Making abstract method parameters final in Java - java

I have an abstract class with an abstract method, the parameters for which I want to be final - that is, I do not want to allow implementations of the abstract class & method to reassign the parameter.
EDIT: The motivation for this is not immutability per se, which is more to do with the design of the objects. (In fact, in my use case, the parameter is collection which will be mutated in the implementation of the abstract method.) Rather, I want to communicate to anyone implementing my abstract class/method that these variables should not be reassigned. I know that I can communicate that via the java-doc, but I was looking for something more contractual - that they would have to follow, rather than just be guided to follow.
In a non-abstract method, I can do this using the final keyword - for example:
public class MyClazz {
public void doSomething(final int finalParameter){
finalParameter++; // compile error - cannot assign a value to final variable
}
}
However, if I use the final keyword in an abstract method, this does not form part of the contract - that is, implementations of the abstract method do not require the final keyword, and the parameter can be reassigned:
public abstract class MyAbstractClazz {
public abstract void doSomething(final int finalVariable);
}
public class MyExtendedClazz extends MyAbstractClazz {
#Override
public void doSomething(int finalVariable) { // does not require final keyword
finalVariable++; // so the variable is modifiable
}
}
As pointed out in answers to this SO Question, the final keyword does not form part of the method signature, which is why the implementation of the abstract class does not require it.
So, there are two questions:
Why is the final keyword not part of the method signature? I understand that it isn't,
but I want to know if there's a particular reason why it isn't.
Given that the final keyword is not part of the method signature, is there an alternative way of making parameters in an abstract method unassignable?
Other research:
this SO question touches on the same issue, but doesn't either of my two questions. In fact, the second question is explicitly asked, but does not receive an answer.
lots of questions/blogs etc. on the final keyword refer to "the final word". However, with respect to this question, the relevant comment is as follows (which, while useful, doesn't address my two questions):
Note that final parameters are not considered part of the method signature, and are ignored by the compiler when resolving method calls. Parameters can be declared final (or not) with no influence on how the method is overriden.

I have an abstract class with an abstract method, the parameters for which I want to be final - that is, I do not want to allow implementations of the abstract class & method to reassign the parameter.
Why not? That's an implementation detail. It's unobservable to the calling code, so there's no reason why the abstract method should specify it. That's why it's not part of the method signature, either - just like synchronized isn't.
A method should implement its documented contract - but how it chooses to do so is up to it. The contract can't say anything useful about the finality of a parameter, as Java always uses pass-by-value.

Parameters are passed by value, if you call the method using certain variable, this variable wont get modified even if you reassign the parameter inside the method, that's why it doesn't make sense for final to be part of the contract.

Related

Java: Inheritance, Dynamic Binding or what? [duplicate]

As succinctly described here, overriding private methods in Java is invalid because a parent class's private methods are "automatically final, and hidden from the derived class". My question is largely academic.
How is it not a violation of encapsulation to not allow a parent's private method to be "overridden" (ie, implemented independently, with the same signature, in a child class)? A parent's private method cannot be accessed or inherited by a child class, in line with principles of encapsulation. It is hidden.
So, why should the child class be restricted from implementing its own method with the same name/signature? Is there a good theoretical foundation for this, or is this just a pragmatic solution of some sort? Do other languages (C++ or C#) have different rules on this?
You can't override a private method, but you can introduce one in a derived class without a problem. This compiles fine:
class Base
{
private void foo()
{
}
}
class Child extends Base
{
private void foo()
{
}
}
Note that if you try to apply the #Override annotation to Child.foo() you'll get a compile-time error. So long as you have your compiler/IDE set to give you warnings or errors if you're missing an #Override annotation, all should be well. Admittedly I prefer the C# approach of override being a keyword, but it was obviously too late to do that in Java.
As for C#'s handling of "overriding" a private method - a private method can't be virtual in the first place, but you can certainly introduce a new private method with the same name as a private method in the base class.
Well, allowing private methods to be overwritten will either cause a leak of encapsulation or a security risk. If we assume that it were possible, then we’d get the following situation:
Let's say that there's a private method boolean hasCredentials() then an extended class could simply override it like this:
boolean hasCredentials() { return true; }
thus breaking the security check.
The only way for the original class to prevent this would be to declare its method final. But now, this is leaks implementation information through the encapsulation, because a derived class now cannot create a method hasCredentials any more – it would clash with the one defined in the base class.
That’s bad: lets say this method doesn’t exist at first in Base. Now, an implementor can legitimately derive a class Derived and give it a method hasCredentials which works as expected.
But now, a new version of the original Base class is released. Its public interface doesn’t change (and neither do its invariants) so we must expect that it doesn’t break existing code. Only it does, because now there’s a name clash with a method in a derived class.
I think the question stems from a misunderstanding:
How is it /not/ a violation of encapsulation to not allow a parent's private method to be "overridden" (ie, implemented independently, with the same signature, in a child class)
The text inside the parentheses is the opposite of the text before it. Java does allow you to “independently implement [a private method], with the same signature, in a child class”. Not allowing this would violate encapsulation, as I’ve explained above.
But “to not allow a parent's private method to be "overridden"” is something different, and necessary to ensure encapsulation.
"Do other languages (C++ or C#) have different rules on this?"
Well, C++ has different rules: the static or dynamic member function binding process and the access privileges enforcements are orthogonal.
Giving a member function the private access privilege modifier means that this function can only be called by its declaring class, not by others (not even the derived classes). When you declare a private member function as virtual, even pure virtual (virtual void foo() = 0;), you allow the base class to benefit from specialization while still enforcing the access privileges.
When it comes to virtual member functions, access privileges tells you what you are supposed to do:
private virtual means that you are allowed to specialize the behavior but the invocation of the member function is made by the base class, surely in a controlled fashion
protected virtual means that you should / must invoke the upper class version of the member function when overriding it
So, in C++, access privilege and virtualness are independent of each other. Determining whether the function is to be statically or dynamically bound is the last step in resolving a function call.
Finally, the Template Method design pattern should be preferred over public virtual member functions.
Reference: Conversations: Virtually Yours
The article gives a practical use of a private virtual member function.
ISO/IEC 14882-2003 §3.4.1
Name lookup may associate more than one declaration with a name if it finds the name to be a function name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The access rules (clause 11) are considered only once name lookup and function overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have succeeded are the attributes introduced by the name’s declaration used further in expression processing (clause 5).
ISO/IEC 14882-2003 §5.2.2
The function called in a member function call is normally selected according to the static type of the object expression (clause 10), but if that function isvirtualand is not specified using aqualified-idthen the function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the object expression [Note: the dynamic type is the type of the object pointed or referred to by the current value of the object expression.
A parent's private method cannot be accessed or inherited by a child class, inline with principles of encapsulation. It is hidden.
So, why should the child class be
restricted from implementing its own
method with the same name/signature?
There is no such restriction. You can do that without any problems, it's just not called "overriding".
Overridden methods are subject to dynamic dispatch, i.e. the method that is actually called is selected at runtime depending on the actual type of the object it's called on. With private method, that does not happen (and should not, as per your first statement). And that's what is meant by the statement "private methods can't be overridden".
I think you're misinterpreting what that post says. It's not saying that the child class is "restricted from implementing its own method with the same name/signature."
Here's the code, slightly edited:
public class PrivateOverride {
private static Test monitor = new Test();
private void f() {
System.out.println("private f()");
}
public static void main(String[] args) {
PrivateOverride po = new Derived();
po.f();
});
}
}
class Derived extends PrivateOverride {
public void f() {
System.out.println("public f()");
}
}
And the quote:
You might reasonably expect the output to be “public f( )”,
The reason for that quote is that the variable po actually holds an instance of Derived. However, since the method is defined as private, the compiler actually looks at the type of the variable, rather than the type of the object. And it translates the method call into invokespecial (I think that's the right opcode, haven't checked JVM spec) rather than invokeinstance.
It seems to be a matter of choice and definition. The reason you can't do this in java is because the specification says so, but the question were more why the specification says so.
The fact that C++ allows this (even if we use virtual keyword to force dynamic dispatch) shows that there is no inherent reason why you couldn't allow this.
However it seem to be perfectly legal to replace the method:
class B {
private int foo()
{
return 42;
}
public int bar()
{
return foo();
}
}
class D extends B {
private int foo()
{
return 43;
}
public int frob()
{
return foo();
}
}
Seems to compile OK (on my compiler), but the D.foo is not related to B.foo (ie it doesn't override it) - bar() always return 42 (by calling B.foo) and frob() always returns 43 (by calling D.foo) no matter whether called on a B or D instance.
One reason that Java does not allow override the method would be that they didn't like to allow the method to be changed as in Konrad Rudolph's example. Note that C++ differs here as you need to use the "virtual" keyword in order to get dynamic dispatch - by default it hasn't so you can't modify code in base class that relies on the hasCredentials method. The above example also protects against this as the D.foo does not replace calls to foo from B.
When the method is private, it's not visible to its child. So there is no meaning of overriding it.
I apologize for using the term override incorrectly and inconsistent with my description. My description describes the scenario. The following code extends Jon Skeet's example to portray my scenario:
class Base {
public void callFoo() {
foo();
}
private void foo() {
}
}
class Child extends Base {
private void foo() {
}
}
Usage is like the following:
Child c = new Child();
c.callFoo();
The issue I experienced is that the parent foo() method was being called even though, as the code shows, I was calling callFoo() on the child instance variable. I thought I was defining a new private method foo() in Child() which the inherited callFoo() method would call, but I think some of what kdgregory has said may apply to my scenario - possibly due to the way the derived class constructor is calling super(), or perhaps not.
There was no compiler warning in Eclipse and the code did compile. The result was unexpected.
Beyond anything said before, there's a very semantic reason for not allowing private methods to be overridden...THEY'RE PRIVATE!!!
If I write a class, and I indicate that a method is 'private', it should be completely unseeable by the outside world. Nobody should be able access it, override it, or anything else. I simply ought to be able to know that it is MY method exclusively and that nobody else is going to muck with it or depend on it. It could not be considered private if someone could muck with it. I believe that it's that simple really.
A class is defined by what methods it makes available and how they behave. Not how those are implemented internally (e.g. via calls to private methods).
Because encapsulation has to do with behavior and not implementation details, private methods have nothing to do with the idea encapsulation. In a sense, your question makes no sense. It's like asking "How is putting cream in coffee not a violation of encapsulation?"
Presumably the private method is used by something that is public. You can override that. In doing so, you've changed behavior.

final static methods exam

I have been studying for my Software Development course and came across the question from a sample:
"Why does it make no sense to have both the static and final modifiers in front of a Java method?"
I have had a bit of a research and everywhere I go it says it is not bad practice and there are good reasons for doing so - for example, this stackoverflow question:
Is it a bad idea to declare a final static method?
So, is this question itself nonsensical or is there a legitimate answer to this question?
(There are no given solutions to this sample paper)
static methods cannot be overriden since they're associated not with an instance of class, but with the class itself. For example, this is how you'd usually call static method:
MyClass.myStaticMethod()
And this is how you call an instance method:
new MyClass().myInstanceMethod()
final modifier is used with methods to disallow their override in extending classes.
Because a static method cannot be overridden. There is therefore no point in marking it final.
Note however that static final variables (which are, oddly, therefore NOT variables because they cannot change) are very useful because their values can be inlined by the compiler.
Static methods can be sort of overridden (though that's not the technical term), since it is resolved at runtime, searching upwards in class chain until it's found. But this "feature" is probably a mistake; people don't use it, people don't know about it, we should pretend it doesn't exist.
From the Java Language Spec:
A class method is always invoked without reference to a particular
object. It is a compile-time error to attempt to reference the current
object using the keyword this or the keyword super.
So you cannot override a static method because it does not belong to an instance. So, the keywords this and super are not avaliable and you cannot use virtual method invocation. And if you cannot use virtual method invocation then the final keyword is of no use.
I like to think that the compiler sees method declarations like this:
public class SomeClass{
// public static classMethod() becomes
public static [final] void classMethod(){
//...
}
// and public void instanceMethod() becomes
public void instanceMethod(SomeClass this, Object super){
//....
}
}
public class SomeOtherClass extends SomeClass{
// overrides
#Override
public void instanceMethod(SomeOtherClass this, SomeClass super){
//...
}
}
And you call SomeClass instance = new SomeOtherClass().instanceMethod(); then its called the instanceMethod() of SomeOtherClass.
So the compiler does not need to copy method bodys and just pass the reference to the current object in the thread. So, when you use virtual method invocation, in fact you are calling the instanceMethod with a reference to the current object (this) and the body method of the current class is what is called.

Overriding private methods in Java

As succinctly described here, overriding private methods in Java is invalid because a parent class's private methods are "automatically final, and hidden from the derived class". My question is largely academic.
How is it not a violation of encapsulation to not allow a parent's private method to be "overridden" (ie, implemented independently, with the same signature, in a child class)? A parent's private method cannot be accessed or inherited by a child class, in line with principles of encapsulation. It is hidden.
So, why should the child class be restricted from implementing its own method with the same name/signature? Is there a good theoretical foundation for this, or is this just a pragmatic solution of some sort? Do other languages (C++ or C#) have different rules on this?
You can't override a private method, but you can introduce one in a derived class without a problem. This compiles fine:
class Base
{
private void foo()
{
}
}
class Child extends Base
{
private void foo()
{
}
}
Note that if you try to apply the #Override annotation to Child.foo() you'll get a compile-time error. So long as you have your compiler/IDE set to give you warnings or errors if you're missing an #Override annotation, all should be well. Admittedly I prefer the C# approach of override being a keyword, but it was obviously too late to do that in Java.
As for C#'s handling of "overriding" a private method - a private method can't be virtual in the first place, but you can certainly introduce a new private method with the same name as a private method in the base class.
Well, allowing private methods to be overwritten will either cause a leak of encapsulation or a security risk. If we assume that it were possible, then we’d get the following situation:
Let's say that there's a private method boolean hasCredentials() then an extended class could simply override it like this:
boolean hasCredentials() { return true; }
thus breaking the security check.
The only way for the original class to prevent this would be to declare its method final. But now, this is leaks implementation information through the encapsulation, because a derived class now cannot create a method hasCredentials any more – it would clash with the one defined in the base class.
That’s bad: lets say this method doesn’t exist at first in Base. Now, an implementor can legitimately derive a class Derived and give it a method hasCredentials which works as expected.
But now, a new version of the original Base class is released. Its public interface doesn’t change (and neither do its invariants) so we must expect that it doesn’t break existing code. Only it does, because now there’s a name clash with a method in a derived class.
I think the question stems from a misunderstanding:
How is it /not/ a violation of encapsulation to not allow a parent's private method to be "overridden" (ie, implemented independently, with the same signature, in a child class)
The text inside the parentheses is the opposite of the text before it. Java does allow you to “independently implement [a private method], with the same signature, in a child class”. Not allowing this would violate encapsulation, as I’ve explained above.
But “to not allow a parent's private method to be "overridden"” is something different, and necessary to ensure encapsulation.
"Do other languages (C++ or C#) have different rules on this?"
Well, C++ has different rules: the static or dynamic member function binding process and the access privileges enforcements are orthogonal.
Giving a member function the private access privilege modifier means that this function can only be called by its declaring class, not by others (not even the derived classes). When you declare a private member function as virtual, even pure virtual (virtual void foo() = 0;), you allow the base class to benefit from specialization while still enforcing the access privileges.
When it comes to virtual member functions, access privileges tells you what you are supposed to do:
private virtual means that you are allowed to specialize the behavior but the invocation of the member function is made by the base class, surely in a controlled fashion
protected virtual means that you should / must invoke the upper class version of the member function when overriding it
So, in C++, access privilege and virtualness are independent of each other. Determining whether the function is to be statically or dynamically bound is the last step in resolving a function call.
Finally, the Template Method design pattern should be preferred over public virtual member functions.
Reference: Conversations: Virtually Yours
The article gives a practical use of a private virtual member function.
ISO/IEC 14882-2003 §3.4.1
Name lookup may associate more than one declaration with a name if it finds the name to be a function name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The access rules (clause 11) are considered only once name lookup and function overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have succeeded are the attributes introduced by the name’s declaration used further in expression processing (clause 5).
ISO/IEC 14882-2003 §5.2.2
The function called in a member function call is normally selected according to the static type of the object expression (clause 10), but if that function isvirtualand is not specified using aqualified-idthen the function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the object expression [Note: the dynamic type is the type of the object pointed or referred to by the current value of the object expression.
A parent's private method cannot be accessed or inherited by a child class, inline with principles of encapsulation. It is hidden.
So, why should the child class be
restricted from implementing its own
method with the same name/signature?
There is no such restriction. You can do that without any problems, it's just not called "overriding".
Overridden methods are subject to dynamic dispatch, i.e. the method that is actually called is selected at runtime depending on the actual type of the object it's called on. With private method, that does not happen (and should not, as per your first statement). And that's what is meant by the statement "private methods can't be overridden".
I think you're misinterpreting what that post says. It's not saying that the child class is "restricted from implementing its own method with the same name/signature."
Here's the code, slightly edited:
public class PrivateOverride {
private static Test monitor = new Test();
private void f() {
System.out.println("private f()");
}
public static void main(String[] args) {
PrivateOverride po = new Derived();
po.f();
});
}
}
class Derived extends PrivateOverride {
public void f() {
System.out.println("public f()");
}
}
And the quote:
You might reasonably expect the output to be “public f( )”,
The reason for that quote is that the variable po actually holds an instance of Derived. However, since the method is defined as private, the compiler actually looks at the type of the variable, rather than the type of the object. And it translates the method call into invokespecial (I think that's the right opcode, haven't checked JVM spec) rather than invokeinstance.
It seems to be a matter of choice and definition. The reason you can't do this in java is because the specification says so, but the question were more why the specification says so.
The fact that C++ allows this (even if we use virtual keyword to force dynamic dispatch) shows that there is no inherent reason why you couldn't allow this.
However it seem to be perfectly legal to replace the method:
class B {
private int foo()
{
return 42;
}
public int bar()
{
return foo();
}
}
class D extends B {
private int foo()
{
return 43;
}
public int frob()
{
return foo();
}
}
Seems to compile OK (on my compiler), but the D.foo is not related to B.foo (ie it doesn't override it) - bar() always return 42 (by calling B.foo) and frob() always returns 43 (by calling D.foo) no matter whether called on a B or D instance.
One reason that Java does not allow override the method would be that they didn't like to allow the method to be changed as in Konrad Rudolph's example. Note that C++ differs here as you need to use the "virtual" keyword in order to get dynamic dispatch - by default it hasn't so you can't modify code in base class that relies on the hasCredentials method. The above example also protects against this as the D.foo does not replace calls to foo from B.
When the method is private, it's not visible to its child. So there is no meaning of overriding it.
I apologize for using the term override incorrectly and inconsistent with my description. My description describes the scenario. The following code extends Jon Skeet's example to portray my scenario:
class Base {
public void callFoo() {
foo();
}
private void foo() {
}
}
class Child extends Base {
private void foo() {
}
}
Usage is like the following:
Child c = new Child();
c.callFoo();
The issue I experienced is that the parent foo() method was being called even though, as the code shows, I was calling callFoo() on the child instance variable. I thought I was defining a new private method foo() in Child() which the inherited callFoo() method would call, but I think some of what kdgregory has said may apply to my scenario - possibly due to the way the derived class constructor is calling super(), or perhaps not.
There was no compiler warning in Eclipse and the code did compile. The result was unexpected.
Beyond anything said before, there's a very semantic reason for not allowing private methods to be overridden...THEY'RE PRIVATE!!!
If I write a class, and I indicate that a method is 'private', it should be completely unseeable by the outside world. Nobody should be able access it, override it, or anything else. I simply ought to be able to know that it is MY method exclusively and that nobody else is going to muck with it or depend on it. It could not be considered private if someone could muck with it. I believe that it's that simple really.
A class is defined by what methods it makes available and how they behave. Not how those are implemented internally (e.g. via calls to private methods).
Because encapsulation has to do with behavior and not implementation details, private methods have nothing to do with the idea encapsulation. In a sense, your question makes no sense. It's like asking "How is putting cream in coffee not a violation of encapsulation?"
Presumably the private method is used by something that is public. You can override that. In doing so, you've changed behavior.

java basics about final keyword

Can final keyword be used for a method?
Absolutely! The final keyword can be applied to just about anything, in each case meaning "you don't get to change this anymore."
Here's what it means when applied to...
a variable: You simply cannot assign the variable a new value (rendering it a constant, of course)
a method: You cannot re-implement (i.e., override) this method in a subclass
a class: You cannot define a subclass
In each case we're simply indicating: once this thing is declared, this is the last value (or implementation) you'll ever see for it.
Yes, it is possible to declare a method as final. That will mean that a method cannot be overridden by its subclasses.
From The Java Language Specifications, Third Edition, Section 8.4.3.3:
A method can be declared final to
prevent subclasses from overriding or
hiding it. It is a compile-time error
to attempt to override or hide a final
method.
For more information, the Writing Final Classes and Methods page from The Java Tutorials has more information.
Yes.
You can make a method final
public class A {
public static final void f() {
System.out.println("test");
}
}
There are typically two reasons for making a method final
When a method is final, it "may" be inlined.
When a method is final, the method is impossible to override.
Sure can. Making it impossible to override.
Sure, check out The Final Word on the Final Keyword
public abstract class AbstractBase
{
public final void performOperation() // cannot be overridden
{
prepareForOperation();
doPerformOperation();
}
protected abstract void doPerformOperation(); // must override
}
Yes.
A final method cannot be overridden by subclasses. This is often used to prevent subclasses from altering crucial behaviors of the class.
As a note to the other answers. You can use final. In practice I rarely see people using it and I'm not sure why.
A lot of the code I write these days is intended for multi-threaded environments and I tend to make the class final an immutable (if its a value class) so that it is threadsafe.
The problem with marking some methods as final (and not others) is that you are stating that there is something special about that method and nothing special about the others. That's rarely what people actually mean in my experience.
If a class is intended for inheritence you need to keep it clean and keep it small to prevent unwanted side-effects. All this depends on whether you are writing code for your self and your team or whether you are writing for a wider audience - i.e. a public api on an Open Source project or a commercial project.
yes, final keyword can be used for a method. It will preserve the immutability. it prevents between methods from being broken. For example, suppose the implementation of some method of class X assumes that method M will behave in a certain way. Declaring X or M as final will prevent derived classes from redefining M in such a way as to cause X to behave incorrectly.

Why can't I define a static method in a Java interface?

EDIT: As of Java 8, static methods are now allowed in interfaces.
Here's the example:
public interface IXMLizable<T>
{
static T newInstanceFromXML(Element e);
Element toXMLElement();
}
Of course this won't work. But why not?
One of the possible issues would be, what happens when you call:
IXMLizable.newInstanceFromXML(e);
In this case, I think it should just call an empty method (i.e. {}). All subclasses would be forced to implement the static method, so they'd all be fine when calling the static method. So why isn't this possible?
EDIT: I guess I'm looking for answer that's deeper than "because that's the way Java is".
Is there a particular technological reason why static methods can't be overwritten? That is, why did the designers of Java decide to make instance methods overrideable but not static methods?
EDIT: The problem with my design is I'm trying to use interfaces to enforce a coding convention.
That is, the goal of the interface is twofold:
I want the IXMLizable interface to allow me to convert classes that implement it to XML elements (using polymorphism, works fine).
If someone wants to make a new instance of a class that implements the IXMLizable interface, they will always know that there will be a newInstanceFromXML(Element e) static constructor.
Is there any other way to ensure this, other than just putting a comment in the interface?
Java 8 permits static interface methods
With Java 8, interfaces can have static methods. They can also have concrete instance methods, but not instance fields.
There are really two questions here:
Why, in the bad old days, couldn't interfaces contain static methods?
Why can't static methods be overridden?
Static methods in interfaces
There was no strong technical reason why interfaces couldn't have had static methods in previous versions. This is summed up nicely by the poster of a duplicate question. Static interface methods were initially considered as a small language change, and then there was an official proposal to add them in Java 7, but it was later dropped due to unforeseen complications.
Finally, Java 8 introduced static interface methods, as well as override-able instance methods with a default implementation. They still can't have instance fields though. These features are part of the lambda expression support, and you can read more about them in Part H of JSR 335.
Overriding static methods
The answer to the second question is a little more complicated.
Static methods are resolvable at compile time. Dynamic dispatch makes sense for instance methods, where the compiler can't determine the concrete type of the object, and, thus, can't resolve the method to invoke. But invoking a static method requires a class, and since that class is known statically—at compile time—dynamic dispatch is unnecessary.
A little background on how instance methods work is necessary to understand what's going on here. I'm sure the actual implementation is quite different, but let me explain my notion of method dispatch, which models observed behavior accurately.
Pretend that each class has a hash table that maps method signatures (name and parameter types) to an actual chunk of code to implement the method. When the virtual machine attempts to invoke a method on an instance, it queries the object for its class and looks up the requested signature in the class's table. If a method body is found, it is invoked. Otherwise, the parent class of the class is obtained, and the lookup is repeated there. This proceeds until the method is found, or there are no more parent classes—which results in a NoSuchMethodError.
If a superclass and a subclass both have an entry in their tables for the same method signature, the sub class's version is encountered first, and the superclass's version is never used—this is an "override".
Now, suppose we skip the object instance and just start with a subclass. The resolution could proceed as above, giving you a sort of "overridable" static method. The resolution can all happen at compile-time, however, since the compiler is starting from a known class, rather than waiting until runtime to query an object of an unspecified type for its class. There is no point in "overriding" a static method since one can always specify the class that contains the desired version.
Constructor "interfaces"
Here's a little more material to address the recent edit to the question.
It sounds like you want to effectively mandate a constructor-like method for each implementation of IXMLizable. Forget about trying to enforce this with an interface for a minute, and pretend that you have some classes that meet this requirement. How would you use it?
class Foo implements IXMLizable<Foo> {
public static Foo newInstanceFromXML(Element e) { ... }
}
Foo obj = Foo.newInstanceFromXML(e);
Since you have to explicitly name the concrete type Foo when "constructing" the new object, the compiler can verify that it does indeed have the necessary factory method. And if it doesn't, so what? If I can implement an IXMLizable that lacks the "constructor", and I create an instance and pass it to your code, it is an IXMLizable with all the necessary interface.
Construction is part of the implementation, not the interface. Any code that works successfully with the interface doesn't care about the constructor. Any code that cares about the constructor needs to know the concrete type anyway, and the interface can be ignored.
This was already asked and answered, here
To duplicate my answer:
There is never a point to declaring a static method in an interface. They cannot be executed by the normal call MyInterface.staticMethod(). If you call them by specifying the implementing class MyImplementor.staticMethod() then you must know the actual class, so it is irrelevant whether the interface contains it or not.
More importantly, static methods are never overridden, and if you try to do:
MyInterface var = new MyImplementingClass();
var.staticMethod();
the rules for static say that the method defined in the declared type of var must be executed. Since this is an interface, this is impossible.
The reason you can't execute "result=MyInterface.staticMethod()" is that it would have to execute the version of the method defined in MyInterface. But there can't be a version defined in MyInterface, because it's an interface. It doesn't have code by definition.
While you can say that this amounts to "because Java does it that way", in reality the decision is a logical consequence of other design decisions, also made for very good reason.
With the advent of Java 8 it is possible now to write default and static methods in interface.
docs.oracle/staticMethod
For example:
public interface Arithmetic {
public int add(int a, int b);
public static int multiply(int a, int b) {
return a * b;
}
}
public class ArithmaticImplementation implements Arithmetic {
#Override
public int add(int a, int b) {
return a + b;
}
public static void main(String[] args) {
int result = Arithmetic.multiply(2, 3);
System.out.println(result);
}
}
Result : 6
TIP : Calling an static interface method doesn't require to be implemented by any class. Surely, this happens because the same rules for static methods in superclasses applies for static methods on interfaces.
Normally this is done using a Factory pattern
public interface IXMLizableFactory<T extends IXMLizable> {
public T newInstanceFromXML(Element e);
}
public interface IXMLizable {
public Element toXMLElement();
}
Because static methods cannot be overridden in subclasses, and hence they cannot be abstract. And all methods in an interface are, de facto, abstract.
Why can't I define a static method in a Java interface?
Actually you can in Java 8.
As per Java doc:
A static method is a method that is associated with the class in which
it is defined rather than with any object. Every instance of the class
shares its static methods
In Java 8 an interface can have default methods and static methods. This makes it easier for us to organize helper methods in our libraries. We can keep static methods specific to an interface in the same interface rather than in a separate class.
Example of default method:
list.sort(ordering);
instead of
Collections.sort(list, ordering);
Example of static method (from doc itself):
public interface TimeClient {
// ...
static public ZoneId getZoneId (String zoneString) {
try {
return ZoneId.of(zoneString);
} catch (DateTimeException e) {
System.err.println("Invalid time zone: " + zoneString +
"; using default time zone instead.");
return ZoneId.systemDefault();
}
}
default public ZonedDateTime getZonedDateTime(String zoneString) {
return ZonedDateTime.of(getLocalDateTime(), getZoneId(zoneString));
}
}
Interfaces are concerned with polymorphism which is inherently tied to object instances, not classes. Therefore static doesn't make sense in the context of an interface.
First, all language decisions are decisions made by the language creators. There is nothing in the world of software engineering or language defining or compiler / interpreter writing which says that a static method cannot be part of an interface. I've created a couple of languages and written compilers for them -- it's all just sitting down and defining meaningful semantics. I'd argue that the semantics of a static method in an interface are remarkably clear -- even if the compiler has to defer resolution of the method to run-time.
Secondly, that we use static methods at all means there is a valid reason for having an interface pattern which includes static methods -- I can't speak for any of you, but I use static methods on a regular basis.
The most likely correct answer is that there was no perceived need, at the time the language was defined, for static methods in interfaces. Java has grown a lot over the years and this is an item that has apparently gained some interest. That it was looked at for Java 7 indicates that its risen to a level of interest that might result in a language change. I, for one, will be happy when I no longer have to instantiate an object just so I can call my non-static getter method to access a static variable in a subclass instance ...
"Is there a particular reason that static methods cannot be overridden".
Let me re-word that question for your by filling in the definitions.
"Is there a particular reason that methods resolved at compile time cannot be resolved at runtime."
Or, to put in more completely, If I want to call a method without an instance, but knowing the class, how can I have it resolved based upon the instance that I don't have.
Static methods aren't virtual like instance methods so I suppose the Java designers decided they didn't want them in interfaces.
But you can put classes containing static methods inside interfaces. You could try that!
public interface Test {
static class Inner {
public static Object get() {
return 0;
}
}
}
Commenting EDIT: As of Java 8, static methods are now allowed in interfaces.
It is right, static methods since Java 8 are allowed in interfaces, but your example still won't work. You cannot just define a static method: you have to implement it or you will obtain a compilation error.
Several answers have discussed the problems with the concept of overridable static methods. However sometimes you come across a pattern where it seems like that's just what you want to use.
For example, I work with an object-relational layer that has value objects, but also has commands for manipulating the value objects. For various reasons, each value object class has to define some static methods that let the framework find the command instance. For example, to create a Person you'd do:
cmd = createCmd(Person.getCreateCmdId());
Person p = cmd.execute();
and to load a Person by ID you'd do
cmd = createCmd(Person.getGetCmdId());
cmd.set(ID, id);
Person p = cmd.execute();
This is fairly convenient, however it has its problems; notably the existence of the static methods can not be enforced in the interface. An overridable static method in the interface would be exactly what we'd need, if only it could work somehow.
EJBs solve this problem by having a Home interface; each object knows how to find its Home and the Home contains the "static" methods. This way the "static" methods can be overridden as needed, and you don't clutter up the normal (it's called "Remote") interface with methods that don't apply to an instance of your bean. Just make the normal interface specify a "getHome()" method. Return an instance of the Home object (which could be a singleton, I suppose) and the caller can perform operations that affect all Person objects.
Why can't I define a static method in a Java interface?
All methods in an interface are explicitly abstract and hence you cannot define them as static because static methods cannot be abstract.
Well, without generics, static interfaces are useless because all static method calls are resolved at compile time. So, there's no real use for them.
With generics, they have use -- with or without a default implementation. Obviously there would need to be overriding and so on. However, my guess is that such usage wasn't very OO (as the other answers point out obtusely) and hence wasn't considered worth the effort they'd require to implement usefully.
An interface can never be dereferenced statically, e.g. ISomething.member. An interface is always dereferenced via a variable that refers to an instance of a subclass of the interface. Thus, an interface reference can never know which subclass it refers to without an instance of its subclass.
Thus the closest approximation to a static method in an interface would be a non-static method that ignores "this", i.e. does not access any non-static members of the instance. At the low-level abstraction, every non-static method (after lookup in any vtable) is really just a function with class scope that takes "this" as an implicit formal parameter. See Scala's singleton object and interoperability with Java as evidence of that concept.
And thus every static method is a function with class scope that does not take a "this" parameter. Thus normally a static method can be called statically, but as previously stated, an interface has no implementation (is abstract).
Thus to get closest approximation to a static method in an interface, is to use a non-static method, then don't access any of the non-static instance members. There would be no possible performance benefit any other way, because there is no way to statically link (at compile-time) a ISomething.member(). The only benefit I see of a static method in an interface is that it would not input (i.e. ignore) an implicit "this" and thus disallow access to any of the non-static instance members. This would declare implicitly that the function that doesn't access "this", is immutate and not even readonly with respect to its containing class. But a declaration of "static" in an interface ISomething would also confuse people who tried to access it with ISomething.member() which would cause a compiler error. I suppose if the compiler error was sufficiently explanatory, it would be better than trying to educate people about using a non-static method to accomplish what they want (apparently mostly factory methods), as we are doing here (and has been repeated for 3 Q&A times on this site), so it is obviously an issue that is not intuitive for many people. I had to think about it for a while to get the correct understanding.
The way to get a mutable static field in an interface is use non-static getter and setter methods in an interface, to access that static field that in the subclass. Sidenote, apparently immutable statics can be declared in a Java interface with static final.
Interfaces just provide a list of things a class will provide, not an actual implementation of those things, which is what your static item is.
If you want statics, use an abstract class and inherit it, otherwise, remove the static.
Hope that helps!
You can't define static methods in an interface because static methods belongs to a class not to an instance of class, and interfaces are not Classes. Read more here.
However, If you want you can do this:
public class A {
public static void methodX() {
}
}
public class B extends A {
public static void methodX() {
}
}
In this case what you have is two classes with 2 distinct static methods called methodX().
Suppose you could do it; consider this example:
interface Iface {
public static void thisIsTheMethod();
}
class A implements Iface {
public static void thisIsTheMethod(){
system.out.print("I'm class A");
}
}
class B extends Class A {
public static void thisIsTheMethod(){
System.out.print("I'm class B");
}
}
SomeClass {
void doStuff(Iface face) {
IFace.thisIsTheMethod();
// now what would/could/should happen here.
}
}
Something that could be implemented is static interface (instead of static method in an interface). All classes implementing a given static interface should implement the corresponding static methods. You could get static interface SI from any Class clazz using
SI si = clazz.getStatic(SI.class); // null if clazz doesn't implement SI
// alternatively if the class is known at compile time
SI si = Someclass.static.SI; // either compiler errror or not null
then you can call si.method(params).
This would be useful (for factory design pattern for example) because you can get (or check the implementation of) SI static methods implementation from a compile time unknown class !
A dynamic dispatch is necessary and you can override the static methods (if not final) of a class by extending it (when called through the static interface).
Obviously, these methods can only access static variables of their class.
While I realize that Java 8 resolves this issue, I thought I'd chime in with a scenario I am currently working on (locked into using Java 7) where being able to specify static methods in an interface would be helpful.
I have several enum definitions where I've defined "id" and "displayName" fields along with helper methods evaluating the values for various reasons. Implementing an interface allows me to ensure that the getter methods are in place but not the static helper methods. Being an enum, there really isn't a clean way to offload the helper methods into an inherited abstract class or something of the like so the methods have to be defined in the enum itself. Also because it is an enum, you wouldn't ever be able to actually pass it as an instanced object and treat it as the interface type, but being able to require the existence of the static helper methods through an interface is what I like about it being supported in Java 8.
Here's code illustrating my point.
Interface definition:
public interface IGenericEnum <T extends Enum<T>> {
String getId();
String getDisplayName();
//If I was using Java 8 static helper methods would go here
}
Example of one enum definition:
public enum ExecutionModeType implements IGenericEnum<ExecutionModeType> {
STANDARD ("Standard", "Standard Mode"),
DEBUG ("Debug", "Debug Mode");
String id;
String displayName;
//Getter methods
public String getId() {
return id;
}
public String getDisplayName() {
return displayName;
}
//Constructor
private ExecutionModeType(String id, String displayName) {
this.id = id;
this.displayName = displayName;
}
//Helper methods - not enforced by Interface
public static boolean isValidId(String id) {
return GenericEnumUtility.isValidId(ExecutionModeType.class, id);
}
public static String printIdOptions(String delimiter){
return GenericEnumUtility.printIdOptions(ExecutionModeType.class, delimiter);
}
public static String[] getIdArray(){
return GenericEnumUtility.getIdArray(ExecutionModeType.class);
}
public static ExecutionModeType getById(String id) throws NoSuchObjectException {
return GenericEnumUtility.getById(ExecutionModeType.class, id);
}
}
Generic enum utility definition:
public class GenericEnumUtility {
public static <T extends Enum<T> & IGenericEnum<T>> boolean isValidId(Class<T> enumType, String id) {
for(IGenericEnum<T> enumOption : enumType.getEnumConstants()) {
if(enumOption.getId().equals(id)) {
return true;
}
}
return false;
}
public static <T extends Enum<T> & IGenericEnum<T>> String printIdOptions(Class<T> enumType, String delimiter){
String ret = "";
delimiter = delimiter == null ? " " : delimiter;
int i = 0;
for(IGenericEnum<T> enumOption : enumType.getEnumConstants()) {
if(i == 0) {
ret = enumOption.getId();
} else {
ret += delimiter + enumOption.getId();
}
i++;
}
return ret;
}
public static <T extends Enum<T> & IGenericEnum<T>> String[] getIdArray(Class<T> enumType){
List<String> idValues = new ArrayList<String>();
for(IGenericEnum<T> enumOption : enumType.getEnumConstants()) {
idValues.add(enumOption.getId());
}
return idValues.toArray(new String[idValues.size()]);
}
#SuppressWarnings("unchecked")
public static <T extends Enum<T> & IGenericEnum<T>> T getById(Class<T> enumType, String id) throws NoSuchObjectException {
id = id == null ? "" : id;
for(IGenericEnum<T> enumOption : enumType.getEnumConstants()) {
if(id.equals(enumOption.getId())) {
return (T)enumOption;
}
}
throw new NoSuchObjectException(String.format("ERROR: \"%s\" is not a valid ID. Valid IDs are: %s.", id, printIdOptions(enumType, " , ")));
}
}
Let's suppose static methods were allowed in interfaces:
* They would force all implementing classes to declare that method.
* Interfaces would usually be used through objects, so the only effective methods on those would be the non-static ones.
* Any class which knows a particular interface could invoke its static methods. Hence a implementing class' static method would be called underneath, but the invoker class does not know which. How to know it? It has no instantiation to guess that!
Interfaces were thought to be used when working with objects. This way, an object is instantiated from a particular class, so this last matter is solved. The invoking class need not know which particular class is because the instantiation may be done by a third class. So the invoking class knows only the interface.
If we want this to be extended to static methods, we should have the possibility to especify an implementing class before, then pass a reference to the invoking class. This could use the class through the static methods in the interface. But what is the differente between this reference and an object? We just need an object representing what it was the class. Now, the object represents the old class, and could implement a new interface including the old static methods - those are now non-static.
Metaclasses serve for this purpose. You may try the class Class of Java. But the problem is that Java is not flexible enough for this. You can not declare a method in the class object of an interface.
This is a meta issue - when you need to do ass
..blah blah
anyway you have an easy workaround - making the method non-static with the same logic. But then you would have to first create an object to call the method.
To solve this :
error: missing method body, or declare abstract
static void main(String[] args);
interface I
{
int x=20;
void getValue();
static void main(String[] args){};//Put curly braces
}
class InterDemo implements I
{
public void getValue()
{
System.out.println(x);
}
public static void main(String[] args)
{
InterDemo i=new InterDemo();
i.getValue();
}
}
output :
20
Now we can use static method in interface
I think java does not have static interface methods because you do not need them. You may think you do, but...
How would you use them? If you want to call them like
MyImplClass.myMethod()
then you do not need to declare it in the interface. If you want to call them like
myInstance.myMethod()
then it should not be static.
If you are actually going to use first way, but just want to enforce each implementation to have such static method, then it is really a coding convention, not a contract between instance that implements an interface and calling code.
Interfaces allow you to define contract between instance of class that implement the interface and calling code. And java helps you to be sure that this contract is not violated, so you can rely on it and don't worry what class implements this contract, just "someone who signed a contract" is enough. In case of static interfaces your code
MyImplClass.myMethod()
does not rely on the fact that each interface implementation has this method, so you do not need java to help you to be sure with it.
What is the need of static method in interface, static methods are used basically when you don't have to create an instance of object whole idea of interface is to bring in OOP concepts with introduction of static method you're diverting from concept.

Categories

Resources