I'm trying to automate a process where someone manually converts a code to a digital one.
Then I started reading about OCR. So I installed tesseract OCR and tried it on some images. It doesn't even detect something close to the code.
I figured after reading some questions on stackoverflow, that the images need some preprocessing like skewing the image to a horizontal one, which can been done by openCV for example.
Now my questions are:
What kind of preprocessing or other methods should be used in a case like the above image?
Secondly, can I rely on the output? Will it always work in cases like the above image?
I hope someone can help me!
I have decided to capture the whole card instead of the code only. By capturing the whole card it is possible to transform it to a plain perspective and then I could easily get the "code" region.
Also I learned a lot of things. Especially regarding speed. This function is slow on high resolution images. It can take up to 10 seconds with a size of 3264 x 1836.
What I did to speed things up, is re-sizing the input matrix by a factor of 1 / 4. Which makes it 4^2 times faster and gave me a minimal lose of precision. The next step is scaling the quadrangle which we found back to the normal size. So that we can transform the quadrangle to a plain perspective using the original source.
The code I created for detecting the largest area is heavily based on code I found on stackoverflow. Unfortunately they didn't work as expected for me, so I combined more code snippets and modified a lot.
This is what I got:
private static double angle(Point p1, Point p2, Point p0 ) {
double dx1 = p1.x - p0.x;
double dy1 = p1.y - p0.y;
double dx2 = p2.x - p0.x;
double dy2 = p2.y - p0.y;
return (dx1 * dx2 + dy1 * dy2) / Math.sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
}
private static MatOfPoint find(Mat src) throws Exception {
Mat blurred = src.clone();
Imgproc.medianBlur(src, blurred, 9);
Mat gray0 = new Mat(blurred.size(), CvType.CV_8U), gray = new Mat();
List<MatOfPoint> contours = new ArrayList<>();
List<Mat> blurredChannel = new ArrayList<>();
blurredChannel.add(blurred);
List<Mat> gray0Channel = new ArrayList<>();
gray0Channel.add(gray0);
MatOfPoint2f approxCurve;
double maxArea = 0;
int maxId = -1;
for (int c = 0; c < 3; c++) {
int ch[] = {c, 0};
Core.mixChannels(blurredChannel, gray0Channel, new MatOfInt(ch));
int thresholdLevel = 1;
for (int t = 0; t < thresholdLevel; t++) {
if (t == 0) {
Imgproc.Canny(gray0, gray, 10, 20, 3, true); // true ?
Imgproc.dilate(gray, gray, new Mat(), new Point(-1, -1), 1); // 1 ?
} else {
Imgproc.adaptiveThreshold(gray0, gray, thresholdLevel, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, (src.width() + src.height()) / 200, t);
}
Imgproc.findContours(gray, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
for (MatOfPoint contour : contours) {
MatOfPoint2f temp = new MatOfPoint2f(contour.toArray());
double area = Imgproc.contourArea(contour);
approxCurve = new MatOfPoint2f();
Imgproc.approxPolyDP(temp, approxCurve, Imgproc.arcLength(temp, true) * 0.02, true);
if (approxCurve.total() == 4 && area >= maxArea) {
double maxCosine = 0;
List<Point> curves = approxCurve.toList();
for (int j = 2; j < 5; j++)
{
double cosine = Math.abs(angle(curves.get(j % 4), curves.get(j - 2), curves.get(j - 1)));
maxCosine = Math.max(maxCosine, cosine);
}
if (maxCosine < 0.3) {
maxArea = area;
maxId = contours.indexOf(contour);
//contours.set(maxId, getHull(contour));
}
}
}
}
}
if (maxId >= 0) {
return contours.get(maxId);
//Imgproc.drawContours(src, contours, maxId, new Scalar(255, 0, 0, .8), 8);
}
return null;
}
You can call it like so:
MathOfPoint contour = find(src);
See this answer for quadrangle detection from a contour and transforming it to a plain perspective:
Java OpenCV deskewing a contour
Related
I am kind of hopeless in my quest to write a screenshot reader for a game I am addicted to.
We take a screenshot, regardless of size/coloring (so custom settings ingame) and I have a library of images I want to check it against. I am using OpenCV
Example screenshot:
now I have a library of all ingame materials, for example this one
I already know how to rescale and stuffs, but I just know too little for it to find a decent match. I am quite new in image filtering/matching and such so if you have any ideas/tipps, please let me know. My code so far:
public void scan2( String image, String template ) {
Mat iterateImg = Imgcodecs.imread(image, Imgcodecs.IMREAD_COLOR);
Mat templ2 = Imgcodecs.imread(template, Imgcodecs.IMREAD_COLOR);
Mat templ2resized = new Mat();
double templx = templ2.size().width;
double temply = templ2.size().height;
System.out.println(templx+"-"+temply);
for(double scale = 1;scale <2;scale = scale+0.01 ){
Imgproc.resize(templ2, templ2resized, new Size(templx/scale, temply/scale));
MatchResultWrapper match = match(iterateImg, templ2resized);
match.setScaledx((int) (templx/scale));
match.setScaledy((int) (temply/scale));
vals.add(match);
}
double[]results= new double[vals.size()];
for(int i = 0; i < vals.size();i++){
results[i]=vals.get(i).getMatch();
}
double diff = Integer.MAX_VALUE;
int closestIndex = 0;
for (int i = 0; i < results.length; ++i) {
double abs = Math.abs(results[i]);
if (abs < diff) {
closestIndex = i;
diff = abs;
} else if (abs == diff && results[i] > 0 && results[closestIndex] < 0) {
//same distance to zero but positive
closestIndex =i;
}
}
System.out.println(vals.get(closestIndex));
}
private MatchResultWrapper match( Mat source, Mat template ) {
Mat result = new Mat();
Mat img_display = new Mat();
source.copyTo(img_display);
int result_cols = source.cols() - template.cols() + 1;
int result_rows = source.rows() - template.rows() + 1;
result.create(result_rows, result_cols, CvType.CV_32FC1);
Imgproc.matchTemplate(source, template, result, Imgproc.TM_SQDIFF);
Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, - 1, new Mat());
Core.MinMaxLocResult mmr = Core.minMaxLoc(result);
MatchResultWrapper wrapper = new MatchResultWrapper();
wrapper.setMatch(mmr.minVal);
wrapper.setX((int)mmr.minLoc.x);
wrapper.setY((int)mmr.minLoc.y);
return wrapper;
}
Thanks to #christoph-rackwitz we now have the following result. Which sadly does not work either :(
Probably you need a mask for your template. For template matching, the match mode documentation is not 100% clear. But TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, and TM_CCORR_NORMED seem to support masks. I generally prefer the normed match modes, but you can try both of these modes to see what gives you best results. If you do try TM_CCORR_NORMED be sure to use max instead of min.
Basically, I want to achieve this, and so far, I've written the following Java code...
// Display the camera frame
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
// The object's width and height are set to 0
objectWidth = objectHeight = 0;
// frame is captured as a coloured image
frame = inputFrame.rgba();
/** Since the Canny algorithm only works on greyscale images and the captured image is
* coloured, we transform the captured cam image into a greyscale one
*/
Imgproc.cvtColor(frame, grey, Imgproc.COLOR_RGB2GRAY);
// Calculating borders of image using the Canny algorithm
Imgproc.Canny(grey, canny, 180, 210);
/** To avoid background noise (given by the camera) that makes the system too sensitive
* small variations, the image is blurred to a small extent. Blurring is one of the
* required steps before any image transformation because this eliminates small details
* that are of no use. Blur is a low-pass filter.
*/
Imgproc.GaussianBlur(canny, canny, new Size(5, 5), 5);
// Calculate the contours
Imgproc.findContours(canny, contours, new Mat(), Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
/** The contours come in different sequences
* 1 sequence for each connected component.
* Taking the assumption only 1 object is in view, if we have more than 1 connected
* component, this'll be considered part of the details of the object.
*
* For this, we put all contours together in a single sequence
* If there is at least 1 contour, I can continue processing
*/
for (MatOfPoint mat : contours) {
// Retrieve and store all contours in one giant map
mat.copyTo(allContours);
}
MatOfPoint2f allCon = new MatOfPoint2f(allContours.toArray());
// Calculating the minimal rectangle to contain the contours
RotatedRect box = Imgproc.minAreaRect(allCon);
// Getting the vertices of the rectangle
Point[] vertices = initialiseWithDefaultPointInstances(4);
box.points(vertices);
// Now the vertices are in possession, temporal smoothing can be performed.
for (int i = 0; i < 4; i++) {
// Smooth coordinate x of the vertex
vertices[i].x = alpha * lastVertices[i].x + (1.0 - alpha) * vertices[i].x;
// Smooth coordinate y of the vertex
vertices[i].y = alpha * lastVertices[i].y + (1.0 - alpha) * vertices[i].y;
// Assign the present smoothed values as lastVertices for the next smooth
lastVertices[i] = vertices[i];
}
/** With the vertices, the object size is calculated.
* The object size is calculated through pythagoras theorm. In addition, it gives
* the distance between 2 points in a bi-dimensional space.
*
* For a rectangle, considering any vertex V, its two sizes (width and height) can
* be calculated by calculating the distance of V from the previous vertex and
* calculating the distance of V from the next vertex. This is the reason why I
* calculate the distance between vertici[0]/vertici[3] and vertici[0]/vertici[1]
*/
objectWidth = (int) (conversionFactor * Math.sqrt((vertices[0].x - vertices[3].x) * (vertices[0].x - vertices[3].x) + (vertices[0].y - vertices[3].y) * (vertices[0].y - vertices[3].y)));
objectHeight = (int) (conversionFactor * Math.sqrt((vertices[0].x - vertices[1].x) * (vertices[0].x - vertices[1].x) + (vertices[0].y - vertices[1].y) * (vertices[0].y - vertices[1].y)));
/** Draw the rectangle containing the contours. The line method draws a line from 1
* point to the next, and accepts only integer coordinates; for this reason, 2
* temporary Points have been created and why I used Math.round method.
*/
Point pt1 = new Point();
Point pt2 = new Point();
for (int i = 0; i < 4; i++) {
pt1.x = Math.round(vertices[i].x);
pt1.y = Math.round(vertices[i].y);
pt2.x = Math.round(vertices[(i + 1) % 4].x);
pt2.y = Math.round(vertices[(i + 1) % 4].y);
Imgproc.line(frame, pt1, pt2, red, 3);
}
//If the width and height are non-zero, then print the object size on-screen
if (objectWidth != 0 && objectHeight != 0) {
String text;
text = String.format("%d x %d", objectWidth, objectHeight);
widthValue.setText(text);
}
// This function must return
return frame;
}
// Initialising an array of points
public static Point[] initialiseWithDefaultPointInstances(int length) {
Point[] array = new Point[length];
for (int i = 0; i < length; i++) {
array[i] = new Point();
}
return array;
}
What I want to achieve is drawing a rectangle on-screen that contains the object's contours (edges). If anyone knows the answer to my question, please feel free to comment below, as I have been stuck on this for a couple of hours
Here's the code referenced in the comment How to draw a rectangle containing an object in Android (Java, OpenCV)
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
// The object's width and height are set to 0
List<Integer> objectWidth = new ArrayList<>();
List<Integer> objectHeight = new ArrayList<>();
// frame is captured as a coloured image
Mat frame = inputFrame.rgba();
Mat gray = new Mat();
Mat canny = new Mat();
List<MatOfPoint> contours = new ArrayList<>();
/** Since the Canny algorithm only works on greyscale images and the captured image is
* coloured, we transform the captured cam image into a greyscale one
*/
Imgproc.cvtColor(frame, gray, Imgproc.COLOR_RGB2GRAY);
// Calculating borders of image using the Canny algorithm
Imgproc.Canny(gray, canny, 180, 210);
/** To avoid background noise (given by the camera) that makes the system too sensitive
* small variations, the image is blurred to a small extent. Blurring is one of the
* required steps before any image transformation because this eliminates small details
* that are of no use. Blur is a low-pass filter.
*/
Imgproc.GaussianBlur(canny, canny, new Size(5, 5), 5);
// Calculate the contours
Imgproc.findContours(canny, contours, new Mat(), Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
/** The contours come in different sequences
* 1 sequence for each connected component.
* Taking the assumption only 1 object is in view, if we have more than 1 connected
* component, this'll be considered part of the details of the object.
*
* For this, we put all contours together in a single sequence
* If there is at least 1 contour, I can continue processing
*/
if(contours.size() > 0){
// Calculating the minimal rectangle to contain the contours
List<RotatedRect> boxes = new ArrayList<>();
for(MatOfPoint contour : contours){
RotatedRect box = Imgproc.minAreaRect(new MatOfPoint2f(contour.toArray()));
boxes.add(box);
}
// Getting the vertices of the rectangle
List<Point[]> vertices = initialiseWithDefaultPointInstances(boxes.size(), 4);
for(int i=0; i<boxes.size(); i++){
boxes.get(i).points(vertices.get(i));
}
/*
double alpha = 0.5;
// Now the vertices are in possession, temporal smoothing can be performed.
for(int i = 0; i<vertices.size(); i++){
for (int j = 0; j < 4; j++) {
// Smooth coordinate x of the vertex
vertices.get(i)[j].x = alpha * lastVertices.get(i)[j].x + (1.0 - alpha) * vertices.get(i)[j].x;
// Smooth coordinate y of the vertex
vertices.get(i)[j].y = alpha * lastVertices.get(i)[j].y + (1.0 - alpha) * vertices.get(i)[j].y;
// Assign the present smoothed values as lastVertices for the next smooth
lastVertices.get(i)[j] = vertices.get(i)[j];
}
}*/
/** With the vertices, the object size is calculated.
* The object size is calculated through pythagoras theorm. In addition, it gives
* the distance between 2 points in a bi-dimensional space.
*
* For a rectangle, considering any vertex V, its two sizes (width and height) can
* be calculated by calculating the distance of V from the previous vertex and
* calculating the distance of V from the next vertex. This is the reason why I
* calculate the distance between vertici[0]/vertici[3] and vertici[0]/vertici[1]
*/
double conversionFactor = 1.0;
for(Point[] points : vertices){
int width = (int) (conversionFactor * Math.sqrt((points[0].x - points[3].x) * (points[0].x - points[3].x) + (points[0].y - points[3].y) * (points[0].y - points[3].y)));
int height = (int) (conversionFactor * Math.sqrt((points[0].x - points[1].x) * (points[0].x - points[1].x) + (points[0].y - points[1].y) * (points[0].y - points[1].y)));
objectWidth.add(width);
objectHeight.add(height);
}
/** Draw the rectangle containing the contours. The line method draws a line from 1
* point to the next, and accepts only integer coordinates; for this reason, 2
* temporary Points have been created and why I used Math.round method.
*/
Scalar red = new Scalar(255, 0, 0, 255);
for (int i=0; i<vertices.size(); i++){
Point pt1 = new Point();
Point pt2 = new Point();
for (int j = 0; j < 4; j++) {
pt1.x = Math.round(vertices.get(i)[j].x);
pt1.y = Math.round(vertices.get(i)[j].y);
pt2.x = Math.round(vertices.get(i)[(j + 1) % 4].x);
pt2.y = Math.round(vertices.get(i)[(j + 1) % 4].y);
Imgproc.line(frame, pt1, pt2, red, 3);
}
if (objectWidth.get(i) != 0 && objectHeight.get(i) != 0){
Imgproc.putText(frame, "width: " + objectWidth + ", height: " + objectHeight, new Point(Math.round(vertices.get(i)[1].x), Math.round(vertices.get(i)[1].y)), 1, 1, red);
}
}
}
// This function must return
return frame;
}
// Initialising an array of points
public static List<Point[]> initialiseWithDefaultPointInstances(int n_Contours, int n_Points) {
List<Point[]> pointsList = new ArrayList<>();
for(int i=0; i<n_Contours; i++){
Point[] array = new Point[n_Points];
for (int j = 0; j < n_Points; j++) {
array[j] = new Point();
}
pointsList.add(array);
}
return pointsList;
}
This is what I tried.I got the output as a grayscale image in img2 of an Imageview object.
The problem is as lines.cols() considers everything as a line.
I want the count to be exactly the number of larger lines as shown in the 1stpic (I mean the lines that seperates the parking lot,in which the car can ocupy) My output image Can anyone guide me how to get the exact count of parking lines.I have used openCV version 2.4.I have been working on this for the past 2 days
public String getCount() {
Bitmap bitmap = BitmapFactory.decodeResource(getApplicationContext().getResources(), R.drawable.park);
mat = new Mat();
edges = new Mat();
Mat mRgba = new Mat(612, 816, CvType.CV_8UC1);
Mat lines = new Mat();
Utils.bitmapToMat(bitmap, mat);
Imgproc.Canny(mat, edges, 50, 90);
int threshold = 50;
int minLineSize = 20;
int lineGap = 20;
Imgproc.HoughLinesP(edges, lines, 1, Math.PI / 180, threshold, minLineSize, lineGap);
int count = lines.cols();
int coun= lines.rows();
System.out.println("count = " + count);
System.out.println("coun = " + coun);
String cou = String.valueOf(count);
for (int x = 0; x < lines.cols(); x++) {
double[] vec = lines.get(0, x);
double x1 = vec[0],
y1 = vec[1],
x2 = vec[2],
y2 = vec[3];
Point start = new Point(x1, y1);
Point end = new Point(x2, y2);
Core.line(mRgba, start, end, new Scalar(255, 0, 0), 3);
}
Bitmap bmp = Bitmap.createBitmap(mRgba.cols(), mRgba.rows(), Bitmap.Config.ARGB_8888);
Utils.matToBitmap(mRgba, bmp);
bitmap = bmp;
Drawable d = new BitmapDrawable(Resources.getSystem(), bitmap);
img2.setImageDrawable(d);
return cou;
}
You should modify one of the many answers regarding counting by OpenCV where kind of detection varies for every distinct case. You should make your own model for parking lines. Check some of these approaches/detectors Haar cascade classifier, latent SVM or Bag of Words.
You could also modify some of the answers that works for something else like this answer below for coins, only you should search for shape of parking lines instead of coins:
http://answers.opencv.org/question/36111/how-to-count-number-of-coins-in-android-opencv/
I am trying to detect a circular shape from an image which appears to have very good definition. I do realize that part of the circle is missing but from what I've read about the Hough transform it doesn't seem like that should cause the problem I'm experiencing.
Input:
Output:
Code:
// Read the image
Mat src = Highgui.imread("input.png");
// Convert it to gray
Mat src_gray = new Mat();
Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);
// Reduce the noise so we avoid false circle detection
//Imgproc.GaussianBlur( src_gray, src_gray, new Size(9, 9), 2, 2 );
Mat circles = new Mat();
/// Apply the Hough Transform to find the circles
Imgproc.HoughCircles(src_gray, circles, Imgproc.CV_HOUGH_GRADIENT, 1, 1, 160, 25, 0, 0);
// Draw the circles detected
for( int i = 0; i < circles.cols(); i++ ) {
double[] vCircle = circles.get(0, i);
Point center = new Point(vCircle[0], vCircle[1]);
int radius = (int) Math.round(vCircle[2]);
// circle center
Core.circle(src, center, 3, new Scalar(0, 255, 0), -1, 8, 0);
// circle outline
Core.circle(src, center, radius, new Scalar(0, 0, 255), 3, 8, 0);
}
// Save the visualized detection.
String filename = "output.png";
System.out.println(String.format("Writing %s", filename));
Highgui.imwrite(filename, src);
I have Gaussian blur commented out because (counter intuitively) it was greatly increasing the number of equally inaccurate circles found.
Is there anything wrong with my input image that would cause Hough to not work as well as I expect? Are my parameters way off?
EDIT: first answer brought up a good point about the min/max radius hint for Hough. I resisted adding those parameters as the example image in this post is just one of thousands of images all with varying radii from ~20 to almost infinity.
I've adjusted my RANSAC algorithm from this answer: Detect semi-circle in opencv
Idea:
choose randomly 3 points from your binary edge image
create a circle from those 3 points
test how "good" this circle is
if it is better than the previously best found circle in this image, remember
loop 1-4 until some number of iterations reached. then accept the best found circle.
remove that accepted circle from the image
repeat 1-6 until you have found all circles
problems:
at the moment you must know how many circles you want to find in the image
tested only for that one image.
c++ code
result:
code:
inline void getCircle(cv::Point2f& p1,cv::Point2f& p2,cv::Point2f& p3, cv::Point2f& center, float& radius)
{
float x1 = p1.x;
float x2 = p2.x;
float x3 = p3.x;
float y1 = p1.y;
float y2 = p2.y;
float y3 = p3.y;
// PLEASE CHECK FOR TYPOS IN THE FORMULA :)
center.x = (x1*x1+y1*y1)*(y2-y3) + (x2*x2+y2*y2)*(y3-y1) + (x3*x3+y3*y3)*(y1-y2);
center.x /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
center.y = (x1*x1 + y1*y1)*(x3-x2) + (x2*x2+y2*y2)*(x1-x3) + (x3*x3 + y3*y3)*(x2-x1);
center.y /= ( 2*(x1*(y2-y3) - y1*(x2-x3) + x2*y3 - x3*y2) );
radius = sqrt((center.x-x1)*(center.x-x1) + (center.y-y1)*(center.y-y1));
}
std::vector<cv::Point2f> getPointPositions(cv::Mat binaryImage)
{
std::vector<cv::Point2f> pointPositions;
for(unsigned int y=0; y<binaryImage.rows; ++y)
{
//unsigned char* rowPtr = binaryImage.ptr<unsigned char>(y);
for(unsigned int x=0; x<binaryImage.cols; ++x)
{
//if(rowPtr[x] > 0) pointPositions.push_back(cv::Point2i(x,y));
if(binaryImage.at<unsigned char>(y,x) > 0) pointPositions.push_back(cv::Point2f(x,y));
}
}
return pointPositions;
}
float verifyCircle(cv::Mat dt, cv::Point2f center, float radius, std::vector<cv::Point2f> & inlierSet)
{
unsigned int counter = 0;
unsigned int inlier = 0;
float minInlierDist = 2.0f;
float maxInlierDistMax = 100.0f;
float maxInlierDist = radius/25.0f;
if(maxInlierDist<minInlierDist) maxInlierDist = minInlierDist;
if(maxInlierDist>maxInlierDistMax) maxInlierDist = maxInlierDistMax;
// choose samples along the circle and count inlier percentage
for(float t =0; t<2*3.14159265359f; t+= 0.05f)
{
counter++;
float cX = radius*cos(t) + center.x;
float cY = radius*sin(t) + center.y;
if(cX < dt.cols)
if(cX >= 0)
if(cY < dt.rows)
if(cY >= 0)
if(dt.at<float>(cY,cX) < maxInlierDist)
{
inlier++;
inlierSet.push_back(cv::Point2f(cX,cY));
}
}
return (float)inlier/float(counter);
}
float evaluateCircle(cv::Mat dt, cv::Point2f center, float radius)
{
float completeDistance = 0.0f;
int counter = 0;
float maxDist = 1.0f; //TODO: this might depend on the size of the circle!
float minStep = 0.001f;
// choose samples along the circle and count inlier percentage
//HERE IS THE TRICK that no minimum/maximum circle is used, the number of generated points along the circle depends on the radius.
// if this is too slow for you (e.g. too many points created for each circle), increase the step parameter, but only by factor so that it still depends on the radius
// the parameter step depends on the circle size, otherwise small circles will create more inlier on the circle
float step = 2*3.14159265359f / (6.0f * radius);
if(step < minStep) step = minStep; // TODO: find a good value here.
//for(float t =0; t<2*3.14159265359f; t+= 0.05f) // this one which doesnt depend on the radius, is much worse!
for(float t =0; t<2*3.14159265359f; t+= step)
{
float cX = radius*cos(t) + center.x;
float cY = radius*sin(t) + center.y;
if(cX < dt.cols)
if(cX >= 0)
if(cY < dt.rows)
if(cY >= 0)
if(dt.at<float>(cY,cX) <= maxDist)
{
completeDistance += dt.at<float>(cY,cX);
counter++;
}
}
return counter;
}
int main()
{
//RANSAC
cv::Mat color = cv::imread("HoughCirclesAccuracy.png");
// convert to grayscale
cv::Mat gray;
cv::cvtColor(color, gray, CV_RGB2GRAY);
// get binary image
cv::Mat mask = gray > 0;
unsigned int numberOfCirclesToDetect = 2; // TODO: if unknown, you'll have to find some nice criteria to stop finding more (semi-) circles
for(unsigned int j=0; j<numberOfCirclesToDetect; ++j)
{
std::vector<cv::Point2f> edgePositions;
edgePositions = getPointPositions(mask);
std::cout << "number of edge positions: " << edgePositions.size() << std::endl;
// create distance transform to efficiently evaluate distance to nearest edge
cv::Mat dt;
cv::distanceTransform(255-mask, dt,CV_DIST_L1, 3);
unsigned int nIterations = 0;
cv::Point2f bestCircleCenter;
float bestCircleRadius;
//float bestCVal = FLT_MAX;
float bestCVal = -1;
//float minCircleRadius = 20.0f; // TODO: if you have some knowledge about your image you might be able to adjust the minimum circle radius parameter.
float minCircleRadius = 0.0f;
//TODO: implement some more intelligent ransac without fixed number of iterations
for(unsigned int i=0; i<2000; ++i)
{
//RANSAC: randomly choose 3 point and create a circle:
//TODO: choose randomly but more intelligent,
//so that it is more likely to choose three points of a circle.
//For example if there are many small circles, it is unlikely to randomly choose 3 points of the same circle.
unsigned int idx1 = rand()%edgePositions.size();
unsigned int idx2 = rand()%edgePositions.size();
unsigned int idx3 = rand()%edgePositions.size();
// we need 3 different samples:
if(idx1 == idx2) continue;
if(idx1 == idx3) continue;
if(idx3 == idx2) continue;
// create circle from 3 points:
cv::Point2f center; float radius;
getCircle(edgePositions[idx1],edgePositions[idx2],edgePositions[idx3],center,radius);
if(radius < minCircleRadius)continue;
//verify or falsify the circle by inlier counting:
//float cPerc = verifyCircle(dt,center,radius, inlierSet);
float cVal = evaluateCircle(dt,center,radius);
if(cVal > bestCVal)
{
bestCVal = cVal;
bestCircleRadius = radius;
bestCircleCenter = center;
}
++nIterations;
}
std::cout << "current best circle: " << bestCircleCenter << " with radius: " << bestCircleRadius << " and nInlier " << bestCVal << std::endl;
cv::circle(color,bestCircleCenter,bestCircleRadius,cv::Scalar(0,0,255));
//TODO: hold and save the detected circle.
//TODO: instead of overwriting the mask with a drawn circle it might be better to hold and ignore detected circles and dont count new circles which are too close to the old one.
// in this current version the chosen radius to overwrite the mask is fixed and might remove parts of other circles too!
// update mask: remove the detected circle!
cv::circle(mask,bestCircleCenter, bestCircleRadius, 0, 10); // here the radius is fixed which isnt so nice.
}
cv::namedWindow("edges"); cv::imshow("edges", mask);
cv::namedWindow("color"); cv::imshow("color", color);
cv::imwrite("detectedCircles.png", color);
cv::waitKey(-1);
return 0;
}
If you'd set minRadius and maxRadius paramaeters properly, it'd give you good results.
For your image, I tried following parameters.
method - CV_HOUGH_GRADIENT
minDist - 100
dp - 1
param1 - 80
param2 - 10
minRadius - 250
maxRadius - 300
I got the following output
Note: I tried this in C++.
I went through many questions in StackOverflow and able to develop small program to detect squares and rectangles correctly. This is my sample code
public static CvSeq findSquares(final IplImage src, CvMemStorage storage) {
CvSeq squares = new CvContour();
squares = cvCreateSeq(0, sizeof(CvContour.class), sizeof(CvSeq.class), storage);
IplImage pyr = null, timg = null, gray = null, tgray;
timg = cvCloneImage(src);
CvSize sz = cvSize(src.width(), src.height());
tgray = cvCreateImage(sz, src.depth(), 1);
gray = cvCreateImage(sz, src.depth(), 1);
// cvCvtColor(gray, src, 1);
pyr = cvCreateImage(cvSize(sz.width() / 2, sz.height() / 2), src.depth(), src.nChannels());
// down-scale and upscale the image to filter out the noise
// cvPyrDown(timg, pyr, CV_GAUSSIAN_5x5);
// cvPyrUp(pyr, timg, CV_GAUSSIAN_5x5);
// cvSaveImage("ha.jpg",timg);
CvSeq contours = new CvContour();
// request closing of the application when the image window is closed
// show image on window
// find squares in every color plane of the image
for (int c = 0; c < 3; c++) {
IplImage channels[] = { cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1), cvCreateImage(sz, 8, 1) };
channels[c] = cvCreateImage(sz, 8, 1);
if (src.nChannels() > 1) {
cvSplit(timg, channels[0], channels[1], channels[2], null);
} else {
tgray = cvCloneImage(timg);
}
tgray = channels[c];
// // try several threshold levels
for (int l = 0; l < N; l++) {
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if (l == 0) {
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny(tgray, gray, 0, thresh, 5);
// dilate canny output to remove potential
// // holes between edge segments
cvDilate(gray, gray, null, 1);
} else {
// apply threshold if l!=0:
cvThreshold(tgray, gray, (l + 1) * 255 / N, 255,
CV_THRESH_BINARY);
}
// find contours and store them all as a list
cvFindContours(gray, storage, contours, sizeof(CvContour.class), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
CvSeq approx;
// test each contour
while (contours != null && !contours.isNull()) {
if (contours.elem_size() > 0) {
approx = cvApproxPoly(contours, Loader.sizeof(CvContour.class), storage, CV_POLY_APPROX_DP, cvContourPerimeter(contours) * 0.02, 0);
if (approx.total() == 4 && Math.abs(cvContourArea(approx, CV_WHOLE_SEQ, 0)) > 1000 && cvCheckContourConvexity(approx) != 0) {
double maxCosine = 0;
for (int j = 2; j < 5; j++) {
// find the maximum cosine of the angle between
// joint edges
double cosine = Math.abs(angle(
new CvPoint(cvGetSeqElem(
approx, j % 4)),
new CvPoint(cvGetSeqElem(
approx, j - 2)),
new CvPoint(cvGetSeqElem(
approx, j - 1))));
maxCosine = Math.max(maxCosine, cosine);
}
if (maxCosine < 0.2) {
CvRect x = cvBoundingRect(approx, l);
if ((x.width() * x.height()) < 50000) {
System.out.println("Width : " + x.width()
+ " Height : " + x.height());
cvSeqPush(squares, approx);
}
}
}
}
contours = contours.h_next();
}
contours = new CvContour();
}
}
return squares;
}
I use this image to detect rectangles and squares
I need to identify the following output
and
But when I run the above code, it detects only the following rectangles. But I don't know the reason for that. Please can someone explain the reason for that.
This is the output that I got.
Please be kind enough to explain the problem in above code and give some suggensions to detect this squares and rectangles.
Given a mask image (binary image, like your second figure), cvFindContours() gives you the contours (several list of points).
look at this link: http://dasl.mem.drexel.edu/~noahKuntz/openCVTut7.html