So I wrote a Program to draw and display a 3D cube, using these simple conversion formula's as used in isometric graphs:
x2 = x*cos(30) - y*cos(30)
y2 = x*sin(30) + y*sin(30) + z
The coordinate conversion is fine and everything comes out in perspective.
The Issue is rotating, Large degree rotations messes up all the coordinates and gives me an entire shape.
And rotating at small degrees many many times, (ie 1000 1degree rotation or more) reduces the size of the cube.
public void rotateX(double dg) //cube is shrinking along y and z
{
y = (y*Math.cos(dg)-z*Math.sin(dg));
z = (y*Math.sin(dg)+z*Math.cos(dg));
}
public void rotateY(double dg) //cube is shrinking along x and z
{
x = x*Math.cos(dg)-z*Math.sin(dg);
z = x*Math.sin(dg)+z*Math.cos(dg);
}
public void rotateZ(double dg) //cube is shrinking along x and y
{
x = x*Math.cos(dg)-y*Math.sin(dg);
y = x*Math.sin(dg)+y*Math.cos(dg);
}
How can i solve this lack of precision of cos and sin after multiple uses??
Here's the entire code written in 3 seperat classes:
Main class:
import java.awt.*;
import javax.swing.*;
import java.util.Random;
public class Frame extends JFrame
{
private Random rnd = new Random();
private cubeGUI cube;
public Frame()
{
super();
}
public void paint(Graphics g)
{
cube = new cubeGUI(75,300.0,300.0);
cube.convertall();
double dg = 0.5; // The Smaller the degree, the less the error after long rotations.
int sl = 5;
int turns, axe;
while (1 == 1)
{
turns = rnd.nextInt(200)-100;
axe = rnd.nextInt(3);
for(int i = 0; i<turns; i++)
{
switch (axe)
{
case 0: cube.rotatx(dg); break;
case 1: cube.rotaty(dg); break;
case 2: cube.rotatz(dg); break;
}
g.clearRect(0,0,600,600);
g.drawLine(cube.a.x2,cube.a.y2,cube.b.x2,cube.b.y2);
g.drawLine(cube.a.x2,cube.a.y2,cube.c.x2,cube.c.y2);
g.drawLine(cube.c.x2,cube.c.y2,cube.d.x2,cube.d.y2);
g.drawLine(cube.b.x2,cube.b.y2,cube.d.x2,cube.d.y2);
g.drawLine(cube.e.x2,cube.e.y2,cube.f.x2,cube.f.y2);
g.drawLine(cube.e.x2,cube.e.y2,cube.g.x2,cube.g.y2);
g.drawLine(cube.g.x2,cube.g.y2,cube.h.x2,cube.h.y2);
g.drawLine(cube.f.x2,cube.f.y2,cube.h.x2,cube.h.y2);
g.drawLine(cube.a.x2,cube.a.y2,cube.e.x2,cube.e.y2);
g.drawLine(cube.b.x2,cube.b.y2,cube.f.x2,cube.f.y2);
g.drawLine(cube.c.x2,cube.c.y2,cube.g.x2,cube.g.y2);
g.drawLine(cube.d.x2,cube.d.y2,cube.h.x2,cube.h.y2);
try
{
Thread.sleep(sl); //Rotation Speed, In relation with Angle of rotation.
} catch(InterruptedException ex)
{
Thread.currentThread().interrupt();
}
}
}
}
public static void main(String[] args)
{
Frame cube = new Frame();
cube.setSize(600,600);
cube.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
cube.setVisible(true);
}
}
cube class:
public class cubeGUI
{
public Point center,a,b,c,d,e,f,g,h;
private double x, y;
public cubeGUI(int m, double x, double y)
{
this.x = x;
this.y = y;
a = new Point(-m,-m,-m);
b = new Point(m,-m,-m);
c = new Point(-m,m,-m);
d = new Point(m,m,-m);
e = new Point(-m,-m,m);
f = new Point(m,-m,m);
g = new Point(-m,m,m);
h = new Point(m,m,m);
}
public void rotatx(double dg)
{
a.rotateX(Math.toRadians(dg));
b.rotateX(Math.toRadians(dg));
c.rotateX(Math.toRadians(dg));
d.rotateX(Math.toRadians(dg));
e.rotateX(Math.toRadians(dg));
f.rotateX(Math.toRadians(dg));
g.rotateX(Math.toRadians(dg));
h.rotateX(Math.toRadians(dg));
convertall();
}
public void rotaty(double dg)
{
a.rotateY(Math.toRadians(dg));
b.rotateY(Math.toRadians(dg));
c.rotateY(Math.toRadians(dg));
d.rotateY(Math.toRadians(dg));
e.rotateY(Math.toRadians(dg));
f.rotateY(Math.toRadians(dg));
g.rotateY(Math.toRadians(dg));
h.rotateY(Math.toRadians(dg));
convertall();
}
public void rotatz(double dg)
{
a.rotateZ(Math.toRadians(dg));
b.rotateZ(Math.toRadians(dg));
c.rotateZ(Math.toRadians(dg));
d.rotateZ(Math.toRadians(dg));
e.rotateZ(Math.toRadians(dg));
f.rotateZ(Math.toRadians(dg));
g.rotateZ(Math.toRadians(dg));
h.rotateZ(Math.toRadians(dg));
convertall();
}
public void convertall()
{
a.convert(x,y);
b.convert(x,y);
c.convert(x,y);
d.convert(x,y);
e.convert(x,y);
f.convert(x,y);
g.convert(x,y);
h.convert(x,y);
}
}
Point class (this calculates all coordinates):
public class Point
{
private double x, y, z, F;
public int x2, y2;
public Point(double a, double b, double c)
{
x = a;
y = b;
z = c;
}
public int getX()
{
return (int)x;
}
public int getY()
{
return (int)y;
}
public int getZ()
{
return (int)z;
}
public void rotateX(double dg) //cube is shrinking along y and z
{
y = (y*Math.cos(dg)-z*Math.sin(dg));
z = (y*Math.sin(dg)+z*Math.cos(dg));
}
public void rotateY(double dg) //cube is shrinking along x and z
{
x = x*Math.cos(dg)-z*Math.sin(dg);
z = x*Math.sin(dg)+z*Math.cos(dg);
}
public void rotateZ(double dg) //cube is shrinking along x and y
{
x = x*Math.cos(dg)-y*Math.sin(dg);
y = x*Math.sin(dg)+y*Math.cos(dg);
}
public void convert(double xx, double yy)
{
x2 = (int)(-(Math.cos(Math.toRadians(30))*x - Math.cos(Math.toRadians(30))*y) + xx);
y2 = (int)(-(Math.sin(Math.toRadians(30))*x + Math.sin(Math.toRadians(30))*y + z) + yy);
}
public String toString()
{
return ("Y = " + y + ", Z = " + z);
}
}
The usual approach is to represent the cube as a point configuration and a current transformation. When rotating, update the transformation but do not update the points themselves. Only when point coordinates are needed (for rendering, displaying coordinate values, etc.) should the transformation be applied to the points. The points themselves should never be modified.
This will eliminate the errors that accumulate when many rotations are applied in sequence. However, it is important that the transformation matrix be maintained as a rotation (determinant 1). Otherwise the transformation will still introduce random artifacts (scaling, skewing, or other distortions). Thus, after each rotation is applied, the transformation matrix should be renormalized so that it remains a pure transformation. The normalization can be as simple as dividing each entry by the determinant.
You use x, which is already changed:
x = x*Math.cos(dg)-y*Math.sin(dg);
y = x*Math.sin(dg)+y*Math.cos(dg);
it is right variant.
double xx =x;
x = x*Math.cos(dg)-y*Math.sin(dg);
y = xx*Math.sin(dg)+y*Math.cos(dg);
Related
I am coding a method that calculates the intersection of a line and a circle as a first step to write some kind of ray casting demo. In case an intersection is calculated it gets the shortest distance to the two points of intersection that will be the collision point, then it repeats the process where the new line originates from the collision point.
I was motivated by this video of a laser hitting different circles.
The method receives the angle of the line, the point where it originates, the size of the window, the radius of the circles, the array of centers of the circles and the GraphicsContext object from JavaFX.
The method has a couple of booleans to determine whether a collision has been made or not, and an ArrayList to store the collisions that will be later drawn on a JavaFX Canvas.
Inside a while loop the equation of the line is defined with the form y = m*x + b. Then checks which of the circles has a distance between the circle center and the line smaller than the radius of the line, this is calculated with the method explained here: math.stackexchange.com.
In case the distance to the center is smaller than the radius a collision occurs against that circle. As far as I know to find the intersection between a line and a circle you need to solve the equation system: y = m*x + b, (x-x1)^2 + (y-y1)^2 = r^2, that I solved via substitution. This results in a second degree polinomial equation that has a real solution if: p1*p1 >= 4*p0*p2.
The solution with the shortest distance to the origin point is the one that the line hits first and is the solution to our problem. A new angle is calculated with the center of the circle, the collision point and the origin point. With this a new line is defined and the loop repeats until no collision against the circles is calculated, situation where the collision against the borders of the window is calculated.
At the end a for loop draws all of the lines defined as couples of points inside collisionList.
This is the code, I've tried to comment it as best as I could:
private void extendPoint(double angle, Point origin, double x, double y, double radius, ArrayList<Point> pointList) {
double newAngle = angle; //Angle that defines the direction of the line
//This is used if the line does not hit a circle
double angle11 = Math.atan2(origin.getY(), origin.getX());
double angle_11 = Math.atan2(origin.getY(), -origin.getX());
double angle_1_1 = angle11 + Math.PI;
double angle1_1 = angle_11 + Math.PI;
boolean noCollision = true; //Will be true if the line does not hit a circle
boolean repeat = true; //If no collision has been made the while loop stops with this
Point currentPoint = Point.copy(origin); // (x0, y0)
Point collision = new Point(-1,-1); //Stores the collision point
Point newDirection = new Point(-1,-1); //Stores the new direction after a collision, returns(magnitud, angle) of a vector
ArrayList <Point> collisionList = new ArrayList<>(); //ArrayList of collision points that will be drawn later
collisionList.add(origin); //The origin point is added as a collision for representation purposes
while(repeat == true) {
//Line equation that passes through a point with an angle
//y = a*x - a*x0 + y0; -> y = m*x + b;
double m = Math.tan(-newAngle);
double a = m;
double b = -m*currentPoint.getX() + (currentPoint.getY());
for(int i = 0; i < pointList.size(); i++) {
Point gridPoint = pointList.get(i); //(x1, y1)
//From: https://math.stackexchange.com/questions/2552687/distance-between-line-and-point
//Given a line defined as A*x + B*y + C = 0
//x*(y1-y0)+y*(x1-x0)+(-y0*(x1-x0)-x0*(y1-y0)
double A = gridPoint.getY()-currentPoint.getY();
double B = gridPoint.getX()-currentPoint.getX();
double C = -currentPoint.getY()*B + currentPoint.getX()*A;
// double d_cp_gp = Math.abs(m*gridPoint.getX()-b*(gridPoint.getY()))/(Math.sqrt(m*m + 1));
double d_cp_gp = Math.abs(A + B + C)/Math.sqrt(A*A + B*B);
if(d_cp_gp < radius) {
System.out.println("radio " + d_cp_gp);
//The intersection between a line and a circunference:
//Circunference: (x-x1)^2 + (y-y1)^2 = r^2
//Line: y = tan(alpha)*(x-x0)+y0 -> y = a*x + b; a = tan(alfa), b = -tan(alfa)*x0 + y0
//Substituting the line equation in the circunference equation:
//x^2*(1+a^2) + x*(-2x1 + 2*a*b) + 2*a*b + x1^2+b^2-r^2 = 0
double p2 = 1 + a*a;
double p1 = -2*gridPoint.getX() + 2*a*b;
double p0 = gridPoint.getX()*gridPoint.getX() + b*b - radius*radius;
double p0_ = 4*p0*p2;
System.out.println(p1*p1 + " " + p0_);
//Check if the second order equation has solutions
if(p1*p1 >= p0_) {
System.out.println("IT HAS SOLUTION");
//Solution
double root = Math.sqrt(p1*p1 - p0_);
double sol1x = (-p1 + root)/(2*p2);
double sol2x = (-p1 - root)/(2*p2);
double sol1y = a*sol1x - a*currentPoint.getX() + currentPoint.getY();
double sol2y = a*sol1x - a*currentPoint.getX() + currentPoint.getY();
//The line will intersect twice with the circle, we want the solution
//with the shortest distance to currentPoint (x0,y0)
double distSol1 = Math.sqrt(Math.pow(currentPoint.getX()- sol1x, 2) +
Math.pow(currentPoint.getY() - sol1y, 2));
double distSol2 = Math.sqrt(Math.pow(currentPoint.getX()- sol2x, 2) +
Math.pow(currentPoint.getY() - sol2y, 2));
//The collision point is the point that the line hits first
if(distSol1 < distSol2) {
collision.setXY(sol1x, sol1y);
}
else {
collision.setXY(sol2x, sol2y);
}
//newAngle returns a vector with the form (magnitude, angle)
newDirection = newAngle(currentPoint, gridPoint, collision, radius);
currentPoint = collision;
//The new line after the collision is defined here
m = Math.tan(-newDirection.getY());
a = m;
b = -m*collision.getX() + (collision.getY());
collisionList.add(collision);
System.out.println("A collision has been calculated successfully: " + collision.toString());
//If a collision
noCollision= false;
}
}
//If no collisions have been detected at the end of the for loop exit the while loop
if(i == pointList.size() - 1 && noCollision == true) {
repeat = false;
}
}
//If no collision has been calculated with the circles this
//calculates the collision with the limits of the window
if(noCollision == true && repeat == false) {
if(angle<angle11 || angle > angle1_1) {
collision.setXY(x, m*x + b);
}
else if(angle > angle11 && angle < angle_11){
collision.setXY((0 - b)/m, 0);
}
else if(angle > angle_11 && angle < angle_1_1) {
collision.setXY(0, m*0 + b);
}
else if(angle> angle_1_1 && angle < angle1_1) {
collision.setXY((y - b)/m, y);
}
collisionList.add(collision);
}
}
System.out.println("Number of collisions: " + (int)(collisionList.size() - 1));
}
My main problem is that the shortest distance to a circle doesn't seem to be calculated properly, which directly difficults if the rest of the code works properly.
I've tried different methods to find the shortest distance and this is the one that I liked the most as I find it easy to understand, however the implementation doesn't work properly. I've thought that this could be because of JavaFX coordinate system (x increases to the right and y to the bottom) but I'm not sure, I'm a bit lost at this point.
Thanks for your time.
Edit:
As suggested I am adding some extra code to facilitate reproducibility.
The Point and Vector classes are defined as follows:
public class Point {
private double x;
private double y;
public Point(double x, double y) {
this.x = x;
this.y = y;}
public double getX() {
return x;}
public double getY() {
return y;}
public void setX(double x) {
this.x = x;}
public void setY(double y) {
this.y = y;}
public void setXY(double x, double y) {
this.x = x;
this.y = y;}
#Override
public String toString() {
return("(" + this.x + "," + this.y + ")");
}
public static Point copy(Point a) {
return new Point(a.getX(), a.getY());
}
}
public class Vector {
private double vx;
private double vy;
private double ptoApX;
private double ptoApY;
private double angle;
private double modulo;
public Vector(double vx, double vy) {
this.vx = vx;
this.vy = vy;
this.ptoApX = 0;
this.ptoApY = 0;
this.angle = angle(vx,vy);
this.modulo = modulo(vx,vy);
}
//Getters
public double getVx() {
return this.vx;
}
public double getVy() {
return this.vy;
}
public double getPtoApX() {
return this.ptoApX;
}
public double getPtoApY() {
return this.ptoApY;
}
public double getAngle() {
return this.angle;
}
public double getModulo() {
return this.modulo;
}
//Setters
public void setVx(double vx) {
this.vx = vx;
}
public void setVy(double vy) {
this.vy = vy;
}
public void setPtoApX(double ptoApX) {
this.ptoApX = ptoApX;
}
public void setPtoApY(double ptoApY) {
this.ptoApY = ptoApY;
}
public void setAngle(double angle) {
this.angle = angle;
}
public void setModulo(double modulo) {
this.modulo = modulo;
}
//To String
#Override
public String toString() {
return "("+this.getVx()+","+this.getVy()+")";
}
public static double dotProduct(Vector a, Vector b) {
return a.getVx()*b.getVx() + a.getVy()*b.getVy();
}
public static Vector escalarProduct(Vector v, double n) {
return new Vector(n*v.getVx(), n*v.getVy());
}
public static Vector vectorWith2Points(Point a, Point b) {
Point p = Point.resta(a,b);
return new Vector(p.getX(),p.getY());
}
public static Vector vectorPointAngle(Point a, double angle, double modulo) {
double angleRadians = Math.toRadians(angle);
Point b = new Point(Math.cos(angleRadians)*modulo, Math.sin(angleRadians)*modulo);
return vectorWith2Points(a,b);
}
public static double modulo(double vx, double vy) {
return Math.sqrt(vx*vx + vy*vy);
}
public static double angle(double vx, double vy) {
return Math.atan2(vy, vx);
}
public static Vector normalize(Vector v) {
return new Vector(v.getVx()/v.getModulo(),v.getVy()/v.getModulo());
}
public static double angle2vectors(Vector u, Vector v) {
double argument = dotProduct(u,v)/(u.getModulo()*v.getModulo());
return Math.acos(argument);
}
public static Point polar2cart(double r, double angle) {
return new Point(r*Math.cos(angle), r*Math.sin(angle));
}
public static Point cart2polar(Point p) {
return new Point(modulo(p.getX(), p.getY()), angle(p.getX(), p.getY()));
}
}
And the method to obtain the new angle after a collision:
private Point newAngle(Point origin, Point center, Point c, double radius) {
//Normal vector
Vector n = Vector.vectorWith2Points(c, center);
Vector nNorm = Vector.normalize(n);
//Incident vector
Vector d = Vector.vectorWith2Points(c, origin);
//Tangent vector
Vector tg = new Vector(-nNorm.getVy(), nNorm.getVx());
//Reflected vector
double product = Vector.dotProduct(d,tg);
Vector r = new Vector(d.getVx()-2*product*tg.getVx(),
d.getVy() - 2*product*tg.getVy());
return new Point(r.getModulo(), r.getAngle());
}
An example of the code of different angles where a collision should be detected:
double x = 600;
double y = 400;
double radius = 10;
Point origin = new Point(x/2, y/2);
ArrayList<Point> pointList = new ArrayList<>();
pointList.add(new Point(40,40));
pointList.add(new Point(500,100));
pointList.add(new Point(40,330));
pointList.add(new Point(450,300));
//This should return a solution
extendPoint(0.4363323129985824, origin, x, y, radius, pointList);
extendPoint(2.6179938779914944, origin, x, y, radius, pointList);
//this returns a solution when it should not
extendPoint(1.5707963267948966, origin, x, y, radius, pointList);
extendPoint(-1.5707963267948966, origin, x, y, radius, pointList);
I wrote an class with everything needed to run the code here: https://pastebin.com/wMjUh9pZ
I think you should create a class that represents an intersection by a ray.
class Intersection{
double distance;
Point loc;
double normal;
}
That way, distance is along the ray and normal is the normal of the object intersected.
Then I would have a method for finding the intersetion of a circle and a point.
List<Intersection> lineAndCircle( Point org, double angle, Point center, double radius){...}
You seem to have a similar method but you're doing more work in it.
Then you also want to check the edge of the screen.
Intersection lineAndBoundary( Point org, double angle){ ... }
You have a very similar method, but you seem to be doing a lot more work in the method. . This way you are testing separate methods. Then your algorithm works as.
1 go through circles and find intersections.
2 get the intersection with the boundary.
3 find the closest intersection ( the smallest distance greater than 0 )
Doing it this way makes it a bit more extensible. First our ray is re-used a lot. Lets make a class.
class Ray{
Point origin;
double angle;
}
Then we collide a ray with multiple objects.
interface Interceptable{
List<Intersection> intercepts(Ray r);
}
Then we can use different classes.
class Circle implements Interceptable{
Point pos;
double radius;
#Override
List<Intersection> collides(Ray r){
...
}
}
Now you can right collides and testable.
Circle a = new Circle( new Point( 40, 40 ), 5 );
List<Intersection> yes = a.collides( new Ray( new Point(0, 0), 3.14/4 ) );
List<Intersection> no = a.collides( new Ray( new Point(0, 0), 0) ) );
Then you can narrow your example down to. "How do I write a collide method?" or "Why doesn't my collide method work for this ray/circle pair? I expect it to hit at two points, but it misses." etc.
Here is a complete runnable example that creates a swing window. I kinda enjoy making toy programs like this.
Note that I used an interface for the Intersectable. So now it is circles, but it could be anything that returns a list of Intersection
import javax.swing.*;
import java.awt.Graphics;
import java.awt.Dimension;
import java.awt.Color;
import java.awt.event.*;
import java.util.*;
public class RayAndCircle{
public static void main(String[] args){
List<Intersectable> circles = new ArrayList<>();
for(int i = 0; i<250; i++){
double r = Math.random()*50 + 50;
double x = 2048*Math.random();
double y = 2048*Math.random();
circles.add( new Circle( r, new double[]{x,y}));
}
List<LineSegment> segments = new ArrayList<>();
JFrame frame = new JFrame("Ray caster");
JPanel panel = new JPanel(){
#Override
public Dimension getPreferredSize(){
return new Dimension(2048, 2048);
}
#Override
public void paintComponent( Graphics g){
g.setColor(Color.RED);
for( Intersectable c: circles ){
c.draw(g);
}
g.setColor(Color.BLACK);
for( LineSegment segment: segments){
g.drawLine( (int) segment.a[0], (int) segment.a[1],(int)segment.b[0], (int)segment.b[1]);
}
}
};
panel.addMouseListener( new MouseAdapter(){
#Override
public void mouseClicked( MouseEvent evt ){
double x = evt.getPoint().getX();
double y = evt.getPoint().getY();
double theta = Math.random() * Math.PI * 2;
double dx = Math.cos( theta );
double dy = Math.sin( theta );
Ray ray = new Ray( new double[] {x, y}, new double[]{ dx, dy } );
int count = 500;
Intersectable last = null;
while( ray != null && count > 0 ){
Intersection hit = null;
Intersectable next = null;
for(Intersectable c: circles){
if(c == last){
continue;
}
List<Intersection> intersections = c.intersects(ray);
for(Intersection i : intersections){
if( hit == null ){
hit = i;
next = c;
} else{
if( hit.s > i.s ){
hit = i;
next = c;
}
}
}
}
if(hit != null){
last = next;
segments.add( new LineSegment( ray.origin, new double[]{ hit.pos[0], hit.pos[1] } ) );
count--;
//reflected portion of ray.
double dot = hit.normal[0]*ray.direction[0] + hit.normal[1]*ray.direction[1];
double rx = ray.direction[0] - 2 * hit.normal[0]*dot;
double ry = ray.direction[1] - 2 * hit.normal[1]*dot;
double z = Math.sqrt(rx*rx + ry*ry);
ray = new Ray(hit.pos, new double[] { rx/z, ry/z});
} else{
ray = null;
}
}
panel.repaint();
}
});
frame.setContentPane(panel);
frame.pack();
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}
class Ray{
double[] origin; double[] direction;
public Ray( double[] origin, double[] direction){
this.origin = new double[]{origin[0], origin[1]};
this.direction = new double[]{direction[0], direction[1]};
}
}
class Intersection{
double s;
double[] pos;
double[] normal;
Circle b;
public Intersection(double s, double[] pos, double[] normal){
this.s = s;
this.pos = pos;
setNormal(normal);
}
public void setNormal(double[] normal){
double m = Math.sqrt(normal[0]*normal[0] + normal[1]*normal[1]);
if( Double.isNaN(m) || m == 0) throw new RuntimeException("Invalid normal! Magnitude of" + m);
this.normal = new double[] { normal[0]/m , normal[1]/m };
}
}
interface Intersectable{
List<Intersection> intersects(Ray ray);
void draw(Graphics g);
}
class Circle implements Intersectable{
double[] origin;
double radius;
public Circle( double radius, double[] origin){
this.radius = radius;
this.origin = new double[]{origin[0], origin[1]};
}
Intersection intersectionAt(Ray ray, double s){
//intersection.
double locx = ray.origin[0] + s*ray.direction[0];
double locy = ray.origin[1] + s*ray.direction[1];
double nx = (locx - origin[0])/radius;
double ny = (locy - origin[1])/radius;
return new Intersection( s, new double[]{ locx, locy }, new double[]{nx, ny} );
}
public List<Intersection> intersects(Ray ray){
double rx = origin[0] - ray.origin[0];
double ry = origin[1] - ray.origin[1];
double m2 = rx*rx + ry*ry;
double m = Math.sqrt(m2);
//position along ray that is closest to circles origin.
double s = rx*ray.direction[0] + ry*ray.direction[1];
//closest distance to circle.
double approach = Math.sqrt(m2 - s*s);
List<Intersection> result = new ArrayList<>();
if( approach < radius ){
//two intersections at points on circle.
//radius is hypotenuse and approach is one of the lengths.
double l = Math.sqrt( radius*radius - approach*approach);
double s1 = s - l;
if(s1 > 0){
result.add( intersectionAt(ray, s1) );
}
double s2 = s + l;
if(s2 > 0){
//intersection!
result.add(intersectionAt(ray, s2) );
}
} else if(approach == radius){
//one intersection tangent.
if( s > 0 ){
result.add( intersectionAt(ray, s) );
}
} else{
//miss.
}
return result;
}
public void draw(Graphics g){
g.fillOval(
(int)(origin[0] - radius),
(int)(origin[1] - radius),
(int)radius*2,
(int)radius*2
);
}
}
class LineSegment{
double[] a, b;
public LineSegment( double[] a, double[] b){
this.a = new double[]{a[0], a[1]};
this.b = new double[]{b[0], b[1]};
}
}
You'll probably be most interested in the intersects method of the Circle class, and the small chunk of code burried in the mouseClicked method that calculates the reflected ray.
If you only want to know if the line intersects if a given circle, create a second line which originates at the center of the given circle and the direction is the direction of your initial line rotated by 90 degrees. Then compute the intersection of the two lines. If then the distance between the intersection point and the center of the circle is smaller then the radius, both intersect.
A while ago I wrote a small Geometry lib, I striped out the sections which are relevant for you, here is my code:
Line class
public class Line {
final Vector2D positionVector;
final Vector2D directionVector;
public Line(final Vector2D positionVector, final Vector2D directionVector) {
this.positionVector = positionVector;
this.directionVector = directionVector;
}
public OptionalDouble computeIntersection(final Line line) {
final double numerator = line.getPositionVector().subtract(this.positionVector).cross(this.directionVector);
final double denominator = this.directionVector.cross(line.directionVector);
if (Math.abs(numerator) < 1e-10 && Math.abs(denominator) < 1e-10) {
// collinear
return OptionalDouble.of(Double.POSITIVE_INFINITY);
} else if (Math.abs(denominator) < 1e-10) {
// parallel
return OptionalDouble.empty(); // Lines are parallel.
}
final double t = line.getPositionVector().subtract(this.positionVector).cross(line.directionVector) / denominator;
return OptionalDouble.of(t);
}
public Vector2D getPositionVector() {
return positionVector;
}
public Vector2D getDirectionVector() {
return directionVector;
}
public Point2D getClosestPointOnLine(final Point2D point) {
final Line line = new Line(new Vector2D(point.getX(), point.getY()), this.directionVector.turn90DegreeClockwise());
final OptionalDouble intersection = this.computeIntersection(line);
final Vector2D result = this.positionVector.add(this.directionVector.lerp(intersection.getAsDouble()));
return new Point2D(result.getX(), result.getY());
}
}
intersection function
public static PointResult intersection(final Line l1, final Circle c1) {
final Point2D intersection = l1.getClosestPointOnLine(c1.getCenter());
final double dist = intersection.distance(c1.getCenter());
if (Math.abs(dist - c1.getRadius()) < 1e-10) {
final List<Point2D> result = new LinkedList<>();
result.add(intersection);
return new PointResult(Collections.unmodifiableList(result));
} else if (dist < c1.getRadius()) {
// we have two points
final double adjacentLeg = Math.sqrt(c1.getRadius() * c1.getRadius() - dist * dist);
final Point2D pt1 = intersection.pointAt(l1.getDirectionVector().angle(), adjacentLeg);
final Point2D pt2 = intersection.pointAt(l1.getDirectionVector().angle() + Math.PI, adjacentLeg);
final List<Point2D> result = new LinkedList<>();
result.add(pt1);
result.add(pt2);
return new PointResult(Collections.unmodifiableList(result));
}
return new PointResult();
}
TestCase
#Test
void testIntersectionLineCircleTwoPoints() {
final Point2D ptCircleCenter = new Point2D(2.0, 5.0);
final Point2D ptLineCircleIntersection = new Point2D(5.0, 2.0);
final Point2D pt1 = new Point2D(3.0, 0.0);
final Point2D pt2 = new Point2D(7.0, 4.0);
final double a = Math.sqrt((2.0 * 2.0) + (2.0 * 2.0));
final double b = ptCircleCenter.diff(ptLineCircleIntersection).norm();
final double radius = Math.sqrt((a * a) + (b * b));
final Line l1 = new Line(pt1, pt2);
final Circle circle = new Circle(ptCircleCenter, radius);
PointResult intersection = GeometryOperation.intersection(l1, circle);
assertTrue(intersection.getPoints().isPresent());
assertEquals(2, intersection.getPoints().get().size());
assertEquals(7.0, intersection.getPoints().get().get(0).getX(), 1e-10);
assertEquals(4.0, intersection.getPoints().get().get(0).getY(), 1e-10);
assertEquals(3.0, intersection.getPoints().get().get(1).getX(), 1e-10);
assertEquals(0.0, intersection.getPoints().get().get(1).getY(), 1e-10);
}
I did not add the Circle, Vector2D and Point2D class because they are trivial. And the class PointResult is just a list.
I'm making a rudimentary particle simulator in Java. For now, all I've done is make the particles atract each other with an equivalent to the electrical force. This part works fine (or at least as well as you would expect for such a basic model).
However, when I add a few particles, the program loses their values for position, velocity and acceleration, but does not lose other data (like, for example, their ID number). This does not always happens with the same amount of particles. Sometimes it happens when I add the fourth, fifth, second or third particle, but never with the first one. It always happens when I click to add a particle, and after it fails, I can no longer add anything (which is odd), and the particles don't move anymore (as you would expect, being their velocities and accelerations 0).
I am storing the particles in an ArrayList. The array does not lose the data (I've checked, the objects are in there, and I can even call their toString() method and retrieve their ID). The problem seems to be related to synchronization (given that it doesn't always happen at the same moment, it seems to be a bit random), but I can't figure out what it is.
I leave all the relevant code below.
public class Scene implements KeyListener, MouseListener, MouseMotionListener{
public static ArrayList<Particle> particleArray = new ArrayList<Particle>();
public static Object particleLock = new Object();
public void update() {
synchronized(particleLock) {
for(Particle particle: particleArray) {
double resultX = 0;
double resultY = 0;
for(int i = 0; i<particleArray.size(); i++) {
if(i != particleArray.indexOf(particle)) {
double[] result = PhysicsEngine.applyElectircalForce(particle, particleArray.get(i));
resultX += result[0];
resultY += result[1];
}
}
particle.netForceX = resultX;
particle.netForceY = resultY;
particle.update();
}
}
}
public void mousePressed(MouseEvent e) {
int mouseX = e.getX();
int mouseY = e.getY();
boolean positive = true;
if(e.getButton() == MouseEvent.BUTTON1) {
positive = true;
} else if(e.getButton() == MouseEvent.BUTTON3) {
positive = false;
}
synchronized(particleLock){
particleArray.add(new Particle(mouseX, mouseY, positive));
System.out.println("New particle added at " + mouseX + ", " + mouseY);
}
}
}
public class Particle{
public double x;
public double y;
public Point2D position;
public double velX;
public double velY;
public double acX;
public double acY;
private Color particleColor;
private int radius = 10;
// PHYSICS
public double mass;
public double charge;
public double netForceX;
public double netForceY;
private boolean positive;
public Particle(double x, double y, boolean positive) {
this.x = x - radius;
this.y = y - radius;
this.velX = 3;
this.velY = 2;
this.acX = 0;
this.acY = 0;
this.mass = 100;
this.positive = positive;
if(positive) {
this.charge = defaultCharge;
} else {
this.charge = defaultCharge*(-1);
}
this.position = new Point2D.Double(x, y);
particleColor = Color.WHITE;
}
public void update() {
acX = netForceX / mass;
acY = netForceY / mass;
velX += acX;
velY += acY;
if(x<=0 || x>=Simulation.WIDTH - 23){
velX = velX * -1;
x+= velX;
}
if(y<=0 || y>=Simulation.HEIGHT - 35){
velY = velY * -1;
y+= velY;
}
synchronized(Scene.particleLock) {
for(Particle otherPart: Scene.particleArray) {
if(otherPart.equals(this)) {
continue;
}
double distance = otherPart.position.distance(position);
if(distance <= radius + otherPart.radius) {
//aplicar lo que sé de choques de alguna manera
}
}
}
x+= velX;
y+= velY;
position.setLocation(x, y);
}
}
public class PhysicsEngine {
static double electricalConstant = 100000;
public static double[] applyElectircalForce(Particle thisPart, Particle otherPart) {
double distance = otherPart.position.distance(thisPart.position);
double angle = Math.asin(Math.abs(thisPart.y - otherPart.y)/distance);
double force = (electricalConstant * thisPart.charge * otherPart.charge)/Math.pow(distance, 2);
double forceX = force * Math.cos(angle);
double forceY = force * Math.sin(angle);
if(otherPart.x < thisPart.x) {
forceX = forceX*(-1);
}
if(otherPart.y < thisPart.y) {
forceY = forceY*(-1);
}
double[] result = {forceX, forceY};
return result;
}
}
I once had a similar problem with synchronization when I was working on an android project, try declaring particleArray volatile so that the compiler knows that particleArray will be changed on other or multiple threads. If that does not work I would suggest using a queue to push changes to the particle array from different threads and then pulling the intended changes to the array list in the update method to update your particle array list. In my experience changing values directly between different threads almost always causes problems.
Anyone has a good algorithm for how to get a smooth but predictable movement from point a -> b in 2D in any language?
I need to have one function setting the velocity each frame:
function GetVel(current_pos : Vector2, dest_pos : Vector2, current_vel : Vector2)
{
var new_vel : Vector2d;
.......
return new_vel;
}
and a corresponding:
function GetDestTime(current_pos : Vector2, dest_pos : Vector2, current_vel : Vector2 )
{
var duration : float;
.......
return duration;
}
Simply using acceleration leads up to lots of sliding so some good smoothDamp algorithm that can be predicted the exact dest time is what I need.
Any ideas?
Let's assume v(0) = 0 and v(T) = 0 and, v(t) is a quadratic function which the maximum value at t = T/2.
Accordingly, we can assume the form,
Since the point moves L within T seconds, integrating v(t) from 0 to T must give L. So, we can get another equation,
Solving these equations gives,
Using these a and b, you can compute the current velocity.
It is rather long, but I made a Java toy to realize this. Please check it!
import java.awt.*;
import javax.swing.*;
public class MovePoint extends Canvas implements Runnable {
public static void main(String... args) {
Thread thread = new Thread(new MovePoint());
thread.start();
}
private static final int WIDTH = 500;
private static final int HEIGHT = 500;
public MovePoint() {
super();
this.setBackground(Color.WHITE);
this.setForeground(Color.BLACK);
this.setSize(WIDTH, HEIGHT);
JFrame f = new JFrame("Move Point");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.add(this);
f.pack();
f.setVisible(true);
}
private Point V;
private Point S = new Point(50, 50);
private Point E = new Point(450, 450);
private double duration = 5.0;
private double dt = 0.03;
private Image buffer;
private Graphics gBuf;
public void run() {
double t = 0.0;
V = S.copy();
while (t < duration) {
V = Point.add(V, calcVelocity(V, S, E, t, duration).scale(dt));
t += dt;
repaint();
try {
Thread.sleep(30);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.exit(0);
}
public void paint(Graphics g) {
if (gBuf == null) {
buffer = createImage(WIDTH, HEIGHT);
gBuf = buffer.getGraphics();
}
gBuf.setColor(Color.WHITE);
gBuf.fillRect(0, 0, WIDTH, HEIGHT);
gBuf.setColor(Color.BLACK);
gBuf.fillOval((int)(V.x - 5), (int)(V.y - 5), 11, 11);
g.drawImage(buffer, 0, 0, this);
}
public void update(Graphics g) {
paint(g);
}
public Point calcVelocity(Point current, Point start, Point goal, double t, double T) {
double L = Point.distance(start, goal);
double a = -6.0 / (T * T * T);
double b = 3.0 / (2.0 * T);
double s = (t - 0.5 * T);
double v = a * s * s + b;
return Point.subtract(goal, start).scale(v);
}
}
class Point {
public double x;
public double y;
public Point(double x, double y) {
this.x = x;
this.y = y;
}
public Point copy() {
return new Point(x, y);
}
public static double distance(Point p, Point q) {
double dx = p.x - q.x;
double dy = p.y - q.y;
return Math.sqrt(dx * dx + dy * dy);
}
public static Point add(Point p, Point q) {
return new Point(p.x + q.x, p.y + q.y);
}
public static Point subtract(Point p, Point q) {
return new Point(p.x - q.x, p.y - q.y);
}
public Point scale(double s) {
return new Point(x * s, y * s);
}
}
I'm working on a program that takes a ship object and it moves it. The trouble I am having is that if it goes past a side, then it is supposed to wrap back around on the other side.
Any help would be great :)
Here is my ship Class: The move method is what I need help with. The code I have doesnt work :/
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.geom.AffineTransform;
import java.awt.image.AffineTransformOp;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import junit.framework.TestCase;
public class Ship {
private BufferedImage _image;
private static final int WIDTH = 50;
private Point location;
private Vector speed = new Vector();
private double facing;
/**
* Generate ship at the given starting location and currently stopped
*
* #param starting
* location to copy for this ship
*/
public Ship(Point starting) {
try {
// Use the RunConfigurations >> Arguments > Working Directory tab so
// that this works. Don't just place the nave.png file in the bin
// directory!
_image = ImageIO.read(new File("nave.png"));
} catch (IOException e) {
System.err.println("Cannot find ship _image: " + e.getMessage());
}
location = starting.clone();
facing = Math.PI;
}
public void accelerate(double force) {
// TODO change the speed (velocity, really) by force in the direction
// the ship is facing.
// add a vector of appropriate magnitude by the facing direction
Vector acc = new Vector(facing);
acc = acc.scale(force);
speed = speed.add(acc);
}
public void rotate(double angle) {
// TODO change the direction the ship is facing. Can accept any angle
// as a parameter but should store it as in [0,2*pi)
while (angle <= 0.0f) {
angle += (Math.PI * 2);
}
while (angle >= Math.PI) {
angle -= (Math.PI * 2);
}
facing += angle;
}
public void move(Dimension bounds) {
// TODO Move the ship its speed. The ship should wrap around
// within its box. (Hint: move the ship by the size of the
// bounding area to wrap it around; you may need to do this
// more than once if the ship is moving fast enough.)
location = speed.move(location);
while (location.getX() > bounds.width) {
Vector v = new Vector(location.getX() - WIDTH);
location = v.move(location);
}
while (location.getX() < -WIDTH) {
Vector v = new Vector(location.getX() + WIDTH);
location = v.move(location);
}
while (location.getY() > bounds.height) {
Vector v = new Vector(location.getY() - WIDTH);
location = v.move(location);
}
while (location.getY() < -WIDTH) {
Vector v = new Vector(location.y() + WIDTH);
location = v.move(location);
}
}
public void draw(Graphics g2d) {
double locationX = _image.getWidth() / 2;
double locationY = _image.getHeight() / 2;
AffineTransform tx = AffineTransform.getRotateInstance(facing,
locationX, locationY);
AffineTransformOp op = new AffineTransformOp(tx,
AffineTransformOp.TYPE_BILINEAR);
// Drawing the rotated image at the required drawing locations
// Code for rotating adapted from StackOverflow.
g2d.drawImage(op.filter(_image, null), location.getX(),
location.getY(), null);
}
And here is my vector class: All this code works :)
public class Vector {
private final double _dx, _dy;
public Vector() {
_dy = 0.0;
_dx = 0.0;
}
public Vector(double x, double y) {
_dx = x;
_dy = y;
}
public Vector(Point a, Point b) {
_dx = b.x() - a.x();
_dy = b.y() - a.y();
}
public Vector(double angle) {
_dx = Math.cos(angle);
_dy = Math.sin(angle);
}
public double dx() {
return _dx;
}
public double dy() {
return _dy;
}
public Point move(Point b) {
double x = b.x();
double y = b.y();
x += _dx;
y += _dy;
return new Point(x, y);
}
public Vector add(Vector a) {
double x = (a._dx + _dx);
double y = (a._dy + _dy);
return new Vector(x, y);
}
public Vector scale(double s) {
double x = _dx * s;
double y = _dy * s;
return new Vector(x, y);
}
public double magnitude() {
double x = Math.pow(_dx, 2);
double y = Math.pow(_dy, 2);
return Math.sqrt(x + y);
}
public Vector normalize() {
double x = _dx / magnitude();
double y = _dy / magnitude();
return new Vector(x, y);
}
public Vector rotate(double rads) {
double theta = angle();
theta += rads;
return new Vector(theta);
}
public double angle() {
double alpha = Math.acos(dx() / magnitude());
if (dy() < 0)
alpha = Math.PI - alpha;
return alpha;
}
#Override
public String toString() {
String vector = "[" + _dx + "," + _dy + "]";
return vector;
}
#Override
public boolean equals(Object obj) {
if (obj instanceof Vector) {
Vector vector = (Vector) obj;
if ((Math.abs(_dx - vector._dx) <= (1 / 10000000000f))
&& (Math.abs(_dy - vector._dy) <= (1 / 10000000000f)))
return true;
else
return false;
} else
return false;
}
#Override
public int hashCode() {
return (int) Math.round((angle() * 180) / Math.PI);
}
}
Expanding upon the suggestion to use modulo, you can use it as follows to wrap around easily without loops:
// Assuming move is called for each time frame
// We can update the location of ship using modulo when it exceeds the bounds
public void move(Dimension bounds) {
// TODO Move the ship its speed. The ship should wrap around
// within its box. (Hint: move the ship by the size of the
// bounding area to wrap it around; you may need to do this
// more than once if the ship is moving fast enough.)
location = speed.move(location);
if (location.getX() > bounds.width) {
location.setLocation(location.getX() % bounds.width), location.getY());
}
else if (location.getX() < 0) {
location.setLocation(bounds.width - location.getX(), location.getY());
}
if (location.getY() > bounds.height) {
location.setLocation(location.getX(), location.getY() % bounds.height);
}
else if (location.getY() < 0) {
location.setLocation(location.getX(), bounds.height - location.getY());
}
}
You've provided a lot of code so I may have missed why you need to do this, but rather than create a new delta Vector to move the location, you can alternatively just determine the new wrapped position that the ship should be at set it per setLocation method.
I hope this helps.
Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
Questions concerning problems with code you've written must describe the specific problem — and include valid code to reproduce it — in the question itself. See SSCCE.org for guidance.
Closed 9 years ago.
Improve this question
Well since you folks helped me a lot with my last project, I thought I might find some assistance with the current one :)
The project has us practicing recursion and objects (just started learning about the latter). So we first create a "BasicStar", later a "Snowflake", then comes the "SuperSnowflake" and finally the dreaded "KochCurve".
So I the "BasicStar" was quite easy, and now the idea of the "Snowflake" is to recursively draw "BasicStar"s with smaller radiuses. I have uploaded three images (basic star, which I did successfully, snowflake the way it should be, and my snowflake) so it's easy to understand what I mean. My recursive method draws something very different, and I have no idea what I'm doing wrong. Any help would be great.
Thanks!
(P.S. The Main and Painter classes were made by the university faculty so even if there are things to improve there it won't be relevant. The rest was written by myself)
Main:
package recursion;
import java.util.Scanner;
/*
* the class main get from the user the shape he wish to draw,
* and call the drew method of the desired shape .
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Please enter the number of the shape you wish to draw:\n" +
" 1-example\n" +
" 2-BasicStar\n" +
" 3-Snowflake\n" +
" 4-SuperSnowflake\n" +
" 5-KochCurve\n" +
" 6-KochSnowflake\n");
int shape = sc.nextInt();
// chooses which shape to draw based on the number received
switch(shape){
/*
* An example given to you so you can see how the painted works.
* This example opens a frame, and draws a red line.
*/
case 1:
drawExample();
break;
case 2:
drawBasicStar();
break;
case 3:
drawSnowflake();
break;
case 4:
drawSuperSnowflake();
break;
case 5:
drawKochCurve();
break;
case 6:
drawKochSnowflake();
break;
default: System.out.println("invalid shape");
}
sc.close();
}
// Draw the example line
public static void drawExample(){
Painter.draw("example");
}
// Draw a BasicStar
public static void drawBasicStar(){
Painter.draw("BasicStar");
}
// Draw a Snowflake
public static void drawSnowflake(){
Painter.draw("Snowflake");
}
// Draw a SuperSnowflake
public static void drawSuperSnowflake(){
Painter.draw("SuperSnowflake");
}
// Draw a KochCurve
public static void drawKochCurve(){
Painter.draw("KochCurve");
}
// Draw a KochSnowflake
public static void drawKochSnowflake(){
Painter.draw("KochSnowflake");
}
}
Painter:
package recursion;
import java.awt.Color;
import java.awt.Component;
import java.awt.Dimension;
import java.awt.Graphics;
import javax.swing.JFrame;
/*
* open a frame named aShape and drew the given shape
*/
public class Painter extends Component {
private static final long serialVersionUID = 1L;
private static int SIZE = 600;
private static Painter painter;
private static Graphics g;
private static String shape = null;
// Create a frame and display it
public static void draw(String aShape) {
shape = aShape;
JFrame frame = new JFrame(shape);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setLocationByPlatform(true);
painter = new Painter();
frame.add(painter, null);
frame.pack();
frame.setVisible(true);
}
// returns the Frame's width
public static int getFrameWidth () {
return painter.getSize().width;
}
// returns the Frame's height
public static int getFrameHeight () {
return painter.getSize().height;
}
// changes the color of the lines to be drawn
public static void setColor (String color) {
if (color.equals("red")){
g.setColor(Color.red);
}
else if (color.equals("blue")){
g.setColor(Color.blue);
}
else if (color.equals("green")){
g.setColor(Color.green);
}
}
public static void drawLine (Pixel p1, Pixel p2) {
drawLine((int)Math.round(p1.getX()),(int)Math.round(p1.getY()),(int)Math.round(p2.getX()),(int)Math.round(p2.getY()));
}
// Draw a line on the frame
public static void drawLine (int x1, int y1, int x2, int y2) {
g.drawLine(x1, getFrameHeight()-y1, x2, getFrameHeight()-y2);
}
// Set the default size of the window frame to SIZE*SIZE pixels
public Dimension getPreferredSize() {
return new Dimension(SIZE, SIZE);
}
// paint the frame - draw the shape given (call the draw method in that shape object)
public void paint(Graphics g) {
Painter.g = g;
try{
Object myShape = (Class.forName("recursion." + shape)).newInstance();
Object [] objs = null;
Class [] classes = null;
(Class.forName("recursion." + shape)).getMethod("draw", classes).invoke(myShape, objs);
}
catch(Exception e)
{
System.out.println("Can't handle shape " + shape);
System.out.println(e.toString());
System.out.println(e.getCause());
}
}
}
Pixel:
package recursion;
public class Pixel {
private double x;
private double y;
public Pixel(){
x = 0;
y = 0;
}
public Pixel(double x, double y){
this.x = x;
this.y = y;
}
public Pixel(Pixel center){
this();
if(center != null){
this.x = center.x;
this.y = center.y;
}
}
public double getX(){
return x;
}
public double getY(){
return y;
}
public void translate(Pixel p){
this.x = this.x + p.x;
this.y = this.y + p.y;
}
public void rotateRelativeToAxesOrigin(double theta){
double tempX = this.x;
double tempY = this.y;
this.x = ((tempX)*(Math.cos(theta)) - ((tempY)*(Math.sin(theta))));
this.y = ((tempX)*(Math.sin(theta)) - ((tempY)*(Math.cos(theta))));
}
public void rotateRelativeToPixel(Pixel p1, double theta){
double tempX = this.x;
double tempY = this.y;
Pixel translatedPixel = new Pixel(tempX-p1.getX(), tempY-p1.getY());
translatedPixel.rotateRelativeToAxesOrigin(theta);
this.x = translatedPixel.getX() + p1.getX();
this.y = translatedPixel.getY() + p1.getY();
}
}
BasicStar:
package recursion;
public class BasicStar {
private Pixel center;
private double radius;
public BasicStar(){
double height = Painter.getFrameHeight()/2;
double width = Painter.getFrameWidth()/2;
this.center = new Pixel (width, height);
double maxRadius = Math.min(width, height)/2;
this.radius = maxRadius/4;
}
public BasicStar(Pixel center, double radius){
this.center = new Pixel(center);
this.radius = radius;
}
public Pixel getCenter(){
return new Pixel(center);
}
public double getRadius(){
return this.radius;
}
public void draw(){
Pixel begin = new Pixel(this.center);
Pixel end = new Pixel(center.getX() + getRadius(), center.getY());
Painter.drawLine(begin, end);
end.rotateRelativeToPixel(center, (2*Math.PI)/6);
Painter.drawLine(begin, end);
end = new Pixel(center.getX() + getRadius(), center.getY());
end.rotateRelativeToPixel(center, (4*Math.PI)/6);
Painter.drawLine(begin, end);
end = new Pixel(center.getX() + getRadius(), center.getY());
end.rotateRelativeToPixel(center, (6*Math.PI)/6);
Painter.drawLine(begin, end);
end = new Pixel(center.getX() + getRadius(), center.getY());
end.rotateRelativeToPixel(center, (8*Math.PI)/6);
Painter.drawLine(begin, end);
end = new Pixel(center.getX() + getRadius(), center.getY());
end.rotateRelativeToPixel(center, (10*Math.PI)/6);
Painter.drawLine(begin, end);
}
}
Snowflake:
package recursion;
public class Snowflake {
private BasicStar basic;
private int depth;
public Snowflake(){
double height = Painter.getFrameHeight()/2;
double width = Painter.getFrameWidth()/2;
Pixel center = new Pixel (width, height);
double maxRadius = Math.min(width, height)/2;
double radius = maxRadius/4;
this.basic = new BasicStar(center, radius);
this.depth = 2;
}
public Snowflake(BasicStar basic, int depth){
this();
if(basic!=null){
this.basic = basic;
this.depth = depth;
}
}
public int getDepth(){
return this.depth;
}
public BasicStar getBasic(){
return this.basic;
}
public double getRadius(BasicStar basic){
return this.basic.getRadius();
}
public Pixel getBasicCenter(BasicStar basic){
return this.basic.getCenter();
}
public void draw(){
draw(this.depth, basic.getCenter(), basic.getRadius());
}
private void draw(int depth, Pixel center, double radius){
BasicStar basic = new BasicStar(center, radius);
if(depth==1){
basic.draw();
}
else{
Pixel p = new Pixel(center.getX() + radius, center.getY());
draw(depth - 1, p, (radius/3));
for(int i=0; i<6; i=i+1){
p.rotateRelativeToPixel(center, (2*Math.PI)/6);
BasicStar temp = new BasicStar(p, radius/3);
temp.draw();
}
}
}
}
This looks overly complicated to me. To be honest, I did not read all your code, but you can create a simple recursive function for drawing a snowflake just like this:
public void drawSnowflake(Graphics g, int x, int y, int size, int level) {
for (int a = 0; a < 360; a += 60) {
double rad = a * Math.PI / 180;
int x2 = (int) (x + Math.cos(rad) * size);
int y2 = (int) (y + Math.sin(rad) * size);
g.drawLine(x, y, x2, y2);
if (level > 0) {
drawSnowflake(g, x2, y2, size/3, level-1);
}
}
}
What this code does is: It draws the lines of a star using basic trigonometry (don't forget to convert angles to radians!), and then calls itself with a smaller size and level for the positions at the ends of the spikes. Embedding this into an actual GUI is left as an excercise to the reader.