I want to run several threads and join them at the end of my main method, so I can know when they have finished and process some info.
I don't want to put my threads in an array and do a join() one by one as join is a blocking method and I stay would waiting in the main thread for some threads still running, while other threads may have already finished, without having a possibility of knowing.
I have thought on the possibility of implementing an observer pattern for my threads: An interface with a update() method, an abstract class extending from thread (or implementing runnable) with set and get methods for the listeners and a class starting all my threads and waiting them to finish.
If my understanding is right, an observer would not block in a specific join() for a thread. Instead it will wait somehow until an update() method is called by a thread to perform an action. In this case, the update() should be called right after the thread finishes.
I'm clueless on how to implement this. I've tried with similar models, but I don't know how to use the observer/listener to wake/block my main thread. I've used this old post as a template: How to know if other threads have finished? but I can't find a way to wake my main method once a thread calls the update() method. There will be only one observer object instantiated for all threads.
Could you think of a way to use an observer pattern to wait for all threads to finish without blocking main with one by one join() calls? Any other suggestion to solve this problem would be greatly appreciated. Thanks in advance.
Java already has an API to do that: a CompletionService.
A service that decouples the production of new asynchronous tasks from the consumption of the results of completed tasks. Producers submit tasks for execution. Consumers take completed tasks and process their results in the order they complete.
I think you don't need an observer pattern. Thread waiting for any results will have to block, otherwise it will finish or loop in infinity. You can use some kind of BlockingQueue - producers will add result of computation to the blocking queue (then finish) and main thread will just receive these results blocking when there's not any result yet..
Good news for you, it's already implemented :) Great mechanism of CompletionService and Executors framework. Try this:
private static final int NTHREADS = 5;
private static final int NTASKS = 100;
private static final ExecutorService exec = Executors.newFixedThreadPool(NTHREADS);
public static void main(String[] args) throws InterruptedException {
final CompletionService<Long> ecs = new ExecutorCompletionService<Long>(exec);
for (final int i = 0; i < NTASKS ; ++i) {
Callable<Long> task = new Callable<Long>() {
#Override
public Long call() throws Exception {
return i;
}
};
ecs.submit(task);
}
for (int i = 0; i < NTASKS; ++i) {
try {
long l = ecs.take().get();
System.out.print(l);
} catch (ExecutionException e) {
e.getCause().printStackTrace();
}
}
exec.shutdownNow();
exec.awaitTermination(50, TimeUnit.MILLISECONDS);
}
Sounds to me like you are looking for something like the Counting Completion Service recently discussed by Dr. Heinz M. Kabutz.
Related
first what i am trying to do:
During the main thread execution i want to pause the main thread and start two parallel threads. As soon as both this parallel threads terminate, i'd like to start again with the main thread.
What i tried:
...
...
main thread is executing
...
...
CyclicBarrier barrier = new CyclicBarrier(2);
Thread child1 = new Thread(new ThreadBuilderTask(barrier,0));
Thread child2 = new Thread(new ThreadBuilderTask(barrier,1));
child1.start();
child2.start();
/* Now i'm expecting that child1 and child2 are running in parallel calling their fooFunction */
child1.join();
child2.join();
/*Now i'm expecting that main thread will wait for child1and also for child2 (that are running in parallel).*/
... main thread starts again after both child1 and child2 finished (reached the await of the barrier)
... (break point set here, never reached)
...
Thread builder custom class
public class ThreadBuilderTask implements Runnable{
private CyclicBarrier barrier;
private int index;
...setters and getters..
#Override
public void run() {
fooFunction(this.getIndex());
try {
this.getBarrier().await();
} catch (InterruptedException | BrokenBarrierException e) {
return;
}
}
public ThreadBuilderTask(CyclicBarrier barrier,int index){
this.barrier = barrier;
this.index = index;
}
public fooFunction(int index){
//Something taking some seconds to execute
}
It's not clear what is happening here but it is definetely not working. As soon as i call join everything stops and the main thread never restart. (I put a breakpoint after the joins to see when the main thread restarts).
Maybe there is a bit of confusion with these concepts and also i'm not sure if i need to use both the barrier and the joins or simply one of those techniques.
Thanks
Davide
As mentioned in the comments I'd also suggest to use CompletableFuture. A very basic example of your described requirements could look like this:
final Runnable runnable1 = ...;
final Runnable runnable2 = ...;
CompletableFuture<Void> future1 = CompletableFuture.runAsync(runnable1);
CompletableFuture<Void> future2 = CompletableFuture.runAsync(runnable2);
CompletableFuture.allOf(future1, future2).get(); // waits for both runnables to finish
You might want to add more/some exception handling to this example. But it should give an idea how this might work.
You may consider to use Java CompletableFuture to achieve the objective.
Using its functions like supplyAsync or runAsync you may start child threads and join their respective result in the end. Or you can simply let the main thread wait until the subsequent threads completes.
Recently I managed to implement a sample scatter-gather function using the same class.
Check Java Doc for more offerings and to find best available function: https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
I have to make operations on a cache using many threads and thus have created 3 classes that extends from Thread (I realize now they can be Runnables also, or should be). Careful to note, these I'm running more than 1 instance of one of these threads but not at the same time. As in:
public class Operation1 extends Thread
public class Operation2 extends Thread
public class Operation3 extends Thread
Thread[] operation1Threads = new Thread[5];
So after I finish with this one, I create new threads for the second operation (at random).
The following is the way my run method is created.
I make use of cyclic barriers to wait for the threads to work at the same time.
public volatile boolean running = true;
public void run() {
while (running) {
cyclicbarrier1.await();
//some operation here
cyclicbarrier2.await();
}
}
The main thread is focusing on how long to run these for and at the end of that time, I try to stop the threads before working on the second operation. But it seems that my threads don't actually stop.
EDIT: I should note that I've tried interrupting the thread directly. And tried to reset the barrier both of which seemed to be bad practices from answers found on other threads.
for (int i=0; i < numthreads; i++) {
ops[i].interrupt();
}
I use an ExecutorService to manage these operations sequentially.
ExecutorService es = Executors.newSingleThreadExecutor();
es.submit(new Operation1Runnable());
es.submit(new Operation2Runnable());
But the executorservice doesn't go to the next one.
So say that I have 10 things to run, but I can only have 3 threads running at a time.
ArrayList<NewThread> threads = new ArrayList<NewThread>();
for(int i = 1; i < args.length; i++) {
NewThread t = new NewThread(args[i]);
threads.add(newThread);
if( (i%3) == 0) {
for (NewThread nt : threads) {
nt.join();
}
threads.clear();
}
}
The class NewThreads implements Runnable. I thought the join() method would work to make it wait for the threads to finish before looping around again and kicking off the next batch of threads, but instead I get a stack overflow exception. I think I am implementing join() incorrectly, but I am unsure how to do it. I currently am doing it as
public void join() {
this.join();
}
in my NewThread class. Any suggestions on how to get this working or a better way to go about it?
You are implementins or overriding join to call itself endlessly
public void join() {
this.join(); // call myself until I blow up.
}
The simplest solution is to use Thread.join() already there, but a better solution is to use a fixed size thread pool so you don't have to start and stop threads which can waste a lot of time and code.
You can use an ExecutorService
ExecutorService es = Executors.newFixedThreadPool(3);
for(int i=0;i<10;i++)
es.submit(new Task(i));
This is just a simple mistake.
Remove the method
public void join() {
this.join();
}
This method calls itself again and again.
NewThread should extend Thread.
Or 2nd way:
keep the method and call
Thread.currentThread.join();
The rest looks fine.
I have a main process main. It creates 10 threads (say) and then what i want to do is the following:
while(required){
Thread t= new Thread(new ClassImplementingRunnable());
t.start();
counter++;
}
Now i have the list of these threads, and for each thread i want to do a set of process, same for all, hence i put that implementation in the run method of ClassImplementingRunnable.
Now after the threads have done their execution, i wan to wait for all of them to stop, and then evoke them again, but this time i want to do them serially not in parallel.
for this I join each thread, to wait for them to finish execution but after that i am not sure how to evoke them again and run that piece of code serially.
Can i do something like
for(each thread){
t.reevoke(); //how can i do that.
t.doThis(); // Also where does `dothis()` go, given that my ClassImplementingRunnable is an inner class.
}
Also, i want to use the same thread, i.e. i want the to continue from where they left off, but in a serial manner.
I am not sure how to go about the last piece of pseudo code.
Kindly help.
Working with with java.
You can't restart a thread.
What you could do is use the java.util.concurrent package to wait for the threads to finish and rerun you runnables in the main thread to run them sequentially - by putting your runnables in a list, you can access them during the sequential run.
ExecutorService executor = Executors.newFixedThreadPool(10);
List<Runnable> runnables = new ArrayList<Runnable> ();
for (int i = 0; i < 10; i++) {
Runnable r = new ClassImplementingRunnable();
runnables.add(r);
executor.submit(r);
}
executor.shutdown();
//wait until all tasks are finished
executor.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
//re run the tasks sequentially
for (ClassImplementingRunnable r : runnables) {
//the method below can access some variable in
//your ClassImplementingRunnable object, that was
//set during the first parallel run
r.doSomethingElse();
}
If you want serial execution, just use
for (int i = 0; i < 10; i++)
new ClassImplementingRunnable().run();
all the tasks will run in the same thread, one after the other. This is the cleanest way to achieve what you want.
Update
After your comment it is clear that you in fact don't want to run the same tasks again, but to print the results that were calculated by them. This would be even simpler:
add the ClassImplementingRunnable instances into a list of tasks;
run each task in its own thread;
join all the threads;
write a for loop that prints the results from each ClassImplementingRunnable instance.
You already have 2 and 3.
I guess you want something like
ExecutorCompletionService
Example copied from Java doc.
Usage Examples. Suppose you have a set of solvers for a certain problem, each returning a value of some type Result, and would like to run them concurrently, processing the results of each of them that return a non-null value, in some method use(Result r). You could write this as:
void solve(Executor e,
Collection<Callable<Result>> solvers)
throws InterruptedException, ExecutionException {
CompletionService<Result> ecs
= new ExecutorCompletionService<Result>(e);
for (Callable<Result> s : solvers)
ecs.submit(s);
int n = solvers.size();
for (int i = 0; i < n; ++i) {
Result r = ecs.take().get();
if (r != null)
use(r);
}
}
Although there are some great answers here, I'm not sure your initial questions have been answered.
Now after the threads have done their execution, i wan to wait for all of them to stop, and then evoke them again, but this time i want to do them serially not in parallel.
You are confusing the running thread from it's object. It is a very common pattern (although usually made better with the ExecutiveService classes) to do something like the following:
List<ClassExtendingThread> threads = new ArrayList<ClassExtendingThread>();
// create your list of objects
for (int i = 0; i < 10; i++) {
ClassExtendingThread thread = new ClassExtendingThread(...);
thread.start();
threads.add(thread);
}
for (ClassExtendingThread thread : threads) {
// now wait for each of them to finish in turn
thread.join();
// call some method on them to get their results
thread.doThis();
}
Notice that I changed your class to extending Thread. It is usually better to implement Runnable like you did but if you are going to be joining and calling back to the objects, extending Thread makes the code easier.
So you create your object instances, start them as threads, and then join() with them which both waits for them to finish and synchronizes their memory. Once you join() with the thread, you can call any of the methods on your objects that you'd like. That doesn't "re-evoke" the thread at all. It is just accessing the fields inside of your objects. If you try to do this while the thread is running then you need to worry about synchronization.
I would like to ask basic question about Java threads. Let's consider a producer - consumer scenario. Say there is one producer, and n consumer. Consumer arrive at random time, and once they are served they go away, meaning each consumer runs on its own thread. Should I still use run forever condition for consumer ?
public class Consumer extends Thread {
public void run() {
while (true) {
}
}
}
Won't this keep thread running forever ?
I wouldn't extend Thread, instead I would implement Runnable.
If you want the thread to run forever, I would have it loop forever.
A common alternative is to use
while(!Thread.currentThread().isInterrupted()) {
or
while(!Thread.interrupted()) {
It will, so you might want to do something like
while(beingServed)
{
//check if the customer is done being served (set beingServed to false)
}
This way you'll escaped the loop when it's meant to die.
Why not use a boolean that represents the presence of the Consumer?
public class Consumer extends Thread {
private volatile boolean present;
public Consumer() {
present = true;
}
public void run() {
while (present) {
// Do Stuff
}
}
public void consumerLeft() {
present = false;
}
}
First, you can create for each consumer and after the consumer will finish it's job than the consumer will finish the run function and will die, so no need for infinite loop. however, creating thread for each consumer is not good idea since creation of thread is quite expensive in performance point of view. threads are very expensive resources. In addition, i agree with the answers above that it is better to implement runnable and not to extends thread. extend thread only when you wish to customize your thread.
I strongly suggest you will use thread pool and the consumer will be the runnable object that ran by the thread in the thread pool.
the code should look like this:
public class ConsumerMgr{
int poolSize = 2;
int maxPoolSize = 2;
long keepAliveTime = 10;
ThreadPoolExecutor threadPool = null;
final ArrayBlockingQueue<Runnable> queue = new ArrayBlockingQueue<Runnable>(
5);
public ConsumerMgr()
{
threadPool = new ThreadPoolExecutor(poolSize, maxPoolSize,
keepAliveTime, TimeUnit.SECONDS, queue);
}
public void runTask(Runnable task)
{
// System.out.println("Task count.."+threadPool.getTaskCount() );
// System.out.println("Queue Size before assigning the
// task.."+queue.size() );
threadPool.execute(task);
// System.out.println("Queue Size after assigning the
// task.."+queue.size() );
// System.out.println("Pool Size after assigning the
// task.."+threadPool.getActiveCount() );
// System.out.println("Task count.."+threadPool.getTaskCount() );
System.out.println("Task count.." + queue.size());
}
It is not a good idea to extend Thread (unless you are coding a new kind of thread - ie never).
The best approach is to pass a Runnable to the Thread's constructor, like this:
public class Consumer implements Runnable {
public void run() {
while (true) {
// Do something
}
}
}
new Thread(new Consumer()).start();
In general, while(true) is OK, but you have to handle being interrupted, either by normal wake or by spurious wakeup. There are many examples out there on the web.
I recommend reading Java Concurrency in Practice.
for producer-consumer pattern you better use wait() and notify(). See this tutorial. This is far more efficient than using while(true) loop.
If you want your thread to processes messages until you kill them (or they are killed in some way) inside while (true) there would be some synchronized call to your producer thread (or SynchronizedQueue, or queuing system) which would block until a message becomes available. Once a message is consumed, the loop restarts and waits again.
If you want to manually instantiate a bunch of thread which pull a message from a producer just once then die, don't use while (true).