I have the following code:
public class Driver {
private ExecutorService executor = Executors.newCachedThreadPool();
public static void main(String[] args) {
Driver d = new Driver();
d.run();
}
private void run() {
final Timer timer = new Timer();
final TimerTask task = new TimerTask() {
#Override
public void run() {
System.out.println("Task is running!");
}
};
Runnable worker = new Runnable() {
#Override
public void run() {
timer.scheduleAtFixedRate(task, new Date(), 5 * 1000);
}
};
Runtime.getRuntime().addShutdownHook(new Thread() {
#Override
public void run() {
System.out.println("Shutdown hook is being invoked!");
try {
if(executor.awaitTermination(20, TimeUnit.SECONDS))
System.out.println("All workers shutdown properly.");
else {
System.out.println(String.format("Maximum time limit of %s reached " +
"when trying to shut down workers. Forcing shutdown.", 20));
executor.shutdownNow();
}
} catch (InterruptedException interrupt) {
System.out.println("Shutdown hook interrupted by exception: " +
interrupt.getMessage());
}
System.out.println("Shutdown hook is finished!");
}
});
executor.submit(worker);
System.out.println("Initializing shutdown...");
}
}
When this runs I get the following console output:
Initializing shutdown...
Task is running!
Task is running!
Task is running!
Task is running!
Task is running!
Task is running!
Task is running!
... (this keeps going non-stop)
When I run this, the application never terminates. Instead, every 5 seconds, I see a new println of "Task is running!". I would have expected the main thread to reach the end of the main method, print "Initializing shutdown...", invoked the added shutdown hook, killed the executor, and finally print out "Shutdown hook is finished!".
Instead, "Task is running" just keeps getting printed and the program never terminates. What's going on here?
I am no expert but AFAIK you must have all non-Daemon threads terminated in order for the shutdown hook to “kick in”.
In the original example you have 3 non-Daemon:
The thread of “Main” – this is the only non-Daemon you want here..
The thread that runs the “TimerTask” – it is created by the “Timer” and you covered it by fixing to Timer(true)
The thread that runs the “worker” – it is created by the “executor” and in order for the “executor” to create Daemon threads you should create a ThreadFactory. (at least this is the way I know; there might be other ways...)
So I think what you should do is to create a ThreadFactory and use it when initializing the “executor”.
Create a class that will be the ThreadFactory:
private class WorkerThreadFactory implements ThreadFactory {
#Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r, "Worker");
t.setDaemon(true);
return t;
}
}
-- the important line is the setDaemon of course :)
Pass an instance of it as a parameter to the newCachedThreadPool method:
private ExecutorService executor = Executors.newCachedThreadPool(new WorkerThreadFactory());
Applying these 2 changes did the trick for me and I got to:
Maximum time limit of 20 reached when trying to shut down workers. Forcing shutdown.
Shutdown hook is finished!
Hope it helps,
Izik
golan2#hotmail.com
It is not shutting down because Timer() creates and starts a non-daemon thread ... which is then never stopped.
There are two things that can cause the JVM to shutdown of its own accord:
A call to System.exit() (or Runtime.halt())
The termination of the last remaining non-daemon thread.
Since you have created a second non-daemon thread (in addition to the thread that is running main()) the second condition won't be met.
Related
Sample executor service
static class MyRunnable implements Runnable {
private String serverName;
public MyRunnable(String serverName) {
super();
this.serverName = serverName;
}
#Override
public void run() {
...
conn = new ch.ethz.ssh2.Connection(serverName);
conn.connect();
boolean isAuthenticated = conn.authenticateWithPassword(user, pass);
logger.info("Connecting to " + server);
if (isAuthenticated == false) {
logger.info(server + " Please check credentials");
}
sess = conn.openSession();
...
}
}
public static void main(String[] args) {
List<String> serverList = ...;
ExecutorService executor = Executors.newFixedThreadPool(20);
for (String serverName : serverList) {
MyRunnable r = new MyRunnable(serverName);
executor.execute(r);
}
executor.shutdown();
executor.awaitTermination(1, TimeUnit.HOURS);
}
Right here is a sample code of my executor service. But with this logic when I meet a server that fails to connect or takes too long to connect it creates a a hang time within my application. I want to end/kill the thread if it takes longer than x amount of time to connect. How can I terminate the thread task if it does not connect to server within 2 seconds.
Attempt
ThreadPoolExecutor executor = new ThreadPoolExecutor(
10, 25, 500, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<>(1));
I added the following code but apparently it does not end the thread if it takes longer than 2000 milliseconds.
Attempt 2
Future<?> future = executor.submit( new task));
try {
future.get(2000, TimeUnit.MILLISECONDS); // This waits timeout seconds; returns null
}
catch(TimeoutException e) {
future.cancel(true);
// System.out.println(server + "name");
}
How can I terminate the thread task if it does not connect to server within 2 seconds.
This is difficult thing to do typically because even if you interrupt the thread (like the other answers mention) there's no guarantee that the thread will stop. Interrupt just sets a flag on the thread and it's up to the code to detect the status and stop. This means that a ton of threads may be in the background waiting for the connects.
In your case however you are using the ch.ethz.ssh2.Connection.connect() method. Turns out there is a connect method that takes a timeout. I think you want the following:
// try to connect for 2 seconds
conn.connect(null, 2000, 0);
To quote from the connect method javadocs:
In case of a timeout (either connectTimeout or kexTimeout) a SocketTimeoutException is thrown.
You have to do awaitTermination() first, then check the return value, and then do shutdownNow(). shutdown() does not guarantee instant stoppage of the service, it just stops taking new jobs, and waits for all jobs to complete in order. shutdownNow() on the other hand, stops taking new jobs, actively attempts to stop all running tasks, and does not start any new one, returning a list of all waiting-to-execute jobs.
From JavaDocs :
The following method shuts down an ExecutorService in two phases,
first by calling shutdown to reject incoming tasks, and then calling
shutdownNow, if necessary, to cancel any lingering tasks:
void shutdownAndAwaitTermination(ExecutorService pool) {
pool.shutdown(); // Disable new tasks from being submitted
try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
}
} catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt();
}
}
You can always call future.get(timeout...)
It will return timeout exception if it did not finish yet... then you can call future.cancel().
As long as you deal with threads in Java the only safe way to stop the thread is to interrupt it. You can call shutdown() first and then wait. This method doesn't interrupt threads.
If it doesn't help then you call shutdownNow() which tries to cancel tasks by setting interrupted flag of each thread to true. In that case if threads are blocked/waiting then InterruptedException will be thrown. If you check interrupted flag somewhere inside your tasks then you are good too.
But if you have no other choice but to stop threads you still can do it. One possible solution of getting access to workers is to trace all created threads inside ThreadPoolExecutor with help of custom thread factory.
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class TestThreadPoolEx {
static class CustomThreadFactory implements ThreadFactory {
private List<Thread> threads = new ArrayList<>();
#Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
threads.add(t);
return t;
}
public List<Thread> getThreads() {
return threads;
}
public void stopThreads() {
for(Thread t : threads) {
if(t.isAlive()) {
try {
t.stop();
} catch (Exception e) {
//NOP
}
}
}
}
}
public static void main(String[] args) throws InterruptedException {
CustomThreadFactory factory = new CustomThreadFactory();
ExecutorService ex = Executors.newFixedThreadPool(1, factory);
ex.submit(() -> {
while(true);
});
ex.shutdown();
ex.awaitTermination(5, TimeUnit.SECONDS);
ex.shutdownNow();
ex.awaitTermination(5, TimeUnit.SECONDS);
factory.stopThreads();
}
}
This is sure unsafe but should fit your requirements. In this case it's able to stop while(true) loop. Cancelling tasks won't be able to do that.
I am running simple thread which has run method as follows
public run()
while(!stopFlag){
// print something Line 1
// print something Line 2
// print something Line 3
// print something Line 4
}
If I run this thread through ExecutorService viz
ExecutorService exs = Executors.newFixedThreadPool(5);
exs.execute(new MyThread));
I stop the ExecutorService
exs.shutdown();
But this does not stop the thread as flag is not set to false. In another question related to same topic I was asked to properly handle InterruptedException which is caused when exs.shutdown() is called.
But in this case I am not doing any action that can throw InterruptedException.
What is the standard way to handle such case ?
Further question
Answer given by Sabir says "If your runnable doesn't respond well to interrupts, nothing can be done to stop it other than shutting down the JVM. ".This seems to be my case.
But how to introduce handling of InterruptedException; if I am not calling any method that throws interrupted exception?
If you are willing to shut your thread even if that flag remains true, you should use - ExecutorService.shutdownNow() method instead of ExecutorService.shutdown()
Quoting from Java Docs,
shutdown()
Initiates an orderly shutdown in which previously submitted tasks are
executed, but no new tasks will be accepted. Invocation has no
additional effect if already shut down.
This method does not wait for previously submitted tasks to complete
execution. Use awaitTermination to do that.
shutdownNow()
Attempts to stop all actively executing tasks, halts the processing of
waiting tasks, and returns a list of the tasks that were awaiting
execution.
This method does not wait for actively executing tasks to terminate.
Use awaitTermination to do that.
There are no guarantees beyond best-effort attempts to stop processing
actively executing tasks. For example, typical implementations will
cancel via Thread.interrupt, so any task that fails to respond to
interrupts may never terminate.
For standard way, I will quote from JDK example from ExecutorService interface,
Usage Examples
Here is a sketch of a network service in which threads in a thread pool service incoming requests. It uses the preconfigured Executors.newFixedThreadPool factory method: class NetworkService implements Runnable { private final ServerSocket serverSocket; private final ExecutorService pool;
public NetworkService(int port, int poolSize)
throws IOException {
serverSocket = new ServerSocket(port);
pool = Executors.newFixedThreadPool(poolSize); }
public void run() { // run the service
try {
for (;;) {
pool.execute(new Handler(serverSocket.accept()));
}
} catch (IOException ex) {
pool.shutdown();
} } }
class Handler implements Runnable { private final Socket socket; Handler(Socket socket) { this.socket = socket; } public void run() {
// read and service request on socket } }} The following method shuts down an ExecutorService in two phases, first by calling shutdown to reject incoming tasks, and then calling shutdownNow, if necessary, to cancel any lingering tasks: void shutdownAndAwaitTermination(ExecutorService pool) { pool.shutdown(); // Disable new tasks from being submitted try {
// Wait a while for existing tasks to terminate
if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
pool.shutdownNow(); // Cancel currently executing tasks
// Wait a while for tasks to respond to being cancelled
if (!pool.awaitTermination(60, TimeUnit.SECONDS))
System.err.println("Pool did not terminate");
} } catch (InterruptedException ie) {
// (Re-)Cancel if current thread also interrupted
pool.shutdownNow();
// Preserve interrupt status
Thread.currentThread().interrupt(); } }}
Notice that there are no guarantees even with shutdownNow() .
EDIT : If I change your while(!stopFlag) to while(!Thread.currentThread().isInterrupted()) then thread with conditional loop get shutdown with shutdownNow() but not with shutdown() so thread gets interrupted with shutdownNow(). I am on JDK8 and Windows 8.1. I do have to put a sleep in main thread so that service can get time to set up the service and launch runnable. Thread gets launched, goes in while then stops when shutdownNow() is called. I don't get that behavior with shutdown() i.e. thread never comes out of while loop. So the approach to make your runnables responsible for interrupts should be there ,either by checking flags or handling exceptions. If your runnable doesn't respond well to interrupts, nothing can be done to stop it other than shutting down the JVM.
One good approach is shown here
well from your question I am assuming that you are trying to shutdown the process gracefully. In order to do so you need to register a shutdownHook to achieve it. Here is a sample code to achieve it.
package com.example;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadManager {
public static void main(String[] args) {
MyThread myThread = new MyThread();
Runtime.getRuntime().addShutdownHook(new Thread(){
MyThread myThread = null;
#Override
public void run(){
System.out.println("Shutting down....");
this.myThread.stopProcess();
}
public Thread setMyThread(MyThread myThread){
this.myThread=myThread;
return this;
}
}.setMyThread(myThread));
ExecutorService exs = Executors.newFixedThreadPool(5);
myThread.setName("User");
exs.execute(myThread);
exs.shutdownNow();
}
}
And in MyThread.java will be look like following:-
package com.example;
public class MyThread extends Thread{
private boolean stopFlag;
#Override
public void run(){
while(!stopFlag){
System.out.println(this.getName());
}
}
public void stopProcess(){
this.stopFlag=true;
}
}
Now if you make a jar file of this code and run the in a Linux server to see how it is working, then follow these additional steps
Step 1> nohup java -jar MyThread.jar &
Press ctrl+c to exist
Now find the pid using following command
Step 2> ps -ef| grep MyThread.jar
Once you got the pid than execute the following command to stop gracefully
Step 3>kill -TERM <Your PID>
When you check the nohub.out file, the output will looks something like following
User
User
.
.
.
User
Shutting down....
User
.
.
Remember if you try to shutdown using kill -9 than you will never see the Shutting down.... message.
#Sabir already discuss the difference between shutdown and shutdownNow. However I will never recommend you to use interrupt call while the threads are running. It might cause memory leak in real time environment.
Upadte 1:-
public static void main(String[] args) {
MyThread myThreads[] = new MyThread[5];
ExecutorService exs = Executors.newFixedThreadPool(5);
for(int i=0;i<5;++i){
MyThread myThread = new MyThread();
myThread.setName("User "+i);
exs.execute(myThread);
myThreads[i] = myThread;
}
Runtime.getRuntime().addShutdownHook(new Thread(){
MyThread myThreads[] = null;
#Override
public void run(){
System.out.println("Shutting down....");
for(MyThread myThread:myThreads){
myThread.stopProcess();
}
}
public Thread setMyThread(MyThread[] myThreads){
this.myThreads=myThreads;
return this;
}
}.setMyThread(myThreads));
exs.shutdownNow();
}
I have a scheduled task in my program that closes a frame after a given period of time. However, after the task has been executed, the program keeps running as if the ScheduledExecutorService was still running on a different thread.
This is the relevant part of my code:
int delay = 1000;
ScheduledExecutorService ex = Executors.newSingleThreadScheduledExecutor();
ex.schedule(() -> {
System.out.println("executed");
getWindow().closeWindow();
// ex.shutdown();
}, delay, TimeUnit.MILLISECONDS);
Here the task is executed after a 1 second delay, "executed" is printed once, the frame closes, and the program keeps running even after this code. If I uncomment the ex.shutdownNow();, the program successfully ends as intended. However, I cannot figure out why this is happening. I also failed to find anything from the rest of the Internet.
MCVE:
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
public class Main {
public static void main(String[] args) {
int delay = 1000;
ScheduledExecutorService ex = Executors.newSingleThreadScheduledExecutor();
ex.schedule(() -> {
System.out.println("executed");
// ex.shutdown();
}, delay, TimeUnit.MILLISECONDS);
}
}
The lambdas might've given it away, but this is indeed Java 8.
Why is the program not stopping after the task has been executed?
The ScheduledExecutorService thread pool returned by Executors#newSingleThreadScheduledExecutor() uses non daemon threads. Until you shut down the thread pool, these are still alive awaiting tasks. A JVM does not end while non-daemon threads are alive.
You can use the overloaded Executors#newSingleThreadScheduledExecutor(ThreadFactory) and provide your own ThreadFactory implementation which creates daemon threads. Note that this risks the case where your task may not even run because the JVM would exit before the task's scheduled time.
Do as you've discovered and shut it down. Note that you should shut always it down somewhere safe, where the operation can't fail.
The Java Virtual Machine runs until all threads that are not daemon threads have died. And Executors.defaultThreadFactory() creates each new thread as a non-daemon thread. However, there is an overload of Executors.newSingleThreadScheduledExecutor(); which takes a ThreadFactory as a parameter, if you care to venture in that direction.
public static void main(String[] args) {
int delay = 1000;
class DaemonFactory implements ThreadFactory
{
#Override
public Thread newThread(Runnable r)
{
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
}
ThreadFactory tf = new DaemonFactory();
ScheduledExecutorService ex = Executors.newSingleThreadScheduledExecutor(tf);
ex.schedule(() -> {
System.out.println("executed");
}, delay, TimeUnit.MILLISECONDS);
}
I would approach this entirely differently. You state:
I have a scheduled task in my program that closes a frame after a given period of time.
Why not instead use a Swing Timer for this as this was built to work well with the Swing event thread?
new Timer(1000, new ActionListener() {
public void actionPerformed(ActionEvent e) {
((Timer) e.getSource()).stop();
someWindow.dispose();
}
}).start();
You can call shutdown from ScheduledExecutorService as it will wait for thread execution and then finalize thread pool. As you can see in Javadoc: "Initiates an orderly shutdown in which previously submitted tasks are executed, but no new tasks will
be accepted. Invocation has no additional effect if already shut down."
Example:
...
scheduledExecutorService.schedule(runnable, delay, TimeUnit.MILLISECONDS);
scheduledExecutorService.shutdown();
...
I am starting scheduler from onCreate() and stopping it in onDestroy() approach to stop the scheduler service.
public MyActivity extends Activity
{
ScheduledExecutorService scheduledExecutorService;
ScheduledFuture<?> scheduledFuture;
private int apiThreshold = 10;//seconds
onCreate()
{
startScheduler();
}
onDestroy()
{
if (scheduledFuture != null)
{
stopScheduler();
}
shutDownService();
super.onDestroy();
}
public void startScheduler() {
Debug.e(TAG, "inside start scheduler");
scheduledExecutorService = Executors.newScheduledThreadPool(1);
scheduledFuture = scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
#Override
public void run() {
// call method to do your task/perform your repeated task
}
}, 4, apiThreshold, TimeUnit.SECONDS);
}
public void shutDownService()
{
if (scheduledExecutorService != null) {
Log.e(“test,"in shutDown service close if not null");
scheduledExecutorService.shutdownNow(); // shutdown will allow the final iteration to finish
// executing where shutdownNow() will kill it immediately
Log.e(“test,"is service shutdown(true/false)=="+scheduledExecutorService.isShutdown());
}
}
}
I happened to come across this article for killing a thread after some time using the Executor service : Killing thread after some specified time limit in Java
This is the code mentioned in the article :
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.invokeAll(Arrays.asList(new Task()), 10, TimeUnit.MINUTES); // Timeout of 10 minutes.
executor.shutdown();
Now that I have a runnable thread to be executed in my program .How do I kill this thread after some time using the above mentioned code?
Here's a part of my code which I have used for creating threads :
public static List<Thread> thread_starter(List<Thread> threads,String filename)
{ String text=read_from_temp(filename);
Runnable task = new MyRunnable(text);
Thread worker = new Thread(task);
worker.start();
// Remember the thread for later usage
threads.add(worker);
return threads;
}
public class MyRunnable implements Runnable {
MyRunnable(String text)
{
this.text=text;
}
#Override
public void run() {
/* other computation*/
}
I create multiple threads by calling thread_started() function .
Can anyone please help me on combining Executor Service with it . I tried a lot but couldn't find any way out !
In java, you can NOT kill a running thread directly. If you want to kill your running thread, you need a running flag in your task, check it in thread task, and set it outside. Eg:
MyRunnable task = ....;
......
task.running = false; //stop one task
public class MyRunnable implements Runnable {
public boolean running = true;
public void run() {
while(running){
.....
}
}
What you mentioned 'ExecutorService' is single thread 'ExecutorService', it would exec tasks one by one, what it do for timeout is just waiting a task completed and calculate/compare each task's time with timeout. You can find it in java's source code 'AbstractExecutorService.java'.
I want to achieve the following: When my application starts, the main thread will start 1+ worker threads that should run in the background, and periodically do things behind the scenes. These should not block the main thread: once main starts the workers, it continues doing its own thing until:
The main thread finishes (normal application termination) - in the case of a command-line utility this is when the end of the main(String[]) method is reached; in the case of a Swing GUI it could be when the user selects the File >> Exit menu, etc.
The operating system throws a kill command (SIGKILL, etc.)
An unexpected, uncaught exception occurs in the main thread, effectively killing it (this is just an unpolite version of #1 above)
Once started/submitted from the main thread, I want all the worker threads (Runnables) to essentially have their own life cycle, and exist independently of the main thread. But, if the main thread dies at any time, I want to be able to block (if at all possible) the main thread until all the workers are finished shutting down, and then "allow" the main thread to die.
My best attempt so far, although I know I'm missing pieces here and there:
public class MainDriver {
private BaneWorker baneWorker;
private ExecutorService executor = Executors.newCachedThreadPool();
public static void main(String[] args) {
MainDriver driver = new MainDriver();
driver.run();
// We've now reached the end of the main method. All workers should block while they shutdown
// gracefully (if at all possible).
if(executor.awaitTermination(30, TimeUnit.SECONDS))
System.out.println("Shutting down...");
else {
System.out.println("Forcing shut down...");
executor.shutdownNow();
}
}
private void run() {
// Start all worker threads.
baneWorker = new BaneWorker(Thread.currentThread());
// More workers will be used once I get this simple example up and running...
executor.submit(baneWorker);
// Eventually submit the other workers here as well...
// Now start processing. If command-line utility, start doing whatever the utility
// needs to do. If Swing GUI, fire up a parent JFrame and draw the application to the
// screen for the user, etc.
doStuff();
}
private void doStuff() {
// ??? whatever
}
}
public class BaneWorker implements Runnable {
private Timer timer;
private TimerTask baneTask;
private Thread mainThread;
public BaneWorker(Thread mainThread) {
super();
this.mainThread = mainThread;
}
#Override
public void run() {
try {
timer = new Timer();
baneTask = new TimerTask() {
#Override
public void run() {
System.out.println("When the main thread is ashes...");
}
};
// Schedule the baneTask to kick off every minute starting now.
timer.scheduleAtFixedRate(baneTask, new Date(), 60 * 1000);
} catch(InterruptedException interrupt) {
// Should be thrown if main thread dies, terminates, throws an exception, etc.
// Should block main thread from finally terminating until we're done shutting down.
shutdown();
}
}
private void shutdown() {
baneTask.cancel();
System.out.println("...then you have my permission to die.");
try {
mainThread.join();
} catch(InterruptedException interrupt) {
interrupt.printStackTrace;
}
}
}
Am I on-track or way off-base here? What do I need to change to make this work the way I need it to? I'm new to Java concurrency and am trying my best to use the Concurrency API correctly, but stumbling around a bit. Any ideas? Thanks in advance!
The main thread must signal the worker threads to terminate (generally this is achieved just by using a flag) and then it should call join on every thread to wait for their termination. Have a look here: Java: How to use Thread.join
You can use Runtime.addShutdownHook to register an un-started thread that is executed when a JVM is terminated, the system is shutting down etc. This code can do some cleanup itself, or perhaps notify running daemon threads to finish their work. Any such cleanup code must be relatively fast, because on many systems programs have only a limited time to do cleanup before they're forcibly terminated.
Perhaps you could also consider making your background thread daemon threads. Then they will not block the JVM when main finishes and will be still running during the clean-up phase.
Note that you can't intercept SIGKILL - this signal is designed to be unavoidable and immediate. But it should work with SIGTERM, SIGHUP and similar signals.
Update: You can easily create ExecutorServices that run daemon threads. All you need is to create a proper ThreadFactory:
public static class DaemonFactory
implements ThreadFactory
{
#Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
t.setDaemon(true);
return t;
}
}
than you create an ExecutorService like
public static void main(String argv[])
throws Exception
{
ExecutorService es
= Executors.newCachedThreadPool(new DaemonFactory());
// ^^^^^^^^^^^^^^^^^^^
es.submit(new Callable<Object>() {
public Object call() throws Exception {
Thread.sleep(100);
System.err.println("Daemon: " +
Thread.currentThread().isDaemon());
return null;
}
});
// Without this, JVM will terminate before the daemon thread prints the
// message, because JVM doesn't wait for daemon threads when
// terminating:
es.awaitTermination(3, TimeUnit.SECONDS);
}
Concerning Thread.join(), you shouldn't try to use it on threads managed by an ExecutorService. It's the responsibility of the executor to manage them. You have no reliable way how to enumerate its threads, the executor can create and destroy threads depending on its configuration etc. The only reliable way is to call shutdown(); and then awaitTermination(...);.
If SIGKILL is a unix "kill -9" there's nothing you can do about it.
For graceful exits, use a try/catch/finally in your main. The catch will catch your exceptions and allow you to do what needs to be done (recover? abort?) The finally will give you the hook to spin down your threads gracefully.
Reviewing your code quickly, I don't see where you're keeping track of your thread instances. You'll need those if you're going to tell them to spin down.
psuedocode:
static Main(...) {
ArrayList threads = new ArrayList();
try {
for (each thread you want to spin up) {
threads.add(a new Thread())
}
}
catch { assuming all are fatal. }
finally {
for(each thread t in threads) {
t.shutdown();
t.join(); /* Be prepared to catch (and probably ignore) an exception on this, if shutdown() happens too fast! */
}
}