EDIT:
Edited the question in response to #maress answer below.
I have a web service in java (async enabled), which when called performs a call to another service asynchronously. In my Controller I have this:
private boolean receivedEvent = false;
private final Object SYNC = new Object();
public Callable<String> doStuff()
{
callSomeAsyncFunction();
return new Callable<String> ()
{
#Override
public String call() throws Exception {
synchronized (SYNC)
{
while (receivedEvent == false)
{
SYNC.wait();
}
receivedEvent = false;
System.out.println("RETURN");
return "ok";
}
}
};
}
public void onMyEvent(MyEvent event)
{
synchronized (SYNC)
{
receivedEvent = true;
System.out.println("RECEIVED");
SYNC.notify();
}
}
EDIT: The notification never gets through. System.out.println("RETURN") is never called. The events are being received ('RECEIVED' is shown).
Now all I want to do is wait for the callSomeAsyncFunction() to finish executing. When done, it triggers an event on the handler public void onMyEvent(MyEvent event).
Any suggestions? I am not even sure if my approach makes sense at all.
Synchronize always on a final instance.
private MyEvent myEvent;
private final Object SYNC = new Object();
public Callable<String> doStuff()
{
callSomeAsyncFunction();
return new Callable<String> ()
{
#Override
public String call() throws Exception {
synchronized (SYNC)
{
while (myEvent == null)
{
SYNC.wait();
}
return "ok";
}
}
};
}
public void onMyEvent(MyEvent event)
{
synchronized (SYNC)
{
myEvent = event;
SYNC.notifyAll();
}
}
I just noticed the following phenomena when cancelling a Future returned by ForkJoinPool. Given the following example code:
ForkJoinPool pool = new ForkJoinPool();
Future<?> fut = pool.submit(new Callable<Void>() {
#Override
public Void call() throws Exception {
while (true) {
if (Thread.currentThread().isInterrupted()) { // <-- never true
System.out.println("interrupted");
throw new InterruptedException();
}
}
}
});
Thread.sleep(1000);
System.out.println("cancel");
fut.cancel(true);
The program never prints interrupted. The docs of ForkJoinTask#cancel(boolean) say:
mayInterruptIfRunning - this value has no effect in the default implementation because interrupts are not used to control cancellation.
If ForkJoinTasks ignore interrupts, how else are you supposed to check for cancellation inside Callables submitted to a ForkJoinPool?
This happens because Future<?> is a ForkJoinTask.AdaptedCallable which extends ForkJoinTask, whose cancel method is:
public boolean cancel(boolean mayInterruptIfRunning) {
return setCompletion(CANCELLED) == CANCELLED;
}
private int setCompletion(int completion) {
for (int s;;) {
if ((s = status) < 0)
return s;
if (UNSAFE.compareAndSwapInt(this, statusOffset, s, completion)) {
if (s != 0)
synchronized (this) { notifyAll(); }
return completion;
}
}
}
It does not do any interruptions, it just sets status. I suppose this happens becouse ForkJoinPools's Futures might have a very complicated tree structure, and it is unclear in which order to cancel them.
Sharing some more light on top of #Mkhail answer:
Using ForkJoinPool execute() instead of submit() will force a failed Runnable to throw a worker exception, and this exception will be caught by the Thread UncaughtExceptionHandler.
Taking from Java 8 code:
submit is using AdaptedRunnableAction().
execute is using RunnableExecuteAction() (see the rethrow(ex)).
/**
* Adaptor for Runnables without results
*/
static final class AdaptedRunnableAction extends ForkJoinTask<Void>
implements RunnableFuture<Void> {
final Runnable runnable;
AdaptedRunnableAction(Runnable runnable) {
if (runnable == null) throw new NullPointerException();
this.runnable = runnable;
}
public final Void getRawResult() { return null; }
public final void setRawResult(Void v) { }
public final boolean exec() { runnable.run(); return true; }
public final void run() { invoke(); }
private static final long serialVersionUID = 5232453952276885070L;
}
/**
* Adaptor for Runnables in which failure forces worker exception
*/
static final class RunnableExecuteAction extends ForkJoinTask<Void> {
final Runnable runnable;
RunnableExecuteAction(Runnable runnable) {
if (runnable == null) throw new NullPointerException();
this.runnable = runnable;
}
public final Void getRawResult() { return null; }
public final void setRawResult(Void v) { }
public final boolean exec() { runnable.run(); return true; }
void internalPropagateException(Throwable ex) {
rethrow(ex); // rethrow outside exec() catches.
}
private static final long serialVersionUID = 5232453952276885070L;
}
I am attempting to pass the return value from scheduling a task into an anonymous class, but I am running into trouble. If I set the return value to a final variable, it says it is not initialized:
/* Not initialized */
final BukkitTask task = Bukkit.getScheduler().runTaskTimer(plugin, new Runnable() {
public void run() {
/* irrelevant code */
task.cancel();
}
}, 0L, 20L);
I have also attempted passing a variable by calling a method within the anonymous class, however it changes the return type to void and therefore I cannot pass a proper value:
BukkitTask temp = null;
/* Returns void */
temp = Bukkit.getScheduler().runTaskTimer(plugin, new Runnable() {
private BukkitTask task;
public void initTask(BukkitTask task) {
this.task = task;
}
public void run() {
/* irrelevant code */
task.cancel();
}
}.initTask(temp), 0L, 20L);
How can I pass a returned value into an anonymous class within the code?
You can define this class
class Box<T> {
public volatile T value;
}
and use it like this:
final Box<BukkitTask> taskBox = new Box<BukkitTask>();
taskBox.value = Bukkit.getScheduler().runTaskTimer(plugin, new Runnable() {
public void run() {
/* irrelevant code */
taskBox.value.cancel();
}
}, 0L, 20L);
However, taskBox.value in run could still be null depending on when runTaskTimer actually executes the runnable.
My idea, which might sound stupid, would be to create a global variable to which you assign the return value. Then, have a static method that would return this value to you in the anonymous class.
I seem to have figured out an answer rather quickly!
You can change the return type of the init method, and then it will return the proper values for the code!:
BukkitTask task = null;
task = Bukkit.getScheduler().runTaskTimer(plugin, new Runnable() {
private BukkitTask task;
public Runnable initTask(BukkitTask task) {
this.task = task;
return this;
}
public void run() {
/* irrelevant code */
task.cancel();
}
}.initTask(task), 0L, 20L);
I am not sure what are you trying to do. Would Callable instead of Runnable solve the problem? http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Callable.html
see this example
public static void main(String[] args) {
final Object objectA[] = new String[1];
new Thread(new Runnable() {
private A refA = null;
public void run() {
objectA[0] = "Hello World or your object";
}
}).start();;
while (objectA[0] == null){
}
System.out.println(objectA[0]);
}
Is there a way to determine the current millisecond or other time measure of when a ScheduledExecutorService is going to fire next?
scheduleTaskExecutorUpdate = Executors.newSingleThreadScheduledExecutor();
I have a longer running ScheduledExecutorService(A) and from a shorter running ScheduledExecutorService(B) I would like to update a TextView, display a countdown of when ScheduledExecutorService(A) is going to fire next.
If you keep track of the ScheduledFutures for all tasks scheduled with the executor, then yes. This becomes a problem of determining the minimum delay until the next task must fire, which should be a fairly reliable estimate.
final Collection<ScheduledFuture<?>> futures = ...;
/* for each schedule, add it to the above collection */
...
final long delay = Collections.min(futures).getDelay(TimeUnit.MILLISECONDS);
... or, for one task, you merely do:
final ScheduledFuture<?> future = ...;
final long delay = future.getDelay(TimeUnit.MILLISECONDS);
Now, if you're going to be doing it a lot, with mutiple tasks, I'd suggest you maintain a DelayQueue. However, you can't merely throw the ScheduledFutures in the queue without maintaining the changes caused by periodic tasks. Luckily, the class ScheduledThreadPoolExecutor should handle this nicely via its decorateTask methods.
Note this means you will need to create your ownScheduledThreadPoolExecutor directly. Something like the below might work.
public class TrackingSingleThreadScheduledExecutor
extends ScheduledThreadPoolExecutor {
private final DelayQueue<ScheduledFuture<?>> tasks
= new DelayQueue<RunnableScheduledFuture<?>>();
public TrackingSingleThreadScheduledExecutor() {
super(1);
}
public DelayQueue<? extends ScheduledFuture<V>> tasks() {
return tasks;
}
public ScheduledFuture<V> next() {
return tasks.peek();
}
protected <V> RunnableScheduledFuture<V> decorateTask
(final Callable<V> callable, final RunnableScheduledFuture<V> task) {
return new QueueAwareTask(task);
}
protected <V> RunnableScheduledFuture<V> decorateTask
(final Runnable runnable, final RunnableScheduledFuture<V> task) {
return new QueueAwareTask(task);
}
private final class QueueAwareTask<V> implements RunnableScheduledFuture<V> {
private final RunnableScheduledFuture<V> inner;
public QueueAwareTask(final RunnableScheduledFuture<V> inner) {
this.inner = inner;
}
public boolean isPeriodic() {
return inner.isPeriodic();
}
public long getDelay(final TimeUnit unit) {
return inner.getDelay(unit);
}
public void run() {
inner.run();
if (queue.remove(inner) && inner.isPeriodic()
&& !inner.isCancelled()) {
queue.add(inner);
}
}
public int compareTo(final Delayed other) {
return inner.compareTo(other);
}
public boolean cancel(final boolean mayInterruptIfRunning) {
final boolean cancelled = inner.cancel(mayInterruptIfRunning);
if (cancelled) {
queue.remove(inner);
}
return cancelled;
}
public boolean isCancelled() {
return inner.isCancelled();
}
public boolean isDone() {
return inner.isDone();
}
public V get() throws InterruptedException, ExecutionException {
return inner.get();
}
public V get(final long timeout, final TimeUnit unit)
throws InterruptedException, ExecutionException {
return inner.get(timeout, unit);
}
}
}
Then, usage is as follows.
final TrackingSingleThreadScheduledExecutor executor
= new TrackingSingleThreadScheduledExecutor();
...
final long delay = executor.next().getDelay(TimeUnit.MILLISECONDS);
I am implementing a thread pooling mechanism in which I'd like to execute tasks of varying priorities. I'd like to have a nice mechanism whereby I can submit a high priority task to the service and have it be scheduled before other tasks. The priority of the task is an intrinsic property of the task itself (whether I express that task as a Callable or a Runnable is not important to me).
Now, superficially it looks like I could use a PriorityBlockingQueue as the task queue in my ThreadPoolExecutor, but that queue contains Runnable objects, which may or may not be the Runnable tasks I've submitted to it. Moreover, if I've submitted Callable tasks, it's not clear how this would ever map.
Is there a way to do this? I'd really rather not roll my own for this, since I'm far more likely to get it wrong that way.
(An aside; yes, I'm aware of the possibility of starvation for lower-priority jobs in something like this. Extra points (?!) for solutions that have a reasonable guarantee of fairness)
I have solved this problem in a reasonable fashion, and I'll describe it below for future reference to myself and anyone else who runs into this problem with the Java Concurrent libraries.
Using a PriorityBlockingQueue as the means for holding onto tasks for later execution is indeed a movement in the correct direction. The problem is that the PriorityBlockingQueue must be generically instantiated to contain Runnable instances, and it is impossible to call compareTo (or similiar) on a Runnable interface.
Onto solving the problem. When creating the Executor, it must be given a PriorityBlockingQueue. The queue should further be given a custom Comparator to do proper in place sorting:
new PriorityBlockingQueue<Runnable>(size, new CustomTaskComparator());
Now, a peek at CustomTaskComparator:
public class CustomTaskComparator implements Comparator<MyType> {
#Override
public int compare(MyType first, MyType second) {
return comparison;
}
}
Everything looking pretty straight forward up to this point. It gets a bit sticky here. Our next problem is to deal with the creation of FutureTasks from the Executor. In the Executor, we must override newTaskFor as so:
#Override
protected <V> RunnableFuture<V> newTaskFor(Callable<V> c) {
//Override the default FutureTask creation and retrofit it with
//a custom task. This is done so that prioritization can be accomplished.
return new CustomFutureTask(c);
}
Where c is the Callable task that we're trying to execute. Now, let's have a peek at CustomFutureTask:
public class CustomFutureTask extends FutureTask {
private CustomTask task;
public CustomFutureTask(Callable callable) {
super(callable);
this.task = (CustomTask) callable;
}
public CustomTask getTask() {
return task;
}
}
Notice the getTask method. We're gonna use that later to grab the original task out of this CustomFutureTask that we've created.
And finally, let's modify the original task that we were trying to execute:
public class CustomTask implements Callable<MyType>, Comparable<CustomTask> {
private final MyType myType;
public CustomTask(MyType myType) {
this.myType = myType;
}
#Override
public MyType call() {
//Do some things, return something for FutureTask implementation of `call`.
return myType;
}
#Override
public int compareTo(MyType task2) {
return new CustomTaskComparator().compare(this.myType, task2.myType);
}
}
You can see that we implement Comparable in the task to delegate to the actual Comparator for MyType.
And there you have it, customized prioritization for an Executor using the Java libraries! It takes some bit of bending, but it's the cleanest that I've been able to come up with. I hope this is helpful to someone!
At first blush it would seem you could define an interface for your tasks that extends Runnable or Callable<T> and Comparable. Then wrap a ThreadPoolExecutor with a PriorityBlockingQueue as the queue, and only accept tasks that implement your interface.
Taking your comment into account, it looks like one option is to extend ThreadPoolExecutor, and override the submit() methods. Refer to AbstractExecutorService to see what the default ones look like; all they do is wrap the Runnable or Callable in a FutureTask and execute() it. I'd probably do this by writing a wrapper class that implements ExecutorService and delegates to an anonymous inner ThreadPoolExecutor. Wrap them in something that has your priority, so that your Comparator can get at it.
You can use these helper classes:
public class PriorityFuture<T> implements RunnableFuture<T> {
private RunnableFuture<T> src;
private int priority;
public PriorityFuture(RunnableFuture<T> other, int priority) {
this.src = other;
this.priority = priority;
}
public int getPriority() {
return priority;
}
public boolean cancel(boolean mayInterruptIfRunning) {
return src.cancel(mayInterruptIfRunning);
}
public boolean isCancelled() {
return src.isCancelled();
}
public boolean isDone() {
return src.isDone();
}
public T get() throws InterruptedException, ExecutionException {
return src.get();
}
public T get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
return src.get(timeout, unit);
}
public void run() {
src.run();
}
public static Comparator<Runnable> COMP = new Comparator<Runnable>() {
public int compare(Runnable o1, Runnable o2) {
if (o1 == null && o2 == null)
return 0;
else if (o1 == null)
return -1;
else if (o2 == null)
return 1;
else {
int p1 = ((PriorityFuture<?>) o1).getPriority();
int p2 = ((PriorityFuture<?>) o2).getPriority();
return p1 > p2 ? 1 : (p1 == p2 ? 0 : -1);
}
}
};
}
AND
public interface PriorityCallable<T> extends Callable<T> {
int getPriority();
}
AND this helper method:
public static ThreadPoolExecutor getPriorityExecutor(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS,
new PriorityBlockingQueue<Runnable>(10, PriorityFuture.COMP)) {
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
RunnableFuture<T> newTaskFor = super.newTaskFor(callable);
return new PriorityFuture<T>(newTaskFor, ((PriorityCallable<T>) callable).getPriority());
}
};
}
AND then use it like this:
class LenthyJob implements PriorityCallable<Long> {
private int priority;
public LenthyJob(int priority) {
this.priority = priority;
}
public Long call() throws Exception {
System.out.println("Executing: " + priority);
long num = 1000000;
for (int i = 0; i < 1000000; i++) {
num *= Math.random() * 1000;
num /= Math.random() * 1000;
if (num == 0)
num = 1000000;
}
return num;
}
public int getPriority() {
return priority;
}
}
public class TestPQ {
public static void main(String[] args) throws InterruptedException, ExecutionException {
ThreadPoolExecutor exec = getPriorityExecutor(2);
for (int i = 0; i < 20; i++) {
int priority = (int) (Math.random() * 100);
System.out.println("Scheduling: " + priority);
LenthyJob job = new LenthyJob(priority);
exec.submit(job);
}
}
}
I will try to explain this problem with a fully functional code. But before diving into the code I would like to explain about PriorityBlockingQueue
PriorityBlockingQueue : PriorityBlockingQueue is an implementation of BlockingQueue. It accepts the tasks along with their priority and submits the task with the highest priority for execution first. If any two tasks have same priority, then we need to provide some custom logic to decide which task goes first.
Now lets get into the code straightaway.
Driver class : This class creates an executor which accepts tasks and later submits them for execution. Here we create two tasks one with LOW priority and the other with HIGH priority. Here we tell the executor to run a MAX of 1 threads and use the PriorityBlockingQueue.
public static void main(String[] args) {
/*
Minimum number of threads that must be running : 0
Maximium number of threads that can be created : 1
If a thread is idle, then the minimum time to keep it alive : 1000
Which queue to use : PriorityBlockingQueue
*/
PriorityBlockingQueue queue = new PriorityBlockingQueue();
ThreadPoolExecutor executor = new ThreadPoolExecutor(0,1,
1000, TimeUnit.MILLISECONDS,queue);
MyTask task = new MyTask(Priority.LOW,"Low");
executor.execute(new MyFutureTask(task));
task = new MyTask(Priority.HIGH,"High");
executor.execute(new MyFutureTask(task));
task = new MyTask(Priority.MEDIUM,"Medium");
executor.execute(new MyFutureTask(task));
}
MyTask class : MyTask implements Runnable and accepts priority as an argument in the constructor. When this task runs, it prints a message and then puts the thread to sleep for 1 second.
public class MyTask implements Runnable {
public int getPriority() {
return priority.getValue();
}
private Priority priority;
public String getName() {
return name;
}
private String name;
public MyTask(Priority priority,String name){
this.priority = priority;
this.name = name;
}
#Override
public void run() {
System.out.println("The following Runnable is getting executed "+getName());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
MyFutureTask class : Since we are using PriorityBlocingQueue for holding our tasks, our tasks must be wrapped inside FutureTask and our implementation of FutureTask must implement Comparable interface. The Comparable interface compares the priority of 2 different tasks and submits the task with the highest priority for execution.
public class MyFutureTask extends FutureTask<MyFutureTask>
implements Comparable<MyFutureTask> {
private MyTask task = null;
public MyFutureTask(MyTask task){
super(task,null);
this.task = task;
}
#Override
public int compareTo(MyFutureTask another) {
return task.getPriority() - another.task.getPriority();
}
}
Priority class : Self explanatory Priority class.
public enum Priority {
HIGHEST(0),
HIGH(1),
MEDIUM(2),
LOW(3),
LOWEST(4);
int value;
Priority(int val) {
this.value = val;
}
public int getValue(){
return value;
}
}
Now when we run this example, we get the following output
The following Runnable is getting executed High
The following Runnable is getting executed Medium
The following Runnable is getting executed Low
Even though we submitted the LOW priority first, but HIGH priority task later, but since we are using a PriorityBlockingQueue, any task with a higher priority will execute first.
My solution preserves submition order of tasks for same priorities. It's an improvement of this answer
Task execution order is based on:
Priority
Submit order (within same priority)
Tester class:
public class Main {
public static void main(String[] args) throws InterruptedException, ExecutionException {
ExecutorService executorService = PriorityExecutors.newFixedThreadPool(1);
//Priority=0
executorService.submit(newCallable("A1", 200)); //Defaults to priority=0
executorService.execute(newRunnable("A2", 200)); //Defaults to priority=0
executorService.submit(PriorityCallable.of(newCallable("A3", 200), 0));
executorService.submit(PriorityRunnable.of(newRunnable("A4", 200), 0));
executorService.execute(PriorityRunnable.of(newRunnable("A5", 200), 0));
executorService.submit(PriorityRunnable.of(newRunnable("A6", 200), 0));
executorService.execute(PriorityRunnable.of(newRunnable("A7", 200), 0));
executorService.execute(PriorityRunnable.of(newRunnable("A8", 200), 0));
//Priority=1
executorService.submit(PriorityRunnable.of(newRunnable("B1", 200), 1));
executorService.submit(PriorityRunnable.of(newRunnable("B2", 200), 1));
executorService.submit(PriorityCallable.of(newCallable("B3", 200), 1));
executorService.execute(PriorityRunnable.of(newRunnable("B4", 200), 1));
executorService.submit(PriorityRunnable.of(newRunnable("B5", 200), 1));
executorService.shutdown();
}
private static Runnable newRunnable(String name, int delay) {
return new Runnable() {
#Override
public void run() {
System.out.println(name);
sleep(delay);
}
};
}
private static Callable<Integer> newCallable(String name, int delay) {
return new Callable<Integer>() {
#Override
public Integer call() throws Exception {
System.out.println(name);
sleep(delay);
return 10;
}
};
}
private static void sleep(long millis) {
try {
Thread.sleep(millis);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
throw new RuntimeException(e);
}
}
}
Result:
A1 B1 B2 B3 B4 B5 A2 A3 A4 A5 A6 A7 A8
First task is A1 because there were no higher priority in the queue when it was inserted. B tasks are 1 priority so executed earlier, A tasks are 0 priority so executed later, but execution order is follows submition order: B1, B2, B3, ... A2, A3, A4 ...
The solution:
public class PriorityExecutors {
public static ExecutorService newFixedThreadPool(int nThreads) {
return new PriorityExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS);
}
private static class PriorityExecutor extends ThreadPoolExecutor {
private static final int DEFAULT_PRIORITY = 0;
private static AtomicLong instanceCounter = new AtomicLong();
#SuppressWarnings({"unchecked"})
public PriorityExecutor(int corePoolSize, int maximumPoolSize,
long keepAliveTime, TimeUnit unit) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, (BlockingQueue) new PriorityBlockingQueue<ComparableTask>(10,
ComparableTask.comparatorByPriorityAndSequentialOrder()));
}
#Override
public void execute(Runnable command) {
// If this is ugly then delegator pattern needed
if (command instanceof ComparableTask) //Already wrapped
super.execute(command);
else {
super.execute(newComparableRunnableFor(command));
}
}
private Runnable newComparableRunnableFor(Runnable runnable) {
return new ComparableRunnable(ensurePriorityRunnable(runnable));
}
#Override
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new ComparableFutureTask<>(ensurePriorityCallable(callable));
}
#Override
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new ComparableFutureTask<>(ensurePriorityRunnable(runnable), value);
}
private <T> PriorityCallable<T> ensurePriorityCallable(Callable<T> callable) {
return (callable instanceof PriorityCallable) ? (PriorityCallable<T>) callable
: PriorityCallable.of(callable, DEFAULT_PRIORITY);
}
private PriorityRunnable ensurePriorityRunnable(Runnable runnable) {
return (runnable instanceof PriorityRunnable) ? (PriorityRunnable) runnable
: PriorityRunnable.of(runnable, DEFAULT_PRIORITY);
}
private class ComparableFutureTask<T> extends FutureTask<T> implements ComparableTask {
private Long sequentialOrder = instanceCounter.getAndIncrement();
private HasPriority hasPriority;
public ComparableFutureTask(PriorityCallable<T> priorityCallable) {
super(priorityCallable);
this.hasPriority = priorityCallable;
}
public ComparableFutureTask(PriorityRunnable priorityRunnable, T result) {
super(priorityRunnable, result);
this.hasPriority = priorityRunnable;
}
#Override
public long getInstanceCount() {
return sequentialOrder;
}
#Override
public int getPriority() {
return hasPriority.getPriority();
}
}
private static class ComparableRunnable implements Runnable, ComparableTask {
private Long instanceCount = instanceCounter.getAndIncrement();
private HasPriority hasPriority;
private Runnable runnable;
public ComparableRunnable(PriorityRunnable priorityRunnable) {
this.runnable = priorityRunnable;
this.hasPriority = priorityRunnable;
}
#Override
public void run() {
runnable.run();
}
#Override
public int getPriority() {
return hasPriority.getPriority();
}
#Override
public long getInstanceCount() {
return instanceCount;
}
}
private interface ComparableTask extends Runnable {
int getPriority();
long getInstanceCount();
public static Comparator<ComparableTask> comparatorByPriorityAndSequentialOrder() {
return (o1, o2) -> {
int priorityResult = o2.getPriority() - o1.getPriority();
return priorityResult != 0 ? priorityResult
: (int) (o1.getInstanceCount() - o2.getInstanceCount());
};
}
}
}
private static interface HasPriority {
int getPriority();
}
public interface PriorityCallable<V> extends Callable<V>, HasPriority {
public static <V> PriorityCallable<V> of(Callable<V> callable, int priority) {
return new PriorityCallable<V>() {
#Override
public V call() throws Exception {
return callable.call();
}
#Override
public int getPriority() {
return priority;
}
};
}
}
public interface PriorityRunnable extends Runnable, HasPriority {
public static PriorityRunnable of(Runnable runnable, int priority) {
return new PriorityRunnable() {
#Override
public void run() {
runnable.run();
}
#Override
public int getPriority() {
return priority;
}
};
}
}
}
Would it be possible to have one ThreadPoolExecutor for each level of priority? A ThreadPoolExecutor can be instanciated with a ThreadFactory and you could have your own implementation of a ThreadFactory to set the different priority levels.
class MaxPriorityThreadFactory implements ThreadFactory {
public Thread newThread(Runnable r) {
Thread thread = new Thread(r);
thread.setPriority(Thread.MAX_PRIORITY);
}
}