Java Draw Arc Between 2 Points - java

I'm having trouble drawing the smallest arc described by 3 points: the arc center, an "anchored" end point, and a second point that gives the other end of the arc by determining a radius. I used the law of cosines to determine the length of the arc and tried using atan for the starting degree, but the starting position for the arc is off.
I managed to get the arc to lock onto the anchor point (x1,y1) when it's in Quadrant 2, but that will only work when it is in Quadrant 2.
Solutions I can see all have a bunch of if-statements to determine the location of the 2 points relative to each other, but I'm curious if I'm overlooking something simple. Any help would be greatly appreciated.
SSCCE:
import javax.swing.JComponent;
import javax.swing.JFrame;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.geom.*;
import java.awt.*;
import java.util.*;
class Canvas extends JComponent {
float circleX, circleY, x1, y1, x2, y2, dx, dy, dx2, dy2, radius, radius2;
Random random = new Random();
public Canvas() {
//Setup.
x1 = random.nextInt(250);
y1 = random.nextInt(250);
//Cant have x2 == circleX
while (x1 == 150 || y1 == 150)
{
x1 = random.nextInt(250);
y1 = random.nextInt(250);
}
circleX = 150; //circle center is always dead center.
circleY = 150;
//Radius between the 2 points must be equal.
dx = Math.abs(circleX-x1);
dy = Math.abs(circleY-y1);
//c^2 = a^2 + b^2 to solve for the radius
radius = (float) Math.sqrt((float)Math.pow(dx, 2) + (float)Math.pow(dy, 2));
//2nd random point
x2 = random.nextInt(250);
y2 = random.nextInt(250);
//I need to push it out to radius length, because the radius is equal for both points.
dx2 = Math.abs(circleX-x2);
dy2 = Math.abs(circleY-y2);
radius2 = (float) Math.sqrt((float)Math.pow(dx2, 2) + (float)Math.pow(dy2, 2));
dx2 *= radius/radius2;
dy2 *= radius/radius2;
y2 = circleY+dy2;
x2 = circleX+dx2;
//Radius now equal for both points.
}
public void paintComponent(Graphics g2) {
Graphics2D g = (Graphics2D) g2;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g.setStroke(new BasicStroke(2.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL));
Arc2D.Float centerPoint = new Arc2D.Float(150-2,150-2,4,4, 0, 360, Arc2D.OPEN);
Arc2D.Float point1 = new Arc2D.Float(x1-2, y1-2, 4, 4, 0, 360, Arc2D.OPEN);
Arc2D.Float point2 = new Arc2D.Float(x2-2, y2-2, 4, 4, 0, 360, Arc2D.OPEN);
//3 points drawn in black
g.setColor(Color.BLACK);
g.draw(centerPoint);
g.draw(point1);
g.draw(point2);
float start = 0;
float distance;
//Form a right triangle to find the length of the hypotenuse.
distance = (float) Math.sqrt(Math.pow(Math.abs(x2-x1),2) + Math.pow(Math.abs(y2-y1), 2));
//Law of cosines to determine the internal angle between the 2 points.
distance = (float) (Math.acos(((radius*radius) + (radius*radius) - (distance*distance)) / (2*radius*radius)) * 180/Math.PI);
float deltaY = circleY - y1;
float deltaX = circleX - x1;
float deltaY2 = circleY - y2;
float deltaX2 = circleX - x2;
float angleInDegrees = (float) ((float) Math.atan((float) (deltaY / deltaX)) * 180 / Math.PI);
float angleInDegrees2 = (float) ((float) Math.atan((float) (deltaY2 / deltaX2)) * 180 / Math.PI);
start = angleInDegrees;
//Q2 works.
if (x1 < circleX)
{
if (y1 < circleY)
{
start*=-1;
start+=180;
} else if (y2 > circleX) {
start+=180;
start+=distance;
}
}
//System.out.println("Start: " + start);
//Arc drawn in blue
g.setColor(Color.BLUE);
Arc2D.Float arc = new Arc2D.Float(circleX-radius, //Center x
circleY-radius, //Center y Rotates around this point.
radius*2,
radius*2,
start, //start degree
distance, //distance to travel
Arc2D.OPEN); //Type of arc.
g.draw(arc);
}
}
public class Angle implements MouseListener {
Canvas view;
JFrame window;
public Angle() {
window = new JFrame();
view = new Canvas();
view.addMouseListener(this);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setBounds(30, 30, 400, 400);
window.getContentPane().add(view);
window.setVisible(true);
}
public static void main(String[] a) {
new Angle();
}
#Override
public void mouseClicked(MouseEvent arg0) {
window.getContentPane().remove(view);
view = new Canvas();
window.getContentPane().add(view);
view.addMouseListener(this);
view.revalidate();
view.repaint();
}
#Override
public void mouseEntered(MouseEvent arg0) {
// TODO Auto-generated method stub
}
#Override
public void mouseExited(MouseEvent arg0) {
// TODO Auto-generated method stub
}
#Override
public void mousePressed(MouseEvent arg0) {
// TODO Auto-generated method stub
}
#Override
public void mouseReleased(MouseEvent arg0) {
// TODO Auto-generated method stub
}
}

Perhaps this will help. It tests with click and drag to set the two points rather than random numbers. It's considerably simpler than what you were attempting and other solutions posted so far.
Notes:
Math.atan2() is a friend in problems like this.
Little helper functions make it easier to reason about your code.
It's best practice to use instance variables for independent values only and compute the dependent values in local variables.
My code fixes some Swing usage problems like calling Swing functions from the main thread.
Code follows:
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;
import javax.swing.event.MouseInputAdapter;
class TestCanvas extends JComponent {
float x0 = 150f, y0 = 150f; // Arc center. Subscript 0 used for center throughout.
float xa = 200f, ya = 150f; // Arc anchor point. Subscript a for anchor.
float xd = 150f, yd = 50f; // Point determining arc angle. Subscript d for determiner.
// Return the distance from any point to the arc center.
float dist0(float x, float y) {
return (float)Math.sqrt(sqr(x - x0) + sqr(y - y0));
}
// Return polar angle of any point relative to arc center.
float angle0(float x, float y) {
return (float)Math.toDegrees(Math.atan2(y0 - y, x - x0));
}
#Override
protected void paintComponent(Graphics g0) {
Graphics2D g = (Graphics2D) g0;
// Can always draw the center point.
dot(g, x0, y0);
// Get radii of anchor and det point.
float ra = dist0(xa, ya);
float rd = dist0(xd, yd);
// If either is zero there's nothing else to draw.
if (ra == 0 || rd == 0) { return; }
// Get the angles from center to points.
float aa = angle0(xa, ya);
float ad = angle0(xd, yd); // (xb, yb) would work fine, too.
// Draw the arc and other dots.
g.draw(new Arc2D.Float(x0 - ra, y0 - ra, // box upper left
2 * ra, 2 * ra, // box width and height
aa, angleDiff(aa, ad), // angle start, extent
Arc2D.OPEN));
dot(g, xa, ya);
// Use similar triangles to get the second dot location.
float xb = x0 + (xd - x0) * ra / rd;
float yb = y0 + (yd - y0) * ra / rd;
dot(g, xb, yb);
}
// Some helper functions.
// Draw a small dot with the current color.
static void dot(Graphics2D g, float x, float y) {
final int rad = 2;
g.fill(new Ellipse2D.Float(x - rad, y - rad, 2 * rad, 2 * rad));
}
// Return the square of a float.
static float sqr(float x) { return x * x; }
// Find the angular difference between a and b, -180 <= diff < 180.
static float angleDiff(float a, float b) {
float d = b - a;
while (d >= 180f) { d -= 360f; }
while (d < -180f) { d += 360f; }
return d;
}
// Construct a test canvas with mouse handling.
TestCanvas() {
addMouseListener(mouseListener);
addMouseMotionListener(mouseListener);
}
// Listener changes arc parameters with click and drag.
MouseInputAdapter mouseListener = new MouseInputAdapter() {
boolean mouseDown = false; // Is left mouse button down?
#Override
public void mousePressed(MouseEvent e) {
if (e.getButton() == MouseEvent.BUTTON1) {
mouseDown = true;
xa = xd = e.getX();
ya = yd = e.getY();
repaint();
}
}
#Override
public void mouseReleased(MouseEvent e) {
if (e.getButton() == MouseEvent.BUTTON1) {
mouseDown = false;
}
}
#Override
public void mouseDragged(MouseEvent e) {
if (mouseDown) {
xd = e.getX();
yd = e.getY();
repaint();
}
}
};
}
public class Test extends JFrame {
public Test() {
setSize(400, 400);
setLocationRelativeTo(null);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
getContentPane().add(new TestCanvas());
}
public static void main(String[] args) {
// Swing code must run in the UI thread, so
// must invoke setVisible rather than just calling it.
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
new Test().setVisible(true);
}
});
}
}

package curve;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Rectangle2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;
public class Main
{
/**
* #param args the command line arguments
*/
public static void main(String[] args) throws IOException
{
PointF pFrom = new PointF(-10f, 30.0f);
PointF pTo = new PointF(-100f, 0.0f);
List<PointF> points = generateCurve(pFrom, pTo, 100f, 7f, true, true);
System.out.println(points);
// Calculate the bounds of the curve
Rectangle2D.Float bounds = new Rectangle2D.Float(points.get(0).x, points.get(0).y, 0, 0);
for (int i = 1; i < points.size(); ++i) {
bounds.add(points.get(i).x, points.get(i).y);
}
bounds.add(pFrom.x, pFrom.y);
bounds.add(pTo.x, pTo.y);
BufferedImage img = new BufferedImage((int) (bounds.width - bounds.x + 50), (int) (bounds.height - bounds.y + 50), BufferedImage.TYPE_4BYTE_ABGR_PRE);
Graphics2D g = img.createGraphics();
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g.translate(25.0f - bounds.getX(), 25.0f - bounds.getY());
g.setStroke(new BasicStroke(1.0f));
g.setColor(Color.DARK_GRAY);
g.drawLine(-1000, 0, 1000, 0);
g.drawLine(0, -1000, 0, 1000);
g.setColor(Color.RED);
for (int i = 0; i < points.size(); ++i) {
if (i > 0) {
Line2D.Float f = new Line2D.Float(points.get(i - 1).x, points.get(i - 1).y, points.get(i).x, points.get(i).y);
System.out.println("Dist : " + f.getP1().distance(f.getP2()));
// g.draw(f);
}
g.fill(new Ellipse2D.Float(points.get(i).x - 0.8f, points.get(i).y - 0.8f, 1.6f, 1.6f));
}
g.setColor(Color.BLUE);
g.fill(new Ellipse2D.Float(pFrom.x - 1, pFrom.y - 1, 3, 3));
g.fill(new Ellipse2D.Float(pTo.x - 1, pTo.y - 1, 3, 3));
g.dispose();
ImageIO.write(img, "PNG", new File("result.png"));
}
static class PointF
{
public float x, y;
public PointF(float x, float y)
{
this.x = x;
this.y = y;
}
#Override
public String toString()
{
return "(" + x + "," + y + ")";
}
}
private static List<PointF> generateCurve(PointF pFrom, PointF pTo, float pRadius, float pMinDistance, boolean shortest, boolean side)
{
List<PointF> pOutPut = new ArrayList<PointF>();
// Calculate the middle of the two given points.
PointF mPoint = new PointF(pFrom.x + pTo.x, pFrom.y + pTo.y);
mPoint.x /= 2.0f;
mPoint.y /= 2.0f;
System.out.println("Middle Between From and To = " + mPoint);
// Calculate the distance between the two points
float xDiff = pTo.x - pFrom.x;
float yDiff = pTo.y - pFrom.y;
float distance = (float) Math.sqrt(xDiff * xDiff + yDiff * yDiff);
System.out.println("Distance between From and To = " + distance);
if (pRadius * 2.0f < distance) {
throw new IllegalArgumentException("The radius is too small! The given points wont fall on the circle.");
}
// Calculate the middle of the expected curve.
float factor = (float) Math.sqrt((pRadius * pRadius) / ((pTo.x - pFrom.x) * (pTo.x - pFrom.x) + (pTo.y - pFrom.y) * (pTo.y - pFrom.y)) - 0.25f);
PointF circleMiddlePoint = new PointF(0, 0);
if (side) {
circleMiddlePoint.x = 0.5f * (pFrom.x + pTo.x) + factor * (pTo.y - pFrom.y);
circleMiddlePoint.y = 0.5f * (pFrom.y + pTo.y) + factor * (pFrom.x - pTo.x);
} else {
circleMiddlePoint.x = 0.5f * (pFrom.x + pTo.x) - factor * (pTo.y - pFrom.y);
circleMiddlePoint.y = 0.5f * (pFrom.y + pTo.y) - factor * (pFrom.x - pTo.x);
}
System.out.println("Middle = " + circleMiddlePoint);
// Calculate the two reference angles
float angle1 = (float) Math.atan2(pFrom.y - circleMiddlePoint.y, pFrom.x - circleMiddlePoint.x);
float angle2 = (float) Math.atan2(pTo.y - circleMiddlePoint.y, pTo.x - circleMiddlePoint.x);
// Calculate the step.
float step = pMinDistance / pRadius;
System.out.println("Step = " + step);
// Swap them if needed
if (angle1 > angle2) {
float temp = angle1;
angle1 = angle2;
angle2 = temp;
}
boolean flipped = false;
if (!shortest) {
if (angle2 - angle1 < Math.PI) {
float temp = angle1;
angle1 = angle2;
angle2 = temp;
angle2 += Math.PI * 2.0f;
flipped = true;
}
}
for (float f = angle1; f < angle2; f += step) {
PointF p = new PointF((float) Math.cos(f) * pRadius + circleMiddlePoint.x, (float) Math.sin(f) * pRadius + circleMiddlePoint.y);
pOutPut.add(p);
}
if (flipped ^ side) {
pOutPut.add(pFrom);
} else {
pOutPut.add(pTo);
}
return pOutPut;
}
}
and the use the generateCurve method like this to have a curve between the from and to points..
generateCurve(pFrom, pTo, 100f, 7f, true, false);

Okay, here it is, testing and working. The problems were based on the fact that I don't use graphics much, so I have to remind myself that the coordinate systems are backward, and on the fact that the Javadoc description of the Arc2D constructor is atrocious.
In addition to these, I found that your point creation (for the two points to be connected) was extremely inefficient given the requirements. I had assumed you actually had to receive two arbitrary points and then calculate their angles, etc., but based on what you put on Pastebin, we can define the two points however we please. This benefits us.
Anyway, here's a working version, with none of that gobbledegook from before. Simplified code is simplified:
import javax.swing.JComponent;
import java.awt.geom.*;
import java.awt.*;
import java.util.*;
public class Canvas extends JComponent {
double circleX, circleY, x1, y1, x2, y2, dx, dy, dx2, dy2, radius, radius2;
Random random = new Random();
double distance;
private static double theta1;
private static double theta2;
private static double theta;
// private static double radius;
private Point2D point1;
private Point2D point2;
private Point2D center;
private static int direction;
private static final int CW = -1;
private static final int CCW = 1;
public Canvas() {
/*
* You want two random points on a circle, so let's start correctly,
* by setting a random *radius*, and then two random *angles*.
*
* This has the added benefit of giving us the angles without having to calculate them
*/
radius = random.nextInt(175); //your maximum radius is higher, but we only have 200 pixels in each cardinal direction
theta1 = random.nextInt(360); //angle to first point (absolute measurement)
theta2 = random.nextInt(360); //angle to second point
//build the points
center = new Point2D.Double(200, 200); //your frame is actually 400 pixels on a side
point1 = new Point2D.Double(radius * Math.cos(toRadians(theta1)) + center.getX(), center.getY() - radius * Math.sin(toRadians(theta1)));
point2 = new Point2D.Double(radius * Math.cos(toRadians(theta2)) + center.getX(), center.getY() - radius * Math.sin(toRadians(theta2)));
theta = Math.abs(theta1 - theta2) <= 180 ? Math.abs(theta1 - theta2) : 360 - (Math.abs(theta1 - theta2));
if ((theta1 + theta) % 360 == theta2) {
direction = CCW;
} else {
direction = CW;
}
System.out.println("theta1: " + theta1 + "; theta2: " + theta2 + "; theta: " + theta + "; direction: " + (direction == CCW ? "CCW" : "CW"));
System.out.println("point1: (" + (point1.getX() - center.getX()) + ", " + (center.getY() - point1.getY()) + ")");
System.out.println("point2: (" + (point2.getX() - center.getX()) + ", " + (center.getY() - point2.getY()) + ")");
// Radius now equal for both points.
}
public double toRadians(double angle) {
return angle * Math.PI / 180;
}
public double toDegrees(double angle) {
return angle * 180 / Math.PI;
}
public void paintComponent(Graphics g2) {
Graphics2D g = (Graphics2D) g2;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
g.setStroke(new BasicStroke(2.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_BEVEL));
//centerpoint should be based on the actual center point
Arc2D.Double centerPoint = new Arc2D.Double(center.getX() - 2, center.getY() - 2, 4, 4, 0,
360, Arc2D.OPEN);
//likewise these points
Arc2D.Double point11 = new Arc2D.Double(point1.getX() - 2, point1.getY() - 2, 4, 4, 0, 360,
Arc2D.OPEN);
Arc2D.Double point22 = new Arc2D.Double(point2.getX() - 2, point2.getY() - 2, 4, 4, 0, 360,
Arc2D.OPEN);
// 3 points drawn in black
g.setColor(Color.BLACK);
g.draw(centerPoint);
g.draw(point11);
g.draw(point22);
// Arc drawn in blue
g.setColor(Color.BLUE);
g.draw(new Arc2D.Double(center.getX() - radius, center.getY() - radius, 2 * radius, 2 * radius, theta1, theta * direction, Arc2D.OPEN));
}
}

Related

Java double-recursive call.

I have an assignment that requires us to paint a tree of Pythagoras using recursion. The tree is started with the square ABCD and the points A and B are defined by mouse clicks. Everything seems to work until I get to the recursion where I can get either the left or right part of the tree to paint, but not both. I placed a comment where I believe I am running into problems.
import java.awt.*;
import java.awt.event.*;
import java.util.Random;
import javax.swing.*;
public class PythagorasTree extends JFrame
{
public static void main(String[] args)
{
new PythagorasTree();
}
PythagorasTree()
{
super("Pythagoras Tree");
setSize(800,800);
add("Center", new DrawingPanel());
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}
class DrawingPanel extends JPanel
{
Random random = new Random();
int centerX;
int centerY;
int clickCount = 0;
float pixelSize;
float rWidth = 10.0F;
float rHeight = 7.5F;
float red, green, blue;
Point a = new Point();
Point b = new Point();
Point c = new Point();
Point d = new Point();
Point e = new Point();
Point u = new Point();
DrawingPanel()
{
addMouseListener(new MouseAdapter()
{
public void mousePressed(MouseEvent click)
{
clickCount++;
if (clickCount == 1)
{
a.x = fx(click.getX());
a.y = fy(click.getY());
repaint();
}
if (clickCount == 2)
{
b.x = fx(click.getX());
b.y = fy(click.getY());
repaint();
}
}
});
}
void initgr()
{
Dimension d = getSize();
int maxX = d.width - 1;
int maxY = d.height - 1;
pixelSize = Math.max(rWidth/maxX, rHeight/maxY);
centerX = maxX/2;
centerY = maxY/2;
}
int iX(float x){return Math.round(centerX + x/pixelSize);}
int iY(float y){return Math.round(centerY - y/pixelSize);}
float fx(int x){return (x - centerX) * pixelSize;}
float fy(int y){return (centerY - y) * pixelSize;}
public void paintComponent(Graphics g)
{
initgr();
super.paintComponent(g);
setBackground(Color.white);
g.setColor(Color.red);
if (clickCount == 1)
g.drawLine(iX(a.x), iY(a.y), iX(a.x), iY(a.y));
if (clickCount > 1)
drawTree(g,a,b);
}
public void drawTree(Graphics g, Point first, Point second)
{
float xSquared = (float) Math.pow((second.x-first.x),2);
float ySquared = (float) Math.pow((second.y-first.y),2);
float length = (float) Math.sqrt(xSquared + ySquared);
if ( length > .001)
{
u.x = second.x - first.x;
u.y = second.y - first.y;
a.x = first.x;
a.y = first.y;
b.x = second.x;
b.y = second.y;
d.x = first.x + (u.y * -1);
d.y = first.y + u.x;
c.x = d.x + u.x;
c.y = d.y + u.y;
e.x = d.x + .5F * (u.x + (u.y*-1));
e.y = d.y + .5F * (u.y + u.x);
Polygon square = new Polygon();
Polygon triangle = new Polygon();
square.addPoint(iX(a.x), iY(a.y));
square.addPoint(iX(b.x), iY(b.y));
square.addPoint(iX(c.x), iY(c.y));
square.addPoint(iX(d.x), iY(d.y));
red = random.nextFloat();
green = random.nextFloat();
blue = random.nextFloat();
g.setColor(new Color(red, green, blue));
g.fillPolygon(square);
triangle.addPoint(iX(c.x), iY(c.y));
triangle.addPoint(iX(d.x), iY(d.y));
triangle.addPoint(iX(e.x), iY(e.y));
red = random.nextFloat();
green = random.nextFloat();
blue = random.nextFloat();
g.setColor(new Color(red, green, blue));
g.fillPolygon(triangle);
/* Problem code is here, tree will draw Left or Right depending on which recursive call
* is first in the code, but will never reach the 2nd call.
*/
drawTree(g,d,e); //Draw tree left
drawTree(g,e,c); //Draw tree right
}
}
}
class Point
{
public float x;
public float y;
public Point()
{
}
}
It's time this question had an answer. The problem is with these member variable declarations:
Point c = new Point();
Point e = new Point();
And this code in drawTree():
drawTree(g,d,e); //Draw tree left
drawTree(g,e,c); //Draw tree right
Since c and e are a member variables, not local, they get modified by the first recursive call to drawTree(g, d, e) so by the time we make the second call to drawTree(g, e, c), it's no longer the same c and e we thought we had. The following rework of the code makes these local (clearly not as efficient GC-wise, but also not as buggy) as well as several other small modifications:
import java.awt.*;
import java.awt.event.*;
import java.util.Random;
import javax.swing.*;
class Point
{
public float x;
public float y;
public Point(float x, float y) {
this.x = x;
this.y = y;
}
public Point() {
}
}
class DrawingPanel extends JPanel
{
Random random = new Random();
int clickCount = 0;
float pixelSize;
float rWidth = 10.0F;
float rHeight = 7.5F;
float red, green, blue;
Point a = new Point();
Point b = new Point();
Point center = new Point();
DrawingPanel()
{
addMouseListener(new MouseAdapter()
{
public void mousePressed(MouseEvent click)
{
clickCount++;
if (clickCount == 1)
{
a.x = fx(click.getX());
a.y = fy(click.getY());
repaint();
}
else if (clickCount == 2)
{
b.x = fx(click.getX());
b.y = fy(click.getY());
repaint();
}
}
});
}
void initgr()
{
Dimension d = getSize();
int maxX = d.width - 1;
int maxY = d.height - 1;
pixelSize = Math.max(rWidth / maxX, rHeight / maxY);
center.x = maxX / 2;
center.y = maxY / 2;
}
int iX(float x){ return Math.round(center.x + x / pixelSize); }
int iY(float y){ return Math.round(center.y - y / pixelSize); }
float fx(int x){ return (x - center.x) * pixelSize; }
float fy(int y){ return (center.y - y) * pixelSize; }
public void paintComponent(Graphics g)
{
super.paintComponent(g);
initgr();
setBackground(Color.white);
if (clickCount == 1)
{
g.setColor(Color.red);
g.drawLine(iX(a.x), iY(a.y), iX(a.x), iY(a.y));
}
else if (clickCount > 1) {
drawTree(g, a, b);
}
}
public void drawTree(Graphics g, Point first, Point second)
{
double xSquared = Math.pow(second.x - first.x, 2);
double ySquared = Math.pow(second.y - first.y, 2);
if (Math.sqrt(xSquared + ySquared) < 0.01) {
return;
}
Point u = new Point(second.x - first.x, second.y - first.y);
Point d = new Point(first.x - u.y, first.y + u.x);
Point c = new Point(d.x + u.x, d.y + u.y);
Point e = new Point(d.x + 0.5F * (u.x - u.y), d.y + 0.5F * (u.y + u.x));
Polygon square = new Polygon();
square.addPoint(iX(first.x), iY(first.y));
square.addPoint(iX(second.x), iY(second.y));
square.addPoint(iX(c.x), iY(c.y));
square.addPoint(iX(d.x), iY(d.y));
red = random.nextFloat();
green = random.nextFloat();
blue = random.nextFloat();
g.setColor(new Color(red, green, blue));
g.fillPolygon(square);
Polygon triangle = new Polygon();
triangle.addPoint(iX(c.x), iY(c.y));
triangle.addPoint(iX(d.x), iY(d.y));
triangle.addPoint(iX(e.x), iY(e.y));
red = random.nextFloat();
green = random.nextFloat();
blue = random.nextFloat();
g.setColor(new Color(red, green, blue));
g.fillPolygon(triangle);
drawTree(g, d, e); // Draw tree left
drawTree(g, e, c); // Draw tree right
}
}
public class PythagorasTree extends JFrame
{
PythagorasTree()
{
super("Pythagoras Tree");
setSize(800, 800);
add("Center", new DrawingPanel());
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
public static void main(String[] args)
{
new PythagorasTree();
}
}
OUTPUT

Reduce lag in JFrame Painting

I am trying to paint a cube on a JFrame.
Sounds simple, but lags a lot. The 7th and 8th lines usually flash pretty bad.
here is the code:
http://pastebin.com/ncDasST6
if someone can give me a hint or two on how to stop this lag from occurring, that would be great :D.
Originally was for Applet, but i wanted it to execute through a .jar file.
Also, any way to add an Applet to a JFrame?
I tried doing: add(new Rotational()); //name of JApplet it is based off of.
Thanks, Fire
Does this variant work to your expectation? There are a number of changes which I did not bother to document (as I was 'just playing' with the code). Do a diff. to reveal the extent and nature of the changes.
It shows no lag or rendering artifacts here at 700x700.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.GroupLayout.Alignment;
import javax.swing.border.EmptyBorder;
public class Square extends JPanel implements MouseListener,
MouseMotionListener {
private static final long serialVersionUID = 1L;
/**
* Launch the application.
*/
public static void main(String[] args) {
EventQueue.invokeLater(new Runnable() {
public void run() {
try {
JFrame f = new JFrame("Cube Rotational");
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Square square = new Square();
square.setBorder(new EmptyBorder(5,5,5,5));
f.setContentPane(square);
f.pack();
f.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
});
}
/**
* Create the frame.
*/
public Square() {
init();
setPreferredSize(new Dimension(700,700));
}
class Point3D {
public int x, y, z;
public Point3D(int X, int Y, int Z) {
x = X;
y = Y;
z = Z;
}
}
class Edge {
public int a, b;
public Edge(int A, int B) {
a = A;
b = B;
}
}
static int width, height;
static int mx, my;
static int azimuth = 45, elevation = 45;
static Point3D[] vertices;
static Edge[] edges;
public void init() {
width = 500;
height = 500;
vertices = new Point3D[8];
vertices[0] = new Point3D(-1, -1, -1);
vertices[1] = new Point3D(-1, -1, 1);
vertices[2] = new Point3D(-1, 1, -1);
vertices[3] = new Point3D(-1, 1, 1);
vertices[4] = new Point3D(1, 1, -1);
vertices[5] = new Point3D(1, 1, 1);
vertices[6] = new Point3D(1, -1, -1);
vertices[7] = new Point3D(1, -1, 1);
edges = new Edge[12];
edges[0] = new Edge(0, 1);
edges[1] = new Edge(0, 2);
edges[2] = new Edge(0, 6);
edges[3] = new Edge(1, 3);
edges[4] = new Edge(1, 7);
edges[5] = new Edge(2, 3);
edges[6] = new Edge(2, 4);
edges[7] = new Edge(3, 5);
edges[8] = new Edge(4, 5);
edges[9] = new Edge(4, 6);
edges[10] = new Edge(5, 7);
edges[11] = new Edge(6, 7);
setCursor(new Cursor(Cursor.HAND_CURSOR));
addMouseListener(this);
addMouseMotionListener(this);
setVisible(true);
}
void drawWireframe(Graphics g) {
double theta = Math.PI * azimuth / 180.0;
double phi = Math.PI * elevation / 180.0;
float cosT = (float) Math.cos(theta);
float sinT = (float) Math.sin(theta);
float cosP = (float) Math.cos(phi);
float sinP = (float) Math.sin(phi);
float cosTcosP = cosT * cosP;
float cosTsinP = cosT * sinP;
float sinTcosP = sinT * cosP;
float sinTsinP = sinT * sinP;
Point[] points;
points = new Point[vertices.length];
float scaleFactor = (getWidth() + getHeight()) / 8;
float near = (float) 6;
float nearToObj = 1.5f;
for (int j = 0; j < vertices.length; ++j) {
int x0 = vertices[j].x;
int y0 = vertices[j].y;
int z0 = vertices[j].z;
float x1 = cosT * x0 + sinT * z0;
float y1 = -sinTsinP * x0 + cosP * y0 + cosTsinP * z0;
float z1 = cosTcosP * z0 - sinTcosP * x0 - sinP * y0;
x1 = x1 * near / (z1 + near + nearToObj);
y1 = y1 * near / (z1 + near + nearToObj);
points[j] = new Point(
(int) (getWidth() / 2 + scaleFactor * x1 + 0.5),
(int) (getHeight() / 2 - scaleFactor * y1 + 0.5));
}
g.setColor(Color.black);
g.fillRect(0, 0, getWidth(), getHeight());
g.setColor(Color.white);
for (int j = 0; j < edges.length; ++j) {
int x1 = points[edges[j].a].x;
int x2 = points[edges[j].b].x;
int y1 = points[edges[j].a].y;
int y2 = points[edges[j].b].y;
((Graphics2D) g).setStroke(new BasicStroke(5));
g.drawLine(x1, y1, x2, y2);
}
}
public void mouseEntered(MouseEvent e) {
}
public void mouseExited(MouseEvent e) {
}
public void mouseClicked(MouseEvent e) {
}
public void mousePressed(MouseEvent e) {
mx = e.getX();
my = e.getY();
e.consume();
}
public void mouseReleased(MouseEvent e) {
}
public void mouseMoved(MouseEvent e) {
}
public void mouseDragged(MouseEvent e) {
int new_mx = e.getX();
int new_my = e.getY();
azimuth -= new_mx - mx;
azimuth %= 360;
elevation += new_my - my;
elevation %= 360;
repaint();
mx = new_mx;
my = new_my;
repaint();
e.consume();
}
#Override
public void paintComponent(Graphics g) {
drawWireframe(g);
}
}
Originally was for Applet, but i wanted it to execute through a .jar file.
Good idea converting an applet to something more sensible, but note that an applet can (and usually should) be packed into a Jar.
Also, any way to add an Applet to a JFrame?
This is possible, relatively easy with this code (barring mixing Swing (JFrame) & AWT (Applet) components), but not the best way to go. It is better to create a hybrid like (for example) the subway applet/application.
By moving the custom rendering from the frame to a JPanel, the code has been partially transformed into a hybrid, since the panel can be added to a frame or applet (or window or dialog, or another panel or..).

How to create a curve between 2 points in 2D and get back Points that makes that curve every d distance?

I'm not good in math.
I have 2 points, A(x1, y1) and B(x2, y2) in 2D.
I need to create a virtual path from point A to B curved at R(radius), and then return an array of points which are describing this curved path, not all maybe every D(distance) from each other.
In Java I need a method like this:
private ArrayList<PointF> generateCurve(PointF pFrom,PointF pTo,float pRadius,float pMinDistance){
ArrayList<PointF> pOutPut = new ArrayList<PointF>();
// ...generate result to pOutPut
return pOutPut;
}
How to do this ?
I didn't gave up and I've been working on it for a few more hours. And here is the result:
I created a method where you can specify if you want the shortest of the longest arc between the points.
Here are some calls to it, with the produced output:
generateCurve(pFrom, pTo, 100f, 7f, false, false);
generateCurve(pFrom, pTo, 100f, 7f, true, false);
generateCurve(pFrom, pTo, 100f, 7f, false, true);
generateCurve(pFrom, pTo, 100f, 7f, true, true);
As you can see, it is working like a charm. Here is the code:
package curve;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Rectangle2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;
/**
*
* #author martijn
*/
public class Main
{
/**
* #param args the command line arguments
*/
public static void main(String[] args) throws IOException
{
PointF pFrom = new PointF(-10f, 30.0f);
PointF pTo = new PointF(-100f, 0.0f);
List<PointF> points = generateCurve(pFrom, pTo, 100f, 7f, true, true);
System.out.println(points);
// Calculate the bounds of the curve
Rectangle2D.Float bounds = new Rectangle2D.Float(points.get(0).x, points.get(0).y, 0, 0);
for (int i = 1; i < points.size(); ++i) {
bounds.add(points.get(i).x, points.get(i).y);
}
bounds.add(pFrom.x, pFrom.y);
bounds.add(pTo.x, pTo.y);
BufferedImage img = new BufferedImage((int) (bounds.width - bounds.x + 50), (int) (bounds.height - bounds.y + 50), BufferedImage.TYPE_4BYTE_ABGR_PRE);
Graphics2D g = img.createGraphics();
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g.translate(25.0f - bounds.getX(), 25.0f - bounds.getY());
g.setStroke(new BasicStroke(1.0f));
g.setColor(Color.DARK_GRAY);
g.drawLine(-1000, 0, 1000, 0);
g.drawLine(0, -1000, 0, 1000);
g.setColor(Color.RED);
for (int i = 0; i < points.size(); ++i) {
if (i > 0) {
Line2D.Float f = new Line2D.Float(points.get(i - 1).x, points.get(i - 1).y, points.get(i).x, points.get(i).y);
System.out.println("Dist : " + f.getP1().distance(f.getP2()));
// g.draw(f);
}
g.fill(new Ellipse2D.Float(points.get(i).x - 0.8f, points.get(i).y - 0.8f, 1.6f, 1.6f));
}
g.setColor(Color.BLUE);
g.fill(new Ellipse2D.Float(pFrom.x - 1, pFrom.y - 1, 3, 3));
g.fill(new Ellipse2D.Float(pTo.x - 1, pTo.y - 1, 3, 3));
g.dispose();
ImageIO.write(img, "PNG", new File("result.png"));
}
static class PointF
{
public float x, y;
public PointF(float x, float y)
{
this.x = x;
this.y = y;
}
#Override
public String toString()
{
return "(" + x + "," + y + ")";
}
}
private static List<PointF> generateCurve(PointF pFrom, PointF pTo, float pRadius, float pMinDistance, boolean shortest, boolean side)
{
List<PointF> pOutPut = new ArrayList<PointF>();
// Calculate the middle of the two given points.
PointF mPoint = new PointF(pFrom.x + pTo.x, pFrom.y + pTo.y);
mPoint.x /= 2.0f;
mPoint.y /= 2.0f;
System.out.println("Middle Between From and To = " + mPoint);
// Calculate the distance between the two points
float xDiff = pTo.x - pFrom.x;
float yDiff = pTo.y - pFrom.y;
float distance = (float) Math.sqrt(xDiff * xDiff + yDiff * yDiff);
System.out.println("Distance between From and To = " + distance);
if (pRadius * 2.0f < distance) {
throw new IllegalArgumentException("The radius is too small! The given points wont fall on the circle.");
}
// Calculate the middle of the expected curve.
float factor = (float) Math.sqrt((pRadius * pRadius) / ((pTo.x - pFrom.x) * (pTo.x - pFrom.x) + (pTo.y - pFrom.y) * (pTo.y - pFrom.y)) - 0.25f);
PointF circleMiddlePoint = new PointF(0, 0);
if (side) {
circleMiddlePoint.x = 0.5f * (pFrom.x + pTo.x) + factor * (pTo.y - pFrom.y);
circleMiddlePoint.y = 0.5f * (pFrom.y + pTo.y) + factor * (pFrom.x - pTo.x);
} else {
circleMiddlePoint.x = 0.5f * (pFrom.x + pTo.x) - factor * (pTo.y - pFrom.y);
circleMiddlePoint.y = 0.5f * (pFrom.y + pTo.y) - factor * (pFrom.x - pTo.x);
}
System.out.println("Middle = " + circleMiddlePoint);
// Calculate the two reference angles
float angle1 = (float) Math.atan2(pFrom.y - circleMiddlePoint.y, pFrom.x - circleMiddlePoint.x);
float angle2 = (float) Math.atan2(pTo.y - circleMiddlePoint.y, pTo.x - circleMiddlePoint.x);
// Calculate the step.
float step = pMinDistance / pRadius;
System.out.println("Step = " + step);
// Swap them if needed
if (angle1 > angle2) {
float temp = angle1;
angle1 = angle2;
angle2 = temp;
}
boolean flipped = false;
if (!shortest) {
if (angle2 - angle1 < Math.PI) {
float temp = angle1;
angle1 = angle2;
angle2 = temp;
angle2 += Math.PI * 2.0f;
flipped = true;
}
}
for (float f = angle1; f < angle2; f += step) {
PointF p = new PointF((float) Math.cos(f) * pRadius + circleMiddlePoint.x, (float) Math.sin(f) * pRadius + circleMiddlePoint.y);
pOutPut.add(p);
}
if (flipped ^ side) {
pOutPut.add(pFrom);
} else {
pOutPut.add(pTo);
}
return pOutPut;
}
}
Enjoy!
PS: I created two questions on Mathematics to solve your question:
Analytic Geometry: Point coordinates, same distance from two points.
Trigonometry: Solve (1−cosα)2+sin2α=d2 for α
This works:
private static double GetAngle(Point2D x, Point2D o, double R){
double cosa = (x.getX()-o.getX())/R;
double sina = (x.getY()-o.getY())/R;
double angle = Math.acos(cosa);
return Math.sin(angle)*sina >= 0 ? angle : 2*Math.PI - angle;
}
private static ArrayList<Point2D> generateCurve(Point2D pFrom,Point2D pTo,float pRadius,float pMinDistance){
ArrayList<Point2D> pOutPut = new ArrayList<Point2D>();
double dist = pFrom.distance(pTo);
double h = Math.sqrt(pRadius * pRadius - (dist * dist / 4.0));
double angleStep = pMinDistance/pRadius;
if(2*pRadius <= dist)
throw new Error("Radius is too small");
//find center
double x1 = pFrom.getX(), x2 = pFrom.getY();
double y1 = pTo.getX(), y2 = pTo.getY();
double m1 = (x1+y1)/2, m2 = (x2+y2)/2;
double u1 = - (y2-x2)/dist, u2 = (y1-x1)/dist;
double o1 = m1 + h * u1, o2 = m2 + h * u2;
Point2D o = new Point2D.Double(o1, o2);
double startAngle = GetAngle(pFrom, o, pRadius);
double endAngle = GetAngle(pTo, o, pRadius);
if(endAngle < startAngle)
endAngle += 2 * Math.PI;
for(double a = startAngle; a < endAngle; a+=angleStep){
pOutPut.add(new Point2D.Double(o1+pRadius*Math.cos(a), o2+pRadius*Math.sin(a)));
}
pOutPut.add(pTo);
return pOutPut;
}
Here is what I get when I call it like this: generateCurve(new Point2D.Double(10,10), new Point2D.Double(400, 400), 300, 15)

Render only the segment/area of a circle that intersects the main circle

I absolutely love maths (or 'math' as most of you would say!) but I haven't done it to a level where I know the answer to this problem. I have a main circle which could have a centre point at any x and y on a display. Other circles will move around the display at will but at any given call to a render method I want to render not only those circles that intersect the main circle, but also only render the segment of that circle that is visible inside the main circle. An analogy would be a shadow cast on a real life object, and I only want to draw the part of that object that is 'illuminated'.
I want to do this preferably in Java, but if you have a raw formula that would be appreciated. I wonder how one might draw the shape and fill it in Java, I'm sure there must be some variation on a polyline with arcs or something?
Many thanks
Let A and B be the 2 intersection points (you can ignore it when there is no, or 1 intercetion point).
Then calculate the length of the circular line segment between A and B.
With this information, you should be able to draw the arc using Graphics' drawArc(...) method (if I'm not mistaken...).
EDIT
Well, you don't even need the length of the circular line segment. I had the line-intersection code laying around, so I built a small GUI around it how you could paint/view the ARC of such intersecting circles (there are a bit of comments in the code):
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.Arc2D;
/**
* #author: Bart Kiers
*/
public class GUI extends JFrame {
private GUI() {
super("Circle Intersection Demo");
initGUI();
}
private void initGUI() {
super.setSize(600, 640);
super.setDefaultCloseOperation(EXIT_ON_CLOSE);
super.setLayout(new BorderLayout(5, 5));
final Grid grid = new Grid();
grid.addMouseMotionListener(new MouseMotionAdapter() {
#Override
public void mouseDragged(MouseEvent e) {
Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
grid.showDraggedCircle(p);
}
});
grid.addMouseListener(new MouseAdapter() {
#Override
public void mouseReleased(MouseEvent e) {
Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
grid.released(p);
}
#Override
public void mousePressed(MouseEvent e) {
Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
grid.pressed(p);
}
});
super.add(grid, BorderLayout.CENTER);
super.setVisible(true);
}
public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
#Override
public void run() {
new GUI();
}
});
}
private static class Grid extends JPanel {
private Circle c1 = null;
private Circle c2 = null;
private Point screenClick = null;
private Point currentPosition = null;
public void released(Point p) {
if (c1 == null || c2 != null) {
c1 = new Circle(screenClick, screenClick.distance(p));
c2 = null;
} else {
c2 = new Circle(screenClick, screenClick.distance(p));
}
screenClick = null;
repaint();
}
public void pressed(Point p) {
if(c1 != null && c2 != null) {
c1 = null;
c2 = null;
}
screenClick = p;
repaint();
}
#Override
public void paintComponent(Graphics g) {
Graphics2D g2d = (Graphics2D) g;
g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
g2d.setColor(Color.WHITE);
g2d.fillRect(0, 0, super.getWidth(), super.getHeight());
final int W = super.getWidth();
final int H = super.getHeight();
g2d.setColor(Color.LIGHT_GRAY);
g2d.drawLine(0, H / 2, W, H / 2); // x-axis
g2d.drawLine(W / 2, 0, W / 2, H); // y-axis
if (c1 != null) {
g2d.setColor(Color.RED);
c1.drawOn(g2d, W, H);
}
if (c2 != null) {
g2d.setColor(Color.ORANGE);
c2.drawOn(g2d, W, H);
}
if (screenClick != null && currentPosition != null) {
g2d.setColor(Color.DARK_GRAY);
g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f));
Circle temp = new Circle(screenClick, screenClick.distance(currentPosition));
temp.drawOn(g2d, W, H);
currentPosition = null;
}
if (c1 != null && c2 != null) {
g2d.setColor(Color.BLUE);
g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.4f));
Point[] ips = c1.intersections(c2);
for (Point ip : ips) {
ip.drawOn(g, W, H);
}
g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.2f));
if (ips.length == 2) {
g2d.setStroke(new BasicStroke(10.0f));
c1.highlightArc(g2d, ips[0], ips[1], W, H);
}
}
g2d.dispose();
}
public void showDraggedCircle(Point p) {
currentPosition = p;
repaint();
}
}
private static class Circle {
public final Point center;
public final double radius;
public Circle(Point center, double radius) {
this.center = center;
this.radius = radius;
}
public void drawOn(Graphics g, int width, int height) {
// translate Cartesian(x,y) to Screen(x,y)
Point screenP = center.toScreenPoint(width, height);
int r = (int) Math.rint(radius);
g.drawOval((int) screenP.x - r, (int) screenP.y - r, r + r, r + r);
// draw the center
Point screenCenter = center.toScreenPoint(width, height);
r = 4;
g.drawOval((int) screenCenter.x - r, (int) screenCenter.y - r, r + r, r + r);
}
public void highlightArc(Graphics2D g2d, Point p1, Point p2, int width, int height) {
double a = center.degrees(p1);
double b = center.degrees(p2);
// translate Cartesian(x,y) to Screen(x,y)
Point screenP = center.toScreenPoint(width, height);
int r = (int) Math.rint(radius);
// find the point to start drawing our arc
double start = Math.abs(a - b) < 180 ? Math.min(a, b) : Math.max(a, b);
// find the minimum angle to go from `start`-angle to the other angle
double extent = Math.abs(a - b) < 180 ? Math.abs(a - b) : 360 - Math.abs(a - b);
// draw the arc
g2d.draw(new Arc2D.Double((int) screenP.x - r, (int) screenP.y - r, r + r, r + r, start, extent, Arc2D.OPEN));
}
public Point[] intersections(Circle that) {
// see: http://mathworld.wolfram.com/Circle-CircleIntersection.html
double d = this.center.distance(that.center);
double d1 = ((this.radius * this.radius) - (that.radius * that.radius) + (d * d)) / (2 * d);
double h = Math.sqrt((this.radius * this.radius) - (d1 * d1));
double x3 = this.center.x + (d1 * (that.center.x - this.center.x)) / d;
double y3 = this.center.y + (d1 * (that.center.y - this.center.y)) / d;
double x4_i = x3 + (h * (that.center.y - this.center.y)) / d;
double y4_i = y3 - (h * (that.center.x - this.center.x)) / d;
double x4_ii = x3 - (h * (that.center.y - this.center.y)) / d;
double y4_ii = y3 + (h * (that.center.x - this.center.x)) / d;
if (Double.isNaN(x4_i)) {
// no intersections
return new Point[0];
}
// create the intersection points
Point i1 = new Point(x4_i, y4_i);
Point i2 = new Point(x4_ii, y4_ii);
if (i1.distance(i2) < 0.0000000001) {
// i1 and i2 are (more or less) the same: a single intersection
return new Point[]{i1};
}
// two unique intersections
return new Point[]{i1, i2};
}
#Override
public String toString() {
return String.format("{center=%s, radius=%.2f}", center, radius);
}
}
private static class Point {
public final double x;
public final double y;
public Point(double x, double y) {
this.x = x;
this.y = y;
}
public double degrees(Point that) {
double deg = Math.toDegrees(Math.atan2(that.y - this.y, that.x - this.x));
return deg < 0.0 ? deg + 360 : deg;
}
public double distance(Point that) {
double dX = this.x - that.x;
double dY = this.y - that.y;
return Math.sqrt(dX * dX + dY * dY);
}
public void drawOn(Graphics g, int width, int height) {
// translate Cartesian(x,y) to Screen(x,y)
Point screenP = toScreenPoint(width, height);
int r = 7;
g.fillOval((int) screenP.x - r, (int) screenP.y - r, r + r, r + r);
}
public Point toCartesianPoint(int width, int height) {
double xCart = x - (width / 2);
double yCart = -(y - (height / 2));
return new Point(xCart, yCart);
}
public Point toScreenPoint(int width, int height) {
double screenX = x + (width / 2);
double screenY = -(y - (height / 2));
return new Point(screenX, screenY);
}
#Override
public String toString() {
return String.format("(%.2f,%.2f)", x, y);
}
}
}
If you start the GUI above and then type 100 0 130 -80 55 180 in the text box and hit return, you'll see the following: ...
Changed the code so that circles can be drawn by pressing- and dragging the mouse. Screenshot:
Assuming you know the center point and the radius of the two circles:
Calculate the points where the circles intersect. This can easily be done with trigonometry. There may be no intersection (distance between the center points is longer than the sum of the radiuses, ignorable in your case), one point (distance between center points is equal to the sum of the radiuses, ignorable), or two. Special cases: the circles are identical, or the moving circle ist smaller and completely inside the main circle.
If there are two intersection points: take the center point from the moving circle and draw an arc between those points.
(I have no code for you, but since you love maths... ;-)

Oval collision detection not working properly

So I'm trying to implement a test where a oval can connect with a circle, but it's not working.
edist = (float) Math.sqrt(
Math.pow((px + ((pwidth/2) )) - (bx + (bsize/2)), 2 ) +
Math.pow(-((py + ((pwidth/2)) ) - (bx + (bsize/2))), 2 )
);
and here is the full code (requires Slick2D):
import org.newdawn.slick.AppGameContainer;
import org.newdawn.slick.BasicGame;
import org.newdawn.slick.Color;
import org.newdawn.slick.GameContainer;
import org.newdawn.slick.Graphics;
import org.newdawn.slick.Input;
import org.newdawn.slick.SlickException;
public class ColTest extends BasicGame{
float px = 50;
float py = 50;
float pheight = 50;
float pwidth = 50;
float bx = 200;
float by = 200;
float bsize = 200;
float edist;
float pspeed = 3;
Input input;
public ColTest()
{
super("ColTest");
}
#Override
public void init(GameContainer gc)
throws SlickException {
}
#Override
public void update(GameContainer gc, int delta)
throws SlickException
{
input = gc.getInput();
try{
if(input.isKeyDown(Input.KEY_UP))
py-=pspeed;
if(input.isKeyDown(Input.KEY_DOWN))
py+=pspeed;
if(input.isKeyDown(Input.KEY_LEFT))
px-=pspeed;
if(input.isKeyDown(Input.KEY_RIGHT))
px+=pspeed;
}
catch(Exception e){}
}
public void render(GameContainer gc, Graphics g)
throws SlickException
{
g.setColor(new Color(255,255,255));
g.drawString("col: " + col(), 10, 10);
g.drawString("edist: " + edist + " dist: " + dist, 10, 100);
g.fillRect(px, py, pwidth, pheight);
g.setColor(new Color(255,0,255));
g.fillOval(px, py, pwidth, pheight);
g.setColor(new Color(255,255,255));
g.fillOval(200, 200, 200, 200);
}
public boolean col(){
edist = (float) Math.sqrt(Math.pow((px + ((pwidth/2) )) - (bx + (bsize/2)), 2) + Math.pow(-((py + ((pwidth/2)) ) - (bx + (bsize/2))), 2));
if(edist <= (bsize/2) + (px + (pwidth/2)))
return true;
else
return false;
}
public float rotate(float x, float y, float ox, float oy, float a, boolean b)
{
float dst = (float) Math.sqrt(Math.pow(x-ox,2.0)+ Math.pow(y-oy,2.0));
float oa = (float) Math.atan2(y-oy,x-ox);
if(b)
return (float) Math.cos(oa + Math.toRadians(a))*dst+ox;
else
return (float) Math.sin(oa + Math.toRadians(a))*dst+oy;
}
public static void main(String[] args)
throws SlickException
{
AppGameContainer app =
new AppGameContainer( new ColTest() );
app.setShowFPS(false);
app.setAlwaysRender(true);
app.setTargetFrameRate(60);
app.setDisplayMode(800, 600, false);
app.start();
}
}
Is using ovals an absolute requirement? You can approximate collisions between fancier shapes by representing them with multiple circles. That way you can use very a simple collision detection between circles and still achieve a high level of accuracy for the viewer.
collision(c1, c2) {
dx = c1.x - c2.x;
dy = c1.y - c2.y;
dist = c1.radius + c2.radius;
return (dx * dx + dy * dy <= dist * dist)
}
(source: strd6.com)
Finding the intersection is harder than you think. Your col() method is a bit off, but that approach will at best be able to tell you if a single point is within the circle. It won't be able to really detect intersections.
I Googled up some code for computing the actual intersections. I found one in JavaScript that's really interesting and really complicated. Take a look at the source.
If you wanted something a bit simpler (but less accurate), you could check a few points around the ellipse to see if they're within the circle.
private boolean isInCircle(float x, float y) {
float r = bsize / 2;
float center_x = bx + r;
float center_y = by + r;
float dist = (float) Math.sqrt(Math.pow(x - center_x, 2) + Math.pow(y - center_y, 2));
return dist < r;
}
public boolean col() {
return
isInCircle(px + pwidth / 2, py ) || // top
isInCircle(px + pwidth , py + pheight / 2) || // right
isInCircle(px + pwidth / 2, py + pheight ) || // bottom
isInCircle(px , py + pheight / 2); // left
}
If you plan on implementing more shapes and/or need the minimum distance between your shapes, you could start using GJK : you would only need to implement the support functions for each new shape. If computation time is also critical, GJK is definitely something you should look at, but it would surely require some more programming on your side.
If you can find your foci you can check for collision with the pseudo code below.
WARNING this only works for two ellipse collisions (ellipse and circle collisions work also).
r = length of semi major axis
a_x = x coordinate of foci 1 of the first ellipse
a_y = y coordinate of foci 1 of the first ellipse
b_x = x coordinate of foci 2 of the first ellipse
b_y = y coordinate of foci 2 of the first ellipse
c_x = x coordinate of foci 1 of the second ellipse
c_y = y coordinate of foci 1 of the second ellipse
d_x = x coordinate of foci 2 of the second ellipse
d_y = y coordinate of foci 2 of the second ellipse
p_x = (a_x+b_x+c_x+d_x)/4 // i.e. the average of the foci x values
p_y = (a_y+b_y+c_y+d_y)/4 // i.e. the average of the foci y values
if r >= ( sqrt( (p_x + a_x)^2+(p_y + a_y)^2 ) + sqrt( (p_x + a_x)^2+(p_y + a_y)^2 ) )
then collision
If you really want the derivation of this let me know and I'll provide it. But it uses the idea that the sum of the distances between the foci of an ellipse and any point on the edge of an ellipse are a set distance apart (the semi major axis). And solves for a point that is on the edge of both ellipsoids and if one exist then their is a collision.

Categories

Resources