I am just wondering how to control console inputs in separate threads?
I have thread A and thread B and thread C; B and C they both control user input... the thing is I am not pretty sure how to switch between B and C threads the scanIn.nextLine(); because B seems to loop two unnecessary iterations before thread C can interrupt B :(
Main thread:
public class Main
{
private volatile ThreadGroup threadGroup=new ThreadGroup();//contains concurrent hash map...
private volatile TaskManager taskManager=new TaskManager(threadGroup);
private A a=new A(threadGroup);
private B b=new B(threadGroup,taskManager);
private C c=new C(threadGroup);
Main()
{
b.start();
threadGroup.add(a,"A");
threadGroup.add(b,"B");
threadGroup.add(c,"C");
}
public static void main(String args[]){new Main();}
}
TaskManager method snippet:
...
public synchronized void threadCMaybeCanBeStartedLater()
{
this.getThreadGroup().get("A").start();
}
...
thread A code like a (overridden run method invokes):
public void loopIt()
{
Random generator = new Random();
A: while(!this.interrupted())
{
Thread.sleep(1000);
int i=generator.nextInt(100)+1;
int j=generator.nextInt(100)+1;
if(i==j){this.invokeC(); System.out.println("event : i==j");}
}
}
private void invokeC()
{
if(!this.getThreadGroup().get("C").isAlive())this.getThreadGroup().get("C").start();
}
thread B code like a:
public void loopIt() throws InterruptedException
{
Scanner scanIn = new Scanner(System.in);
B: while(!this.isInterrupted())
{
Thread.sleep(1000);
String command= scanIn.nextLine();
...
if(command.equals("a"))
{
System.out.println("a was entered");
this.getTaskManager().threadCMaybeCanBeStartedLater();//
continue;
}
if(command.equals("b"))
{
System.out.println("b was entered");
continue;
}
if(command.equals("c"))
{
System.out.println("c was entered");
continue;
}
else{System.out.println("no such command");}
}
}
thread C (the run method invokes)
public void loopIt() throws InterruptedException
{
getThreadGroup().get("B").interrupt();
Scanner scanIn = new Scanner(System.in);
C: while(!this.isInterrupted())
{
Thread.sleep(1000);
String command= scanIn.nextLine();
...
if(command.equals("d"))
{
System.out.println("d was entered");
continue;
}
if(command.equals("e"))
{
System.out.println("e was entered");
this.interrupt();
break C;
}
if(command.equals("f"))
{
System.out.println("f was entered");
continue;
}
else{System.out.println("no such command");}
}
getThreadGroup().get("B").start();
}
...as you can see, the major code conception (see A thread snippet) is "you don't know when thread C can be started but when it started you need to give it console"; that's all; if it was GUI there was no problem but console-like app makes it quite problematic...
So the question is ... how to interrupt/re-start thread B immediately from thread C in this case?
Thanks
Synchronising Threads Using Thread Class
Thread.interrupt() on its own does not synchronise logic & timing between two threads.
Thread.interrupt() signals that the caller would like the thread to interrupt at a time in the near future. The interrupt() method sets an interrupt flag. The isInterrupted() method checks whether this flag is set (& also clears the flag again). The methods Thread.sleep(), Thread.join(), Object.wait() and a number of I/O methods also check & clear this flag, when throwing InterruptedException.
The thread doesn't immediately pause but continues running code. The internal thread logic is designed & implemented by the developer: continue to run thread code considered atomic/urgent until it gets to an "interruptable point", then check the interrupted flag / catch InterruptedException & then do a clean pause - usually via Thread.sleep(), Thread.join() or Object.wait(), and sometimes by exiting Thread.run() altogether thus stopping the thread permanently.
While all of this is happening the calling thread is still running and will execute an indeterminate amount of code before the interrupt takes effect... hence the lack of synchronisation. There is a lack of guaranteed happens-before condition between the code in one thread and code in the other thread.
Some approaches that do synchronise logic & timing between two threads (creating a happens-before condition):
thread1 calls Thread2.join()
thread1 calls SomeObject.wait() and thread2 calls SomeObject.notify()
Synchronise on a method or block
Quick Review of Your Code:
Thread B runs in an infinite loop - there is no call to interrupt it from any thread and no call for it's thread to wait(). It will, however, temporily block until System.in has more input, and then continue.
Thread A only interrupts itself - cleaner and easier to analyse logic if you don't call this.interrupt() and while(!this.isInterrupted()): just change the while loop into: do { .... } while (i != j)
Thread A only interrupts itself - cleaner and much easier to analyse logic if you don't call this.interrupt() and while(!this.isInterrupted()): just change the while loop into: do { .... } while (!"e".equals(command))
Thread C must make the following calls at the top of it's while loop:
threadB.interrupt();
synchronized(this) {
try {
this.wait();
} catch (InterruptedException ie) {
}
Thread B must make the following call as the last line of code:
synchronized(threadC) {
threadC.notify();
}
Reading from I/O (nextLine()) is a blocking & interruptable operation. Right next to it you introduce Thread.sleep() which is also a blocking & interruptable operation that introduces an artificial delay in your code - it is not necessary; remove.
The only Scanner method you call is nextLine(). You're using it as if it were an InputStreamReader & not doing any scanning. Also, you're not buffering input. If code stays like this, replace 'Scanner scanIn = Scanner(System.in)' with: 'BufferedReader reader = new BufferedReader(new InputStreamReader(System.in))'.
The only ThreadGroup method you call are add() and get(). You're using it as if it were a HashMap & not doing any thread group management. If code stays like this, you may replace 'ThreadGroup' with 'HashMap'. However, even the HashMap seems excessive - could simply pass Threads references to other Threads using constructors/setters and avoid HashMap altogether.
Avoid excessive use of continue inside loops - try to avoid altogether. Best to do this by chaining successive 'if' statements together using '} else if {'...
Potential race condition between main thread and thread B. When thread B is started (from Main()) it may execute many lines of code before the main thread executes any more code - B may call ThreadGroup.get() before main thread has called ThreadGroup.add() x 3. Solution: in Main(), put b.start() after ThreadGroup.add() x 3
In general, "a".equals(command) is better practice than command.equals("a") - it handles nulls, giving correct result without NPE (you seem lucky here - probably won't have nulls).
Suggested Changes:
public class ThreadA extends Thread {
ThreadC threadC;
public void setThreadC(ThreadC threadC) {
this.threadC = threadC;
}
#Override
public void run() {
this.loopIt();
}
public void loopIt() {
Random generator = new Random();
int i, j;
do {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
i=generator.nextInt(100)+1;
j=generator.nextInt(100)+1;
} while (i != j);
threadC.start();
}
}
public class ThreadB extends Thread {
ThreadA threadA;
ThreadC threadC;
public void setThreadA(ThreadA threadA) {
this.threadA = threadA;
}
public void setThreadC(ThreadC threadC) {
this.threadC = threadC;
}
#Override
public void run() {
this.loopIt();
}
public void loopIt() {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String command = null;
// loop until interrupted
try {
while (!this.isInterrupted()) {
command = reader.readLine();
if ("a".equals(command)) {
System.out.println("a was entered");
if (threadA.getState() == Thread.State.NEW) {
threadA.start();
}
} else if ("b".equals(command)) {
System.out.println("b was entered");
} else if ("c".equals(command)) {
System.out.println("c was entered");
} else if ("z".equals(command)) {
System.out.println("z was entered");
throw new InterruptedException("Command z interruption");
} else {
System.out.println("no such command");
}
}
} catch (IOException ioe) {
ioe.printStackTrace();
} catch (InterruptedException ie) {
}
// Now notify ThreadC - it will wait() until this code is run
synchronized(threadC) {
threadC.notify();
}
}
}
public class ThreadC extends Thread {
ThreadB threadB;
public void setThreadB(ThreadB threadB) {
this.threadB = threadB;
}
#Override
public void run() {
this.loopIt();
}
public void loopIt() {
// Block until the lock can be obtained
// We want thread B to run first, so the lock should be passed into Thread C constructor in an already locked state
threadB.interrupt();
synchronized(this) {
try {
// Put this thread to sleep until threadB calls threadC.notify().
//
// Note: could replace this line with threadB.join() - and remove
// from threadB the call to threadC.notify()
this.wait();
} catch (InterruptedException ie) {
}
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String command = null;
while (!"e".equals(command)) {
try {
command= reader.readLine();
if ("d".equals(command)) {
System.out.println("d was entered");
} else if ("e".equals(command)) {
System.out.println("e was entered");
} else if ("f".equals(command)) {
System.out.println("f was entered");
} else if ("z".equals("command")) {
System.out.println("z was entered");
} else {
System.out.println("no such command");
};
} catch (IOException ioe) {
ioe.printStackTrace();
}
}
}
}
}
nextLine() does not respond to interruption. You want to do something like
String command;
if (scanIn.hasNextLine())
command = scanIn.nextLine();
else
Thread.sleep(1000);
You can use flag variables (as global variables) to control the while loop in each thread...
suppose that Thread A has an infinite loop like this
while(true)
while(x == 1){
your code ...
}
Thread.sleep(2000);
}
when Thread b is started you can change x to 0 (suppose x is a global variable) then when Thread b finishes executing change x to 1 at the end of Thread b code...
or you can interrupt the thread from thread itself based of flag value x
Related
I have 2 matrices and I need to multiply them and then print the results of each cell. As soon as one cell is ready I need to print it, but for example I need to print the [0][0] cell before cell [2][0] even if the result of [2][0] is ready first. So I need to print it by order.
So my idea is to make the printer thread wait until the multiplyThread notifies it that the correct cell is ready to be printed and then the printerThread will print the cell and go back to waiting and so on..
So I have this thread that does the multiplication:
public void run()
{
int countNumOfActions = 0; // How many multiplications have we done
int maxActions = randomize(); // Maximum number of actions allowed
for (int i = 0; i < size; i++)
{
result[rowNum][colNum] = result[rowNum][colNum] + row[i] * col[i];
countNumOfActions++;
// Reached the number of allowed actions
if (countNumOfActions >= maxActions)
{
countNumOfActions = 0;
maxActions = randomize();
yield();
}
}
isFinished[rowNum][colNum] = true;
notify();
}
Thread that prints the result of each cell:
public void run()
{
int j = 0; // Columns counter
int i = 0; // Rows counter
System.out.println("The result matrix of the multiplication is:");
while (i < creator.getmThreads().length)
{
synchronized (this)
{
try
{
this.wait();
}
catch (InterruptedException e1)
{
}
}
if (creator.getmThreads()[i][j].getIsFinished()[i][j] == true)
{
if (j < creator.getmThreads()[i].length)
{
System.out.print(creator.getResult()[i][j] + " ");
j++;
}
else
{
System.out.println();
j = 0;
i++;
System.out.print(creator.getResult()[i][j] + " ");
}
}
}
Now it throws me these exceptions:
Exception in thread "Thread-9" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-6" Exception in thread "Thread-4" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-5" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-8" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-7" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-11" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-10" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-12" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
line 49 in multiplyThread is the "notify()"..I think I need to use the synchronized differently but I am not sure how.
If anyone can help this code to work I will really appreciate it.
To be able to call notify() you need to synchronize on the same object.
synchronized (someObject) {
someObject.wait();
}
/* different thread / object */
synchronized (someObject) {
someObject.notify();
}
While using the wait and notify or notifyAll methods in Java the following things must be remembered:
Use notifyAll instead of notify if you expect that more than one thread will be waiting for a lock.
The wait and notify methods must be called in a synchronized context. See the link for a more detailed explanation.
Always call the wait() method in a loop because if multiple threads are waiting for a lock and one of them got the lock and reset the condition, then the other threads need to check the condition after they wake up to see whether they need to wait again or can start processing.
Use the same object for calling wait() and notify() method; every object has its own lock so calling wait() on object A and notify() on object B will not make any sense.
Do you need to thread this at all ? I'm wondering how big your matrices are, and whether there's any benefit in having one thread print whilst the other does the multiplication.
Perhaps it would be worth measuring this time before doing the relatively complex threading work ?
If you do need to thread it, I would create 'n' threads to perform the multiplication of the cells (perhaps 'n' is the number of cores available to you), and then use the ExecutorService and Future mechanism to dispatch multiple multiplications simultaneously.
That way you can optimise the work based on the number of cores, and you're using the higher level Java threading tools (which should make life easier). Write the results back into a receiving matrix, and then simply print this once all your Future tasks have completed.
Let's say you have 'black box' application with some class named BlackBoxClass that has method doSomething();.
Further, you have observer or listener named onResponse(String resp) that will be called by BlackBoxClass after unknown time.
The flow is simple:
private String mResponse = null;
...
BlackBoxClass bbc = new BlackBoxClass();
bbc.doSomething();
...
#override
public void onResponse(String resp){
mResponse = resp;
}
Lets say we don't know what is going on with BlackBoxClass and when we should get answer but you don't want to continue your code till you get answer or in other word get onResponse call. Here enters 'Synchronize helper':
public class SyncronizeObj {
public void doWait(long l){
synchronized(this){
try {
this.wait(l);
} catch(InterruptedException e) {
}
}
}
public void doNotify() {
synchronized(this) {
this.notify();
}
}
public void doWait() {
synchronized(this){
try {
this.wait();
} catch(InterruptedException e) {
}
}
}
}
Now we can implement what we want:
public class Demo {
private String mResponse = null;
...
SyncronizeObj sync = new SyncronizeObj();
public void impl(){
BlackBoxClass bbc = new BlackBoxClass();
bbc.doSomething();
if(mResponse == null){
sync.doWait();
}
/** at this momoent you sure that you got response from BlackBoxClass because
onResponse method released your 'wait'. In other cases if you don't want wait too
long (for example wait data from socket) you can use doWait(time)
*/
...
}
#override
public void onResponse(String resp){
mResponse = resp;
sync.doNotify();
}
}
You can only call notify on objects where you own their monitor. So you need something like
synchronized(threadObject)
{
threadObject.notify();
}
notify() needs to be synchronized as well
I'll right simple example show you the right way to use wait and notify in Java.
So I'll create two class named ThreadA & ThreadB. ThreadA will call ThreadB.
public class ThreadA {
public static void main(String[] args){
ThreadB b = new ThreadB();//<----Create Instance for seconde class
b.start();//<--------------------Launch thread
synchronized(b){
try{
System.out.println("Waiting for b to complete...");
b.wait();//<-------------WAIT until the finish thread for class B finish
}catch(InterruptedException e){
e.printStackTrace();
}
System.out.println("Total is: " + b.total);
}
}
}
and for Class ThreadB:
class ThreadB extends Thread{
int total;
#Override
public void run(){
synchronized(this){
for(int i=0; i<100 ; i++){
total += i;
}
notify();//<----------------Notify the class wich wait until my finish
//and tell that I'm finish
}
}
}
Simple use if you want How to execute threads alternatively :-
public class MyThread {
public static void main(String[] args) {
final Object lock = new Object();
new Thread(() -> {
try {
synchronized (lock) {
for (int i = 0; i <= 5; i++) {
System.out.println(Thread.currentThread().getName() + ":" + "A");
lock.notify();
lock.wait();
}
}
} catch (Exception e) {}
}, "T1").start();
new Thread(() -> {
try {
synchronized (lock) {
for (int i = 0; i <= 5; i++) {
System.out.println(Thread.currentThread().getName() + ":" + "B");
lock.notify();
lock.wait();
}
}
} catch (Exception e) {}
}, "T2").start();
}
}
response :-
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
we can call notify to resume the execution of waiting objects as
public synchronized void guardedJoy() {
// This guard only loops once for each special event, which may not
// be the event we're waiting for.
while(!joy) {
try {
wait();
} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");
}
resume this by invoking notify on another object of same class
public synchronized notifyJoy() {
joy = true;
notifyAll();
}
For this particular problem, why not store up your various results in variables and then when the last of your thread is processed you can print in whatever format you want. This is especially useful if you are gonna be using your work history in other projects.
This looks like a situation for producer-consumer pattern. If you’re using java 5 or up, you may consider using blocking queue(java.util.concurrent.BlockingQueue) and leave the thread coordination work to the underlying framework/api implementation.
See the example from
java 5:
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
or java 7 (same example):
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
You have properly guarded your code block when you call wait() method by using synchronized(this).
But you have not taken same precaution when you call notify() method without using guarded block : synchronized(this) or synchronized(someObject)
If you refer to oracle documentation page on Object class, which contains wait() ,notify(), notifyAll() methods, you can see below precaution in all these three methods
This method should only be called by a thread that is the owner of this object's monitor
Many things have been changed in last 7 years and let's have look into other alternatives to synchronized in below SE questions:
Why use a ReentrantLock if one can use synchronized(this)?
Synchronization vs Lock
Avoid synchronized(this) in Java?
I am new to java and I am trying to learn about threads.
I am expecting an output of alternate hello this is thread one and hello this is thread two. but the output I get is as follows:
hello this is thread one
hello this is thread one
hello this is thread one
hello this is thread one
hello this is thread one
hello this is thread two
hello this is thread two
hello this is thread two
hello this is thread two
hello this is thread two
Below is my code. Can anyone please help me out to why I am getting this output as opposed to expected. And what is it that I can do to run the two threads in parallel.
public class ThreadDemo {
public static void main(String args[]) {
// This is the first block of code
Thread thread = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
System.out.println("hello this is thread one");
}
}
};
// This is the second block of code
Thread threadTwo = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
System.out.println("hello this is thread two");
}
}
};
// These two statements are in the main method and begin the two
// threads.
// This is the third block of code
thread.start();
// This is the fourth block of code
threadTwo.start();
}
}
Just because threads may interlace does not mean that they will. Your threads simply run too fast. Try adding Thread.sleep() to make them run longer.
The problem here is that PrintStream is synchronized which is not fair.
final Lock lock = new ReentrantLock(true); //create fair lock
//after running this code change it to
//ReentrantLock(false); to see what happens
// This is the first block of code
Thread thread = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
lock.lock();
System.out.println("hello this is thread one");
lock.unlock();
}
}
};
// This is the second block of code
Thread threadTwo = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
lock.lock();
System.out.println("hello this is thread two");
lock.unlock();
}
}
};
// These two statements are in the main method and begin the two
// threads.
// This is the third block of code
thread.start();
// This is the fourth block of code
threadTwo.start();
when a lock is fair it will be alot slower, but when its not fair as in your first case it keeps grabbing the lock over and over before the other thread gets a chance to take it. A fair lock is like a queue. Whoever is queued to take it next gets it.
Depending on the number of CPUs and/or CPU cores, multi-threading may only be simulated by your CPU by giving each thread a certain number of time before another thread is scheduled. See also Wikipedia on "Preemptive Multitasking"
Also, given today's CPUs and many cores and their speed, it may also be that the execution of the first thread already finished before the second one is started.
Also, both threads are battling for the lock in System.out, so they will lock each other out.
Let the threads run for longer times (higher number of iterations), and you will see the interleaving you are expecting.
Your code would work too..add sleep in the first object.
// This is the first block of code
Thread thread = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
System.out.println("hello this is thread one");
try {
sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
};
If you want to have the threads' bodies wait until both threads are running, you can use something like a CountDownLatch, which can block until its internal counter counts down to zero:
final CountDownLatch latch = new CountDownLatch(2);
Thread thread = new Thread() {
#Override public void run() {
latch.countDown();
latch.await(); // Execution waits here until latch reaches zero.
// Rest of the method.
}
}
Thread threadTwo = new Thread() {
#Override public void run() {
latch.countDown();
latch.await(); // Execution waits here until latch reaches zero.
// Rest of the method.
}
}
thread.start();
threadTwo.start();
(Exception handling omitted for clarity)
This will guarantee that the "interesting bit" of the two threads' run methods will be executing at the same time. However, because of the unfair synchronization on the println() method you are calling, there is no guarantee of how the messages printed by the two threads will be interleaved:
Sometimes they might "perfectly" interleave (1, 2, 1, 2, ...)
Sometimes a few of one might be printed without anything from the other (1, 1, 2, 1, 2, 2, 2, ...)
Sometimes one might print all of its messages before the other (1, 1, 1, 1, 2, 2, 2, 2).
Below code is working...
public class ThreadDemo {
public static void main(String args[]) throws InterruptedException {
// This is the first block of code
Thread thread = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
System.out.println("hello this is thread one");
try {
Thread.sleep(100);
} catch (InterruptedException ex) {
Logger.getLogger(ThreadDemo.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
};
// This is the second block of code
Thread threadTwo = new Thread() {
public void run() {
for (int i = 0; i < 10; i += 2) {
System.out.println("hello this is thread two");
try {
Thread.sleep(100);
} catch (InterruptedException ex) {
Logger.getLogger(ThreadDemo.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
};
// These two statements are in the main method and begin the two
// threads.
// This is the third block of code
thread.start();
// This is the fourth block of code
threadTwo.start();
}
}
Your code is working as expected, there is absolutely no guarantee that your implementation will execute in the pre-defined manner you are expecting.
I would suggest that you look at other methods of implementing multithreaded code such as join(), sleep() and finding one that better suits your needs.
I have a thread that calls the wait method and can only be awoken when the notify method called from some other class:
class ThreadA {
public static void main(String [] args) {
ThreadB b = new ThreadB();
b.start();
synchronized(b) {
try {
System.out.println("Waiting for b to complete...");
b.wait();
} catch (InterruptedException e) {}
System.out.println("Total is: " + b.total);
}
}
}
class ThreadB extends Thread {
int total;
public void run() {
synchronized(this) {
for(int i=0;i<100;i++) {
total += i;
}
notify();
}
}
}
In the above code if the synchronized block in main, if the ThreadA does not execute first and instead the other synchronization block executing and completes to completion, then ThreadA executes its synchronized block and calls wait, what is going to happen and how it will be notified again?
If ThreadB gets through its synchronized block before ThreadA does, then ThreadA will block indefinitely on the call to wait. It won't somehow be notified that the other thread has already completed.
The problem is that you're trying to use wait and notify in ways that they are not designed to be used. Usually, wait and notify are used to have one thread wait until some condition is true, and then to have another thread signal that the condition may have become true. For example, they're often used as follows:
/* Producer */
synchronized (obj) {
/* Make resource available. */
obj.notify();
}
/* Consumer */
synchronized (obj) {
while (/* resource not available */)
obj.wait();
/* Consume the resource. */
}
The reason that the above code works is that it doesn't matter which thread runs first. If the producer thread creates a resource and no one is waiting on obj, then when the consumer runs it will enter the while loop, notice that the resource has been produced, and then skip the call to wait. It can then consume the resource. If, on the other hand, the consumer runs first, it will notice in the while loop that the resource is not yet available and will wait for some other object to notify it. The other thread can then run, produce the resource, and notify the consumer thread that the resource is available. Once the original thread is awoken, it will notice that the condition of the loop is no longer true and will consume the resource.
More generally, Java suggests that you always call wait in a loop because of spurious notifications in which a thread can wake up from a call to wait without ever being notified of anything. Using the above pattern can prevent this.
In your particular instance, if you want to ensure that ThreadB has finished running before ThreadA executes, you may want to use Thread.join(), which explicitly blocks the calling thread until some other thread executes. More generally, you may want to look into some of the other synchronization primitives provided by Java, as they often are much easier to use than wait and notify.
You could loop and wait until the total has been computed :
synchronized(b) {
while (total == 0) {
b.wait();
}
}
You could also use a higher-level abstraction like a CountDownLatch.
It is possible for ThreadB's run method to complete before you enter the synchronized block in ThreadA.main. In that situation, since the notify call has happened before you started waiting, ThreadA will block forever on the wait call.
A simple workaround would be to grab the lock on b in main before you start the second thread to ensure the wait happens first.
ThreadB b = new ThreadB();
synchronized(b) {
b.start();
...
b.wait();
}
You probably want to use a java.util.concurrent.Semaphore for this.
1) You need to add some flag that is used to communicate between the threads, so that B can signal to A when it is finished. A simple boolean variable is fine, as long as it is only read and written within the synchronized blocks.
synchronized(this) {
for(int i=0;i<100;i++) {
total += i;
}
isDone = true;
notify();
}
2) A needs to loop while waiting. So if your boolean variable was called isDone, and was set to true by threadB, then threadA should have some code like this:
synchronized(b) {
System.out.println("Waiting for b to complete...");
while( ! isDone ) b.wait();
}
In this particular case, there's actually no reason to have the synchronized block in A - since threadB doesn't do anything after it finishes running, and A doesn't do anything except wait for B, threadA could simply call b.join() to block until it finishes. I assume that your actual use case is more complex than this.
Why to make that complex ? Just use join() function of Thread.
ThreadB b = new ThreadB();
b.start();
b.join();
// now print b.total
do not synchronized(thread), don't do it, do not synchronized(thread).. repat: no synchronized(thread) :)
And if you need to wait for the thread 'b' to finish, use b.join(), now your code is free to hang in b.wait()
--
Hopefully the source below can grant you an insight while sync(thread)/notify() I consider bad practice. (cut-cut)
Enjoy
To proceeed below you make sure you have accepted Oracle's License aggreement, found there:
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD/ViewLicense-Start?LicenseUUID=7HeJ_hCwhb4AAAEtmC8ADqmR&ProductUUID=pGqJ_hCwj_AAAAEtB8oADqmS&cnum=&evsref=&sln=
Java sources (incl), called in init(), effectively called by any java c-tor, since java 1.5
private static **synchronized int** nextThreadNum() {
return threadInitNumber++;
}
//join (the method w/ nanos only increase millis by one, if nanos>500000, millis==0 and nanos>0
public final **synchronized** void join(long millis)
throws InterruptedException {
long base = System.currentTimeMillis();
long now = 0;
if (millis < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (millis == 0) {
while (isAlive()) {
wait(0);
}
} else {
while (isAlive()) {
long delay = millis - now;
if (delay <= 0) {
break;
}
wait(delay);
now = System.currentTimeMillis() - base;
}
}
}
public **synchronized** void start() {
/**
* This method is not invoked for the main method thread or "system"
* group threads created/set up by the VM. Any new functionality added
* to this method in the future may have to also be added to the VM.
*
* A zero status value corresponds to state "NEW".
*/
if (threadStatus != 0)
throw new IllegalThreadStateException();
group.add(this);
start0();
if (stopBeforeStart) {
stop0(throwableFromStop);
}
}
//stop1 is called after stop ensures proper priviledges
private final **synchronized** void stop1(Throwable th) {
SecurityManager security = System.getSecurityManager();
if (security != null) {
checkAccess();
if ((this != Thread.currentThread()) ||
(!(th instanceof ThreadDeath))) {
security.checkPermission(SecurityConstants.STOP_THREAD_PERMISSION);
}
}
// A zero status value corresponds to "NEW"
if (threadStatus != 0) {
resume(); // Wake up thread if it was suspended; no-op otherwise
stop0(th);
} else {
// Must do the null arg check that the VM would do with stop0
if (th == null) {
throw new NullPointerException();
}
// Remember this stop attempt for if/when start is used
stopBeforeStart = true;
throwableFromStop = th;
}
}
I am working on an application that reads and processes data over a network. While testing the connecting/disconnecting logic of the program I noticed that my consumer thread was not closing when it reached it's closing condition. Below is a stripped out version of the consumer class.
import java.io.InputStream;
public class Consumer implements Runnable
{
private final InputStream input;
public Consumer(InputStream input)
{
this.input = input;
}
#Override
public void run()
{
byte readBuffer[];
readBuffer = new byte[1];
int goodData;
try
{
while(input.available() > 0)
{
goodData = input.read(readBuffer);
while (goodData > 0 )
{
System.out.println(readBuffer[0]);
if ( readBuffer[0] == 27 )
{
System.out.println("Consumer: found closing byte and closing thread "+Thread.currentThread().getName());
//this is the last packet, so interupt thread to close
Thread.currentThread().interrupt();
//return;
//Thread.currentThread().stop(new InterruptedException("Attempting to close"));
}
goodData = input.read(readBuffer);
}
}
}
catch(Exception e)
{
System.out.println("closing "+Thread.currentThread().getName() +" because of an exception "+e.getClass());
return;
}
System.out.println("closing "+Thread.currentThread().getName());
}
}
I created a dummy main class that demonstrates the problem.
public class ExampleOfInterruptNotWorking
{
public static void main(String[] args)
{
byte[] bytesToWrite = new byte[]{0, 1, 2,3,4,5,6,65,23,65,21,54,13,54,1,76};
Consumer C;
Thread ConsumerThread;
PipedInputStream PIS = null;
PipedOutputStream POS = null;
try
{
PIS = new PipedInputStream();
POS = new PipedOutputStream(PIS);
C = new Consumer(PIS);
ConsumerThread = new Thread(C);
ConsumerThread.start();
POS.write(bytesToWrite);
POS.write(bytesToWrite);
bytesToWrite[1] = 27;
POS.write(bytesToWrite);
ConsumerThread.join();
}
catch(Exception e)
{
System.err.println("Unexpected exception in main");
e.printStackTrace(System.err);
}
finally
{
try
{
PIS.close();
POS.close();
}
catch(Exception ex)
{
//shouldn't happen in example
}
System.out.println("exiting main");
}
}
}
When you run this code as written, the consumer detects the interrupt, but does not stop execution until the pipe is empty (not what I want). Just to try, I changed to a Thread.stop() call which did what I wanted, but I don't want to leave that in production code. I realized that I could use a simple return statement, but this is not the only point the thread could exit, and I'd like to have some common exit code that cleans up resources. So, my question is, why is the consumer thread not being interrupted? and is there a good way for me to be able to have common exit code?
Thanks!
InterruptedExceptions are thrown when a thread is sleeping, waiting for a join etc. (basically any interruptable blocking call) and interrupt() is called.
If you thread is running then the thread interrupt flag will be set but no exception will be thrown, you should check the flag with myThread.isInterrupted().
You can find more information here:
http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html
Which method do you expect to throw InterruptedException? Thread.interrupt() is not throwing it, neither any of your methods. So where do you expect this checked exception should come from?
Your code is not working because interrupt() barely sets the interrupted flag on a thread. You must check that flag explicitly using Thread.isInterrupted(). InterruptedException is only thrown if the thread in question was sleeping or blocking at the time. So if you interrupt different thread and that thread was sleeping, sleep() will throw InterruptedException.
Now to address your problem in detail. Exceptions are for exceptional cases. The fact your thread finished processing is not exceptional case, it's something you definitely expect. For the same reason reading a file past the end is not throwing an exception - end of file is something you should definitely expect - all files have end. Moreover you should not use exceptions to control program flow.
In your case either use return statement (when run() returns, thread dies) or break your loop in some other way. You posted too much code to analyze.
You could simply use break to label
OUTER:
while(input.available() > 0)
{
goodData = input.read(readBuffer);
while (goodData > 0 )
{
System.out.println(readBuffer[0]);
if ( readBuffer[0] == 27 )
{
System.out.println("Consumer: found closing byte and closing thread "+Thread.currentThread().getName());
//this is the last packet, so interupt thread to close
//Thread.currentThread().interrupt();
break OUTER;
//return;
//Thread.currentThread().stop(new InterruptedException("Attempting to close"));
}
goodData = input.read(readBuffer);
}
}
I have 2 matrices and I need to multiply them and then print the results of each cell. As soon as one cell is ready I need to print it, but for example I need to print the [0][0] cell before cell [2][0] even if the result of [2][0] is ready first. So I need to print it by order.
So my idea is to make the printer thread wait until the multiplyThread notifies it that the correct cell is ready to be printed and then the printerThread will print the cell and go back to waiting and so on..
So I have this thread that does the multiplication:
public void run()
{
int countNumOfActions = 0; // How many multiplications have we done
int maxActions = randomize(); // Maximum number of actions allowed
for (int i = 0; i < size; i++)
{
result[rowNum][colNum] = result[rowNum][colNum] + row[i] * col[i];
countNumOfActions++;
// Reached the number of allowed actions
if (countNumOfActions >= maxActions)
{
countNumOfActions = 0;
maxActions = randomize();
yield();
}
}
isFinished[rowNum][colNum] = true;
notify();
}
Thread that prints the result of each cell:
public void run()
{
int j = 0; // Columns counter
int i = 0; // Rows counter
System.out.println("The result matrix of the multiplication is:");
while (i < creator.getmThreads().length)
{
synchronized (this)
{
try
{
this.wait();
}
catch (InterruptedException e1)
{
}
}
if (creator.getmThreads()[i][j].getIsFinished()[i][j] == true)
{
if (j < creator.getmThreads()[i].length)
{
System.out.print(creator.getResult()[i][j] + " ");
j++;
}
else
{
System.out.println();
j = 0;
i++;
System.out.print(creator.getResult()[i][j] + " ");
}
}
}
Now it throws me these exceptions:
Exception in thread "Thread-9" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-6" Exception in thread "Thread-4" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-5" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-8" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-7" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-11" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-10" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
Exception in thread "Thread-12" java.lang.IllegalMonitorStateException
at java.lang.Object.notify(Native Method)
at multiplyThread.run(multiplyThread.java:49)
line 49 in multiplyThread is the "notify()"..I think I need to use the synchronized differently but I am not sure how.
If anyone can help this code to work I will really appreciate it.
To be able to call notify() you need to synchronize on the same object.
synchronized (someObject) {
someObject.wait();
}
/* different thread / object */
synchronized (someObject) {
someObject.notify();
}
While using the wait and notify or notifyAll methods in Java the following things must be remembered:
Use notifyAll instead of notify if you expect that more than one thread will be waiting for a lock.
The wait and notify methods must be called in a synchronized context. See the link for a more detailed explanation.
Always call the wait() method in a loop because if multiple threads are waiting for a lock and one of them got the lock and reset the condition, then the other threads need to check the condition after they wake up to see whether they need to wait again or can start processing.
Use the same object for calling wait() and notify() method; every object has its own lock so calling wait() on object A and notify() on object B will not make any sense.
Do you need to thread this at all ? I'm wondering how big your matrices are, and whether there's any benefit in having one thread print whilst the other does the multiplication.
Perhaps it would be worth measuring this time before doing the relatively complex threading work ?
If you do need to thread it, I would create 'n' threads to perform the multiplication of the cells (perhaps 'n' is the number of cores available to you), and then use the ExecutorService and Future mechanism to dispatch multiple multiplications simultaneously.
That way you can optimise the work based on the number of cores, and you're using the higher level Java threading tools (which should make life easier). Write the results back into a receiving matrix, and then simply print this once all your Future tasks have completed.
Let's say you have 'black box' application with some class named BlackBoxClass that has method doSomething();.
Further, you have observer or listener named onResponse(String resp) that will be called by BlackBoxClass after unknown time.
The flow is simple:
private String mResponse = null;
...
BlackBoxClass bbc = new BlackBoxClass();
bbc.doSomething();
...
#override
public void onResponse(String resp){
mResponse = resp;
}
Lets say we don't know what is going on with BlackBoxClass and when we should get answer but you don't want to continue your code till you get answer or in other word get onResponse call. Here enters 'Synchronize helper':
public class SyncronizeObj {
public void doWait(long l){
synchronized(this){
try {
this.wait(l);
} catch(InterruptedException e) {
}
}
}
public void doNotify() {
synchronized(this) {
this.notify();
}
}
public void doWait() {
synchronized(this){
try {
this.wait();
} catch(InterruptedException e) {
}
}
}
}
Now we can implement what we want:
public class Demo {
private String mResponse = null;
...
SyncronizeObj sync = new SyncronizeObj();
public void impl(){
BlackBoxClass bbc = new BlackBoxClass();
bbc.doSomething();
if(mResponse == null){
sync.doWait();
}
/** at this momoent you sure that you got response from BlackBoxClass because
onResponse method released your 'wait'. In other cases if you don't want wait too
long (for example wait data from socket) you can use doWait(time)
*/
...
}
#override
public void onResponse(String resp){
mResponse = resp;
sync.doNotify();
}
}
You can only call notify on objects where you own their monitor. So you need something like
synchronized(threadObject)
{
threadObject.notify();
}
notify() needs to be synchronized as well
I'll right simple example show you the right way to use wait and notify in Java.
So I'll create two class named ThreadA & ThreadB. ThreadA will call ThreadB.
public class ThreadA {
public static void main(String[] args){
ThreadB b = new ThreadB();//<----Create Instance for seconde class
b.start();//<--------------------Launch thread
synchronized(b){
try{
System.out.println("Waiting for b to complete...");
b.wait();//<-------------WAIT until the finish thread for class B finish
}catch(InterruptedException e){
e.printStackTrace();
}
System.out.println("Total is: " + b.total);
}
}
}
and for Class ThreadB:
class ThreadB extends Thread{
int total;
#Override
public void run(){
synchronized(this){
for(int i=0; i<100 ; i++){
total += i;
}
notify();//<----------------Notify the class wich wait until my finish
//and tell that I'm finish
}
}
}
Simple use if you want How to execute threads alternatively :-
public class MyThread {
public static void main(String[] args) {
final Object lock = new Object();
new Thread(() -> {
try {
synchronized (lock) {
for (int i = 0; i <= 5; i++) {
System.out.println(Thread.currentThread().getName() + ":" + "A");
lock.notify();
lock.wait();
}
}
} catch (Exception e) {}
}, "T1").start();
new Thread(() -> {
try {
synchronized (lock) {
for (int i = 0; i <= 5; i++) {
System.out.println(Thread.currentThread().getName() + ":" + "B");
lock.notify();
lock.wait();
}
}
} catch (Exception e) {}
}, "T2").start();
}
}
response :-
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
T1:A
T2:B
we can call notify to resume the execution of waiting objects as
public synchronized void guardedJoy() {
// This guard only loops once for each special event, which may not
// be the event we're waiting for.
while(!joy) {
try {
wait();
} catch (InterruptedException e) {}
}
System.out.println("Joy and efficiency have been achieved!");
}
resume this by invoking notify on another object of same class
public synchronized notifyJoy() {
joy = true;
notifyAll();
}
For this particular problem, why not store up your various results in variables and then when the last of your thread is processed you can print in whatever format you want. This is especially useful if you are gonna be using your work history in other projects.
This looks like a situation for producer-consumer pattern. If you’re using java 5 or up, you may consider using blocking queue(java.util.concurrent.BlockingQueue) and leave the thread coordination work to the underlying framework/api implementation.
See the example from
java 5:
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
or java 7 (same example):
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html
You have properly guarded your code block when you call wait() method by using synchronized(this).
But you have not taken same precaution when you call notify() method without using guarded block : synchronized(this) or synchronized(someObject)
If you refer to oracle documentation page on Object class, which contains wait() ,notify(), notifyAll() methods, you can see below precaution in all these three methods
This method should only be called by a thread that is the owner of this object's monitor
Many things have been changed in last 7 years and let's have look into other alternatives to synchronized in below SE questions:
Why use a ReentrantLock if one can use synchronized(this)?
Synchronization vs Lock
Avoid synchronized(this) in Java?