This question already has answers here:
Whats wrong with this simple 'double' calculation? [duplicate]
(5 answers)
Closed 9 years ago.
While I was having fun with codes from Java Puzzlers(I don't have the book) I came across this piece of code
public static void main(String args[]) {
System.out.println(2.00 - 1.10);
}
Output is
0.8999999999999999
When I tried changing the code to
2.00d - 1.10d still I get the same output as 0.8999999999999999
For,2.00d - 1.10f Output is 0.8999999761581421
For,2.00f - 1.10d Output is 0.8999999999999999
For,2.00f - 1.10f Output is 0.9
Why din't I get the output as 0.9 in the first place? I could not make any heads or tails out of this? Can somebody articulate this?
Because in Java double values are IEEE floating point numbers.
The work around could be to use Big Decimal class
Immutable, arbitrary-precision signed decimal numbers. A BigDecimal
consists of an arbitrary precision integer unscaled value and a 32-bit
integer scale. If zero or positive, the scale is the number of digits
to the right of the decimal point. If negative, the unscaled value of
the number is multiplied by ten to the power of the negation of the
scale. The value of the number represented by the BigDecimal is
therefore (unscaledValue × 10^-scale).
On a side note you may also want to check Wikipedia article on IEEE 754 how floating point numbers are stored on most systems.
The more operations you do on a floating point number, the more significant rounding errors can become.
In binary 0.1 is 0.00011001100110011001100110011001.....,
As such it cannot be represented exactly in binary. Depending where you round off (float or double) you get different answers.
So 0.1f =0.000110011001100110011001100
And 0.1d=0.0001100110011001100110011001100110011001100110011001
You note that the number repeats on a 1100 cycle. However the float and double precision split it at a different point in the cycle. As such on one the error rounds up and the other rounds down; leading to the difference.
But most importantly;
Never assume floating point numbers are exact
Other answers are correct, just to point to a valid reference, I quote oracle doc:
double: The double data type is a double-precision 64-bit IEEE 754
floating point. Its range of values is beyond the scope of this
discussion, but is specified in the Floating-Point Types, Formats, and
Values section of the Java Language Specification. For decimal values,
this data type is generally the default choice. As mentioned above,
this data type should never be used for precise values, such as
currency
Related
This question already has answers here:
Rounding Errors?
(9 answers)
Is floating point math broken?
(31 answers)
Closed 6 years ago.
Today I find an interesting fact that the formula will influence the precision of the result. Please see the below code
double x = 7d
double y = 10d
println(1-x/y)
println((y-x)/y)
I wrote this code using groovy, you can just treat it as Java
The result is
1-x/y: 0.30000000000000004
(y-x)/y: 0.3
It's interesting that the two formulas which should be equal have different result.
Can anyone explain it for me?
And can I apply the second formula to anywhere applicable as a valid solution for double precision issue?
To control the precision of floating point arithmetic, you should use java.math.BigDecimal.
You can do something like this.
BigDecimal xBigdecimal = BigDecimal.valueOf(7d);
BigDecimal yBigdecimal = BigDecimal.valueOf(10d);
System.out.println(BigDecimal.valueOf(1).subtract(xBigdecimal.divide(yBigdecimal)));
Can anyone explain it for me?
The float and double primitive types in Java are floating point numbers, where the number is stored as a binary representation of a fraction and a exponent.
More specifically, a double-precision floating point value such as the double type is a 64-bit value, where:
1 bit denotes the sign (positive or negative).
11 bits for the exponent.
52 bits for the significant digits (the fractional part as a binary).
These parts are combined to produce a double representation of a value.
Check this
For a detailed description of how floating point values are handled in Java, follow Floating-Point Types, Formats, and Values of the Java Language Specification.
The byte, char, int, long types are fixed-point numbers, which are exact representions of numbers. Unlike fixed point numbers, floating point numbers will some times (safe to assume "most of the time") not be able to return an exact representation of a number. This is the reason why you end up with 0.30000000000000004 in the result of 1 - (x / y).
When requiring a value that is exact, such as 1.5 or 150.1005, you'll want to use one of the fixed-point types, which will be able to represent the number exactly.
As I've already showed in the above example, Java has a BigDecimal class which will handle very large numbers and very small numbers.
This question already has answers here:
Is floating point math broken?
(31 answers)
Closed 6 years ago.
I have 2 numbers stored as Double, 1.4300 and 1.4350. When I subtract 1.4350 - 1.4300, it gives me the result: 0.0050000000000001155. Why does it add 1155 to the end and how can I solve this so that it returns 0.005 or 0.0050? I'm not sure rounding will work as I'm working with 2 and 4 decimal numbers.
Oh, I love these... these are caused by inaccuracy in the double representation and floating-point arithmetic is full of these. It is often caused by recurring numbers in binary (i.e. base-2 floating-point representation). For example, in decimal 1/3 = 0.3333' In binary 1/10 is a recurring number, which means it cannot be perfectly represented. Try this: 1 - 0.1 - 0.1 - 0.1 - 0.1. You wont get 0.6 :-)
To solve this, use BigDecimal (preferred) or manipulating the double by first multiplying it something like 10000, then rounding it and then dividing it again (less clean).
Good question... it has caused huge problems in the past. Missiles overshooting targets, satellites crashing after launch, etc. Search the web for some, you'll be amazed!
This is a common pitfall with some computer representations of fractional numbers, see this question or google for floating point precision.
Double is not the right type for very precision floating point calculations, if you want exact results you have to use BigDecimal.
Edit: I know floating point arithmetic is not exact. And the arithmetic isn't even my problem. The addition gives the result I expected. 8099.99975f doesn't.
So I have this little program:
public class Test {
public static void main(String[] args) {
System.out.println(8099.99975f); // 8099.9995
System.out.println(8099.9995f + 0.00025f); // 8100.0
System.out.println(8100f == 8099.99975f); // false
System.out.println(8099.9995f + 0.00025f == 8099.99975f); // false
// I know comparing floats with == can be troublesome
// but here they really should be equal in every bit.
}
}
I wrote it to check if 8099.99975 is rounded to 8100 when written as an IEEE 754 single precision float. To my surprise Java converts it to 8099.9995 when written as a float literal (8099.99975f). I checked my calculations and the IEEE standard again but couldn't find any mistakes. 8100 is just as far away from 8099.99975 as 8099.9995 but the last bit of 8100 is 0 which should make it the right representation.
So I checked the Java language spec to see if I missed something. After a quick search I found two things:
The Java programming language requires that floating-point arithmetic behave as if every floating-point operator rounded its floating-point result to the result precision. Inexact results must be rounded to the representable value nearest to the infinitely precise result; if the two nearest representable values are equally near, the one with its least significant bit zero is chosen.
The Java programming language uses round toward zero when converting a floating value to an integer [...].
I noticed here that nothing was said about float literals. So I thought that float literals maybe are just doubles which when cast to float are rounded to zero similarly to the float to int casting. That would explain why 8099.99975f was rounded to zero.
I wrote the little program you can see above to check my theory and indeed found that when adding two float literals that should result in 8100 the correct float is computed. (Note here that 8099.9995 and 0.00025 can be represented exactly as single floats so there's no rounding that could lead to a different result) This confused me since it didn't make much sense to me that float literals and computed floats behaved differently so I dug around in the language spec some more and found this:
A floating-point literal is of type float if it is suffixed with an ASCII letter F or f [...]. The elements of the types float [...] are those values that can be represented using the IEEE 754 32-bit single-precision [...] binary floating-point formats.
This ultimately states that the literal should be rounded according to the IEEE standard which in this case is to 8100. So why is it 8099.9995?
The key point to realise is that the value of a floating point number can be worked out in two different ways, that aren't in general equal.
There's the value that the bits in the floating point number give the exact binary representation of.
There's the "decimal display value" of a floating point number, which is the number with the least decimal places that is closer to that floating point number than any other number.
To understand the difference, consider the number whose exponent is 10001011 and whose significand is 1.11111010001111111111111. This is the exact binary representation of 8099.99951171875. But the decimal value 8099.9995 has fewer decimal places, and is closer to this floating point number than to any other floating point number. Therefore, 8099.9995 is the value that will be displayed when you print out that number.
Note that this particular floating point number is the next lowest one after 8100.
Now consider 8099.99975. It's slightly closer to 8099.99951171875 than it is to 8100. Therefore, to represent it in single precision floating point, Java will pick the floating point number which is the exact binary representation of 8099.99951171875. If you try to print it, you'll see 8099.9995.
Lastly, when you do 8099.9995 + 0.00025 in single precision floating point, the numbers involved are the exact binary representations of 8099.99951171875 and 0.0002499999827705323696136474609375. But because the latter is slightly more than 1/2^12, the result of addition will be closer to 8100 than to 8099.99951171875, and so it will be rounded up, not down at the end, making it 8100.
The decimal value 8099.99975 has nine significant digits. This is more than can be represented exactly in a float. If you use the floating point analysis tool at CUNY you'll see that the binary representation closest to 8099.9995 is 45FD1FFF. When you attempt to add 0.00025 you are suffering a "loss of significance". In order not to lose significant (left-hand) digits of the larger number, the significand of the smaller has to be shifted right to match the scale (exponent) of the larger. When this happens, its value becomes ZERO as it shifts off the right end of the register.
Decimal Exponent Significand
--------- -------------- -------------------------
8099.9995 10001011 (+12) 1.11111010001111111111111
0.00025 01110011 (-12) 1.00000110001001001101111
To line these up for addition, the second one has to shift right 24 bits, but there are only 23 bits in the significand of a single-precision float. The significand disappears, leaving zero, so the addition has no effect.
If you want this to work, switch to double-precision arithmetic.
This question already has answers here:
Retain precision with double in Java
(24 answers)
Closed 9 years ago.
So when I add or subtract in Java with Doubles, it giving me strange results. Here are some:
If I add 0.0 + 5.1, it gives me 5.1. That's correct.
If I add 5.1 + 0.1, it gives me 5.199999999999 (The number of repeating 9s may be off). That's wrong.
If I subtract 4.8 - 0.4, it gives me 4.39999999999995 (Again, the repeating 9s may be off). That's wrong.
At first I thought this was only the problem with adding doubles with decimal values, but I was wrong. The following worked fine:
5.1 + 0.2 = 5.3
5.1 - 0.3 = 4.8
Now, the first number added is a double saved as a variable, though the second variable grabs the text from a JTextField. For example:
//doubleNum = 5.1 RIGHT HERE
//The textfield has only a "0.1" in it.
doubleNum += Double.parseDouble(textField.getText());
//doubleNum = 5.199999999999999
In Java, double values are IEEE floating point numbers. Unless they are a power of 2 (or sums of powers of 2, e.g. 1/8 + 1/4 = 3/8), they cannot be represented exactly, even if they have high precision. Some floating point operations will compound the round-off error present in these floating point numbers. In cases you've described above, the floating-point errors have become significant enough to show up in the output.
It doesn't matter what the source of the number is, whether it's parsing a string from a JTextField or specifying a double literal -- the problem is inherit in floating-point representation.
Workarounds:
If you know you'll only have so many decimal points, then use integer
arithmetic, then convert to a decimal:
(double) (51 + 1) / 10
(double) (48 - 4) / 10
Use BigDecimal
If you must use double, you can cut down on floating-point errors
with the Kahan Summation Algorithm.
In Java, doubles use IEEE 754 floating point arithmetic (see this Wikipedia article), which is inherently inaccurate. Use BigDecimal for perfect decimal precision. To round in printing, accepting merely "pretty good" accuracy, use printf("%.3f", x).
This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Strange floating-point behaviour in a Java program
I came across this weird phenomenon in Java. Try this statement in a Java program:
System.out.print(4.0-3.1);
The output will be 0.8999999
Why does this happen? And how can it be changed?
I recommend reading What Every Scientist Should Know About Floating-Point Arithmetic. This is standard behavior for floating point math. Most systems (including Java) use IEEE 754 as the standard representation for floating point numbers. Exact, numerical values are not always perfectly represented by this standard, so you often see slight numerical inconsistencies when printing, as you found here.
This is a typical floating point result runded.
You get different results from Float and Double :
System.out.println(4.0f-3.1f);
System.out.println(4.0d-3.1d);
Output:
0.9000001
0.8999999999999999
This is because 0.1 cannot be represented evenly in base 2, and cause a loss of precision. For example :
System.out.println(2.0f-1.9f);
System.out.println(2.0d-1.9d);
Should both return 0.1 but in fact will output :
0.100000024
0.10000000000000009
You will find your answer behind this link.
TL;DR summary: you will have to learn how floating point is represented in computing so you know why these things happen. This is an artifact of floating point representation and you alter it by not using float types if this kind of result is unacceptable to you.
floating point can't represent the value 0.1 or any multiple of 0.1 exactly. It is base 2 where the number system it is displayed in is base 10. There is some data lost when storing base 10 data in base 2 format.
You are having fun with float types. But in binary. In the decimal system there are periodic numbers. Like 1/3 which is 1.33333 and so on. Some numbers in the decimal system are not periodic, but are periodic in the binary system.
Thus calculation is always inaccurate when there is the possibility of periodic numbers.