spring is used to configure how the various layers of your application are wired together. X service takes such and such DAO implementations, for example. That's application level organization. Lets say you have a scenario where want to create a button for every row in a list -- in that case you could use a factory to create the buttons. This scenario is based on a runtime situation where the GUI has different elements that you couldn't configure up front (because its based on the data), so DI makes less sense here.
EDIT - based on your comment questions, I think the primary point here is that you have to consider is that Spring is also an Inversion of Control container. That means you don't program in which components in your application go where. Without IoC, you might do something like
MyServiceImpl extends MyService {
Dao1 = new Dao1Impl(); // you programmatically configure which components go in here
Dao2 = new Dao2Impl();
....
}
instead you do something like
MyServiceImpl extends MyService {
public Dao1; // you haven't specified which components, only interfaces
public Dao2;
....
}
In the second code sample, Spring (or whatever you use) will inject the appropriate DAO instances for you. You have moved control of which components to use to a higher level. So IoC and DI go hand and hand, IoC promotes loose coupling because in your component definitions (i.e. interfaces) you only specify behavior.
In other words, IoC and DI are not necessary for loose coupling; you can have loose coupling with a Factory too
MyServiceImpl extends MyService {
public dao1
public dao2;
MyServiceImpl(){
dao1 = DaoFactory.getDao1();
...
}
....
}
here your service still only depends on DAO definitions and you use the factory to get implementations. The caveat is that your service is now coupled to the factory. You can make it more loose by passing a Factory into your constructor if you want....
Also, dont forget that Spring provides other useful functionalities, like its transaction management. That's incredibly helpful, even though you said for your app you don't need it.
But could not get how spring DI loosely coupled and less intrusive
than factory classes? in both the cases we have to insert some kind of
get object code in our core program .
Spring makes it less intrusive because it uses reflection to automatically "inject/create" the dependencies. Thus your code does not need a reference to a the factory.
Spring is generally used for "Singleton-like" object creation. People generally use custom factories for transient throw away object creation (like request objects).
In fact often times you will make Spring create and inject your custom factories (ie factory of a factory).

spring and interfaces

I read all over the place about how Spring encourages you to use interfaces in your code. I don't see it. There is no notion of interface in your spring xml configuration. What part of Spring actually encourages you to use interfaces (other than the docs)?
The Dependency Inversion Principle explains this well. In particular, figure 4.
A. High level modules should not depend on low level modules. Both should depend upon abstractions.
B. Abstraction should not depend upon details. Details should depend upon abstractions.
Translating the examples from the link above into java:
public class Copy {
private Keyboard keyboard = new Keyboard(); // concrete dependency
private Printer printer = new Printer(); // concrete dependency
public void copy() {
for (int c = keyboard.read(); c != KeyBoard.EOF) {
printer.print(c);
}
}
}
Now with dependency inversion:
public class Copy {
private Reader reader; // any dependency satisfying the reader interface will work
private Writer writer; // any dependency satisfying the writer interface will work
public void copy() {
for (int c = reader.read(); c != Reader.EOF) {
writer.write(c);
}
}
public Copy(Reader reader, Writer writer) {
this.reader = reader;
this.writer = writer;
}
}
Now Copy supports more than just copying from a keyboard to a printer.
It is capable of copying from any Reader to any Writer without requiring any modifications to its code.
And now with Spring:
<bean id="copy" class="Copy">
<constructor-arg ref="reader" />
<constructor-arg ref="writer" />
</bean>
<bean id="reader" class="KeyboardReader" />
<bean id="writer" class="PrinterWriter" />
or perhaps:
<bean id="reader" class="RemoteDeviceReader" />
<bean id="writer" class="DatabaseWriter" />
When you define an interface for your classes, it helps with dependency injection. Your Spring configuration files don't have anything about interfaces in them themselves -- you just put in the name of the class.
But if you want to inject another class that offers "equivalent" functionality, using an interface really helps.
For example, saying you've got a class that analyzes a website's content, and you're injecting it with Spring. If the classes you're injecting it into know what the actual class is, then in order to change it out you'll have to change a whole lot of code to use a different concrete class. But if you created an Analyzer interface, you could just as easily inject your original DefaultAnalyzer as you could a mocked up DummyAnalyzer or even another one that does essentially the same thing, like a PageByPageAnalyzer or anything else. In order to use one of those, you just have to change the classname you're injecting in your Spring config files, rather than go through your code changing classes around.
It took me about a project and a half before I really started to see the usefulness. Like most things (in enterprise languages) that end up being useful, it seems like a pointless addition of work at first, until your project starts to grow and then you discover how much time you saved by doing a little bit more work up front.
Most of the answers here are some form of "You can easily swap out implementations", but what I think they fail to answer is the why? part. To that I think the answer is almost definitively testability. Regardless of whether or not you use Spring or any other IOC framework, using Dependency Injection makes your code easier to test. In the case of say a writer rather than a PrinterWriter, you can Mock the Writer interface in a Unit test, and ensure that your code is calling it the way you expect it to. If you depend directly on the class implementation, your only option is to walk to the printer and check it, which isn't very automated. Furthermore, if you depend upon the result of a call to a class, not being able to Mock it may prevent you from being able to reach all code paths in your test, thus reducing their quality (potentially) Simply put, you should decouple Object graph creation from application logic. Doing so makes your code easier to test.
No one has mention yet that in many occasions won't be necessary to create an interface so that the implementing class can be switched quickly because simply there won't be more than one implementing class.
When interfaces are created without need, classes will be created by pairs (interface plus implementation), adding unnecessary boilerplate interfaces and creating potential dependency confusions because, on XML configuration files, components will be sometimes referenced by its interface and sometimes by its implementation, with no consequences at runtime but being incoherent regarding code conventions.
You may probably want to try using it for yourself to be better able to see this, it may not be clear from the docs how Spring encourages interface use.
Here are a couple of examples:
Say you're writing a class that needs to read from a resource (e.g., file) that may be referenced in several ways (e.g., in classpath, absolute file path, as a URL etc). You'd want to define a org.springframework.core.io.Resource (interface) property on your class. Then in your Spring configuration file, you simply select the actual implementation class (e.g., org.springframework.core.io.ClassPathResource, org.springframework.core.io.FileSystemResource, org.springframework.core.io.UrlResource etc). Spring is basically functioning as an extremely generic factory.
If you want to take advantage of Spring's AOP integration (for adding transaction interceptors for instance), you'll pretty much need to define interfaces. You define the interception points in your Spring configuration file, and Spring generates a proxy for you, based on your interface.
These are examples I personally have experience with. I'm sure there are much more out there.
it's easy to generate proxies from interfaces.
if you look at any spring app, you'll see service and persistence interfaces. making that the spring idiom certainly does encourage the use of interfaces. it doesn't get any more explicit than that.
Writing separate interfaces adds complexity and boilerplate code that's normally unnecessary. It also makes debugging harder because when you click a method call in your IDE, it shows the interface instead of the implementation. Unless you're swapping implementations at runtime, there's no need to go down that path.
Tools like Mockito make it very easy to test code using dependency injection without piling on interfaces.
Spring won't force you to use interfaces anywhere, it's just good practice. If you have a bean that has a some properties that are interfaces instead of concrete classes, then you can simply switch out some objects with mockups that implement the same interface, which is useful for certain test cases.
If you use for example the Hibernate support clases, you can define an interface for your DAO, then implement it separately; the advantage of having the interface is that you will be able to configure it using the Spring interceptors, which will allow you to simplify your code; you won't have to write any code cathing HibernateExceptions and closing the session in a finally segment, and you won't have to define any transactions programmatically either, you just configure all that stuff declaratively with Spring.
When you're writing quick and dirty apps, you can implement some simple DAO using JDBC or some simple framework which you won't end up using in the final version; you will be able to easily switch those components out if they implement some common interfaces.
If you don't use interfaces you risk an autowiring failure:
Sometime Spring creates a Proxy class for a Bean. This Proxy class is not a child class of the service implementation but it re-implements all of its interfaces.
Spring will try to autowire instances of this Bean, however this Proxy class is incompatible with the Bean class. So declaring a field with Bean class can lead to "unsafe field assignement" exceptions.
You cannot reasonably know when Spring is going to Proxy a service (nor should you), so to protect yourself against those surprises, your best move is to declare an interface and use this interface when declaring autowired fields.

Categories

Resources