Encrypt and decrypt contents of a text file (Java) - java

I'm looking for some help with my program here. This program can encrypt and decrypt a phrase using DES symmetric cipher, based on CBC mode of operation.
What I am trying to do now is it to change it such that it can encrypt and decrypt the content of a text file using DES symmetric cipher using CBC mode of operation.
Can anyone help me out with this please?
Thank you!
import java.security.*;
import javax.crypto.*;
import java.security.spec.*;
import javax.crypto.spec.*;
import javax.crypto.spec.IvParameterSpec;
public class myProgram
{
public static void main (String[] args) throws Exception
{
String text = "Hello World;
SecureRandom sr = new SecureRandom();
byte [] iv = new byte[8];
sr.nextBytes(iv);
IvParameterSpec IV = new IvParameterSpec(iv);
KeyGenerator kg = KeyGenerator.getInstance("DES");
Key mykey = kg.generateKey();
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, mykey,IV);
byte[] plaintext = text.getBytes("UTF8");
byte[] ciphertext = cipher.doFinal(plaintext);
System.out.println("\n\nCiphertext: ");
for (int i=0;i<ciphertext.length;i++) {
if (chkEight(i)) {
System.out.print("\n");
}
System.out.print(ciphertext[i]+" ");
}

So you just want to know how to read and write to a file?
Take a look at apache.commons.io.FileUtils. It offers both methods for reading and writing strings from/to a file. Here are some examples:
// info.txt represents the path to the file
File someFile = new File("info.txt");
// Create String from File
try {
String filecontent = FileUtils.readFileToString(someFile, Charset.defaultCharset());
System.out.println(filecontent);
} catch (IOException e) {
e.printStackTrace();
}
// Encode / Decode string here
// Write String to file
try {
FileUtils.writeStringToFile(someFile, "your new file content string", Charset.defaultCharset());
System.out.println("Success!");
} catch (IOException e) {
e.printStackTrace();
}
You might want to use a different Charset, depending on the charset of your text file.

Related

Right way to do encryption in java

I'm completely new with encryption stuff and i have some questions about encryption in java
I use to do this for RSA encryption in java
Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPTION_MODE,publicKey);
byte result = cipher.doFinal(data);
and same way to use AES and I use this code to generate a AES key
SecureRandom random = new SecureRandom();
byte [] key = new byte [16];
random.nextByte(key);
SecretKeySpec secretKey = new SecretKeySpec(key,"AES");
but as i saw in other programs code this is not how they use encryption i always see they use something as IV param in AES and they never use "AES" or "RSA" to get a cipher instance.
Is the way i using to encrypt data safe?
I'm sure that i missing something
UPDATE:
I also have a question about changing data size in AES encryption in the way that i use to encrypt data with AES it changes the data size from 1024 to 1040
byte key [] = new byte[16];
SecureRandom random = new SecureRandom();
random.nextBytes(key);
SecretKeySpec keySpec = new SecretKeySpec(key,"AES");
Cipher c = Cipher.getInstance("AES");
c.init(Cipher.ENCRYPT_MODE,keySpec);
FileInputStream in = new FileInputStream("test.txt");
byte [] buffer = new byte[1024];
byte [] encrypted;
while (in.read()>0){
encrypted = c.doFinal(buffer);
System.out.println(encrypted.length);
}
the out put is:
1040
1040
.
.
1040
Simply encrypted data size is always 16 bytes more than original data
Do i have to deal with this or it's because i using Cipher.getInstance("AES");
This is not the recommended way and you will need to change it. You may want to have a better look on StackOverflow. Your question is (in)directly answered in this post How to encrypt String in Java.
Make sure you look further down to all the answers. For example this one will probably help you to understand more.
The most simple is to use the below class
package com.toptal.gif_downloader.tools;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
public class CipherDecrypt {
private static SecretKeySpec secretKey;
private static byte[] key;
public static void setKey(final String myKey) {
MessageDigest sha = null;
try {
key = myKey.getBytes("UTF-8");
sha = MessageDigest.getInstance("SHA-1");
key = sha.digest(key);
key = Arrays.copyOf(key, 16);
secretKey = new SecretKeySpec(key, "AES");
} catch (NoSuchAlgorithmException | UnsupportedEncodingException e) {
e.printStackTrace();
}
}
public static String Encrypt(final String strToEncrypt, final String secret) {
try {
setKey(secret);
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
return Base64.getEncoder()
.encodeToString(cipher.doFinal(strToEncrypt.getBytes("UTF-8")));
} catch (Exception e) {
System.out.println("Error while encrypting: " + e.toString());
}
return null;
}
public static String Decrypt(final String strToDecrypt, final String secret) {
try {
setKey(secret);
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5PADDING");
cipher.init(Cipher.DECRYPT_MODE, secretKey);
return new String(cipher.doFinal(Base64.getDecoder()
.decode(strToDecrypt)));
} catch (Exception e) {
System.out.println("Error while decrypting: " + e.toString());
}
return null;
}
}

Decryption of Encrypted Secret Key and Encrypted String

So I think I have encrypted my secret key and String well but decryption is becoming the problem for me. Below is my code:
package ReadFileExample;
import java.io.BufferedOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
import javax.xml.bind.DatatypeConverter;
import java.security.KeyStore;
public class generatekey {
static Cipher cipher;
public static void main(String[] args) throws Exception {
// generating a symmetric key using the AES algorithm
KeyGenerator generator = KeyGenerator.getInstance("AES");
// 128 bit key
generator.init(256);
//generates a secret key
SecretKey secretkey = generator.generateKey();
// returns an AES cipher
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
//print key
System.out.println("Key: " + cipher);
String plainText = "Hello World";
// call to method encrypt
String hexEncryptedByteText = encrypt(plainText, secretkey);
// print orignial text and encrypted text
System.out.println("Plain Text: " + plainText);
System.out.println("Encrypted Text: " + hexEncryptedByteText);
int plainTextlength = plainText.length();
System.out.println("length of text: " + plainTextlength);
// allows to write data to a file
FileOutputStream fos = null;
// write bytes to file
BufferedOutputStream bos = null;
// create file to which data needs to be written
String fileName = "C:/Users/******/newFile.txt";
try{
// allows written data to go into the written path
fos = new FileOutputStream(fileName);
// converts written data into bytes
bos = new BufferedOutputStream(fos);
// writes the encrypted text into file
bos.write(hexEncryptedByteText.length());
System.out.println("encryptedText has been written successfully in "
+fileName);
// allows to catch bug in code
} catch (IOException e) {
e.printStackTrace();
} finally {
try{
// check for null exception
if (bos != null){
bos.close();
}
// check for null exception
if (fos != null){
fos.close();
}
} catch (IOException e){
e.printStackTrace();
}
}
// creates a file input stream by opening a path to the file needed
FileInputStream fin = new FileInputStream("C:/Users/*****/public.cert");
// implements the X509 certificate type
CertificateFactory f = CertificateFactory.getInstance("X.509");
// initalizes data found in the file
X509Certificate certificate = (X509Certificate)f.generateCertificate(fin);
// gets public key from this certificate
PublicKey pk = certificate.getPublicKey();
System.out.println(pk);
String hexEncryptedByteKey = encryptedKey(pk, secretkey);
System.out.println("Encrypted Key: " + hexEncryptedByteKey);
System.out.println("Encrypted Key length: " + hexEncryptedByteKey.length());
// allows to write data to a file
FileOutputStream newFos = null;
// write bytes to file
BufferedOutputStream newBos = null;
// create file to which data needs to be written
String fileNameKey = "C:/Users/****/symmetric.txt";
try{
// allows written data to go into the written path
newFos = new FileOutputStream(fileNameKey);
// converts written data into bytes
newBos = new BufferedOutputStream(newFos);
// writes the encrypted text into file
newBos.write(hexEncryptedByteKey.length());
System.out.println("encryptedKey has been written successfully in "
+fileNameKey);
// allows to catch bug in code
} catch (IOException e) {
e.printStackTrace();
} finally {
try{
// check for null exception
if (newBos != null){
newBos.close();
}
// check for null exception
if (newFos != null){
newFos.close();
}
} catch (IOException e){
e.printStackTrace();
}
}
// load keystore to get private key
KeyStore ks = KeyStore.getInstance("JKS");
String password = "*****";
char[] passwordChar = password.toCharArray();
System.out.println("password: " + passwordChar);
// locate file
try (FileInputStream fis = new FileInputStream("C:/Users/*****/keystore.jks")) {
ks.load(fis, passwordChar);
}
// protect password for keystore
KeyStore.ProtectionParameter protParam = new KeyStore.PasswordProtection(passwordChar);
// get private key from keystore
KeyStore.PrivateKeyEntry pkEntry = (KeyStore.PrivateKeyEntry)
ks.getEntry("*****", protParam);
PrivateKey myPrivateKey = pkEntry.getPrivateKey();
System.out.println("private key: " + myPrivateKey);
//method declaration
String decryptedKey = decryptedKey(myPrivateKey, hexEncryptedByteKey);
System.out.println("decrypted Key: " + decryptedKey);
String hexDecryptedByteText = decryptedTextHex(decryptedKey, hexEncryptedByteText);
System.out.println("key: " + hexDecryptedByteText);
}
public static String encrypt(String plainText, SecretKey secretkey) throws Exception {
//Encodes the string into a sequence of bytes
byte[] plainTextByte = plainText.getBytes();
//intialize cipher to encryption mode
cipher.init(Cipher.ENCRYPT_MODE, secretkey);
//data is encrypted
byte[] encryptedByte = cipher.doFinal(plainTextByte);
//Base64.Encoder encoder = Base64.getEncoder();
//encodes bytes into a string using Base64
byte[] encryptedByteText = Base64.getEncoder().encode(plainTextByte);
String hexEncryptedByteText = DatatypeConverter.printHexBinary(plainTextByte);
// return the string encrypted text to the main method
return hexEncryptedByteText;
}
public static String encryptedKey(PublicKey pk, SecretKey secretkey) throws Exception {
// data written to byte array
ByteArrayOutputStream baos = new ByteArrayOutputStream();
// writes data types to the output stream
ObjectOutputStream writter = new ObjectOutputStream(baos);
//specific object of secretkey is written to the output stream
writter.writeObject(secretkey);
//creates a byte array
byte[] plainTextByteKey = baos.toByteArray();
//creates a cipher using the RSA algorithm
Cipher cipher = Cipher.getInstance("RSA");
// initalizes cipher for encryption using the public key
cipher.init(Cipher.ENCRYPT_MODE, pk);
//encrypts data
//byte[] encryptedByteKey = Base64.getEncoder().encode(plainTextByteKey);
String hexEncryptedByteKey = DatatypeConverter.printHexBinary(plainTextByteKey);
//Base64.Encoder encoderKey = Base64.getEncoder();
// encodes the byte array into a string.
//String encryptedTextKey = new String(encryptedByteKey);
return hexEncryptedByteKey;
}
private static String decryptedKey(PrivateKey myPrivateKey, String hexEncryptedByteKey) throws Exception {
//ByteArrayOutputStream baosDecrypt = new ByteArrayOutputStream();
//ObjectOutputStream writterDecrypt = new ObjectOutputStream(baosDecrypt);
//writterDecrypt.writeObject(hexEncryptedByteKey);
//byte[] byteKeyDecrypt = baosDecrypt.toByteArray();
Cipher cipher;
cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.DECRYPT_MODE, myPrivateKey);
//cipher.doFinal();
//byte [] decryptedKey = Base64.getDecoder().decode(byteKeyDecrypt);
//String decryptedTextKey = new String(byteKeyDecrypt);
byte[] decodedHex = DatatypeConverter.parseHexBinary(hexEncryptedByteKey);
System.out.println("decoded hex key: " + decodedHex);
String decryptedKey = new String(decodedHex, "UTF-8");
return decryptedKey;
}
private static String decryptedTextHex(String decryptedKey, String hexEncryptedByteText) throws Exception {
byte[] decryptedTextByte = decryptedKey.getBytes();
byte[] textString = hexEncryptedByteText.getBytes();
SecretKey key = new SecretKeySpec(decryptedTextByte, 0, decryptedTextByte.length, "AES");
Cipher cipher;
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
//IvParameterSpec iv = new IvParameterSpec(cipher.getIV());
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decodedTextHex = cipher.doFinal(textString);
byte[] decoded = Base64.getDecoder().decode(decodedTextHex);
String hexDecryptedByteText = DatatypeConverter.printHexBinary(decoded);
return hexDecryptedByteText;
}
}
This is the error I am getting:
Exception in thread "main" java.security.InvalidKeyException: Parameters missing
at com.sun.crypto.provider.CipherCore.init(CipherCore.java:469)
at com.sun.crypto.provider.AESCipher.engineInit(AESCipher.java:313)
at javax.crypto.Cipher.implInit(Cipher.java:802)
at javax.crypto.Cipher.chooseProvider(Cipher.java:864)
at javax.crypto.Cipher.init(Cipher.java:1249)
at javax.crypto.Cipher.init(Cipher.java:1186)
at ReadFileExample.generatekey.decryptedTextHex(generatekey.java:289)
at ReadFileExample.generatekey.main(generatekey.java:202)
I am not sure what is wrong. If my decryption of key is wrong or just the decryption of the String. I get no errors when it comes to the decryption of the key however.
For some more information: I generated a secret key, encrypted a String with the secret key and then encrypted the secret key with a generated public key. Then I decrypted the secret key with the private key and lastly I need to decrypt the String with the decrypted secret key.
Help is greatly appreciated. I have been working on this for so long and I just don't know what to do anymore. ]
EDIT: That other question has nothing to do with my question. I don't even have that same error message and I have already downloaded the JCE as that solution has stated.
You have to be carefull with the key size, AES is a 128-bit block cipher supporting keys of 128, 192, and 256 bits so if your key size is any different you will get exceptions, also if you keysize is greater than 128 then the code wont work unless you have Unlimited policy files. Basically there is quite a bit detail to this. If you want to see some working code check out this link: https://github.com/Jsondb/jsondb-core/blob/master/src/main/java/io/jsondb/crypto/DefaultAESCBCCipher.java

AES/CFB/NOPADDING (128-bit) with password salting

I've tried running the code for about 3 days now but I am not able to figure out the mistake I've done.
I 'am using AES/CFB/NOPadding in 128 bit with password salting
Salt_Len = 8 bytes and IV_Len = 16 bytes
package Firstage;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.security.SecureRandom;
import java.security.spec.KeySpec;
import java.util.Random;
import java.util.Scanner;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
public class Thealgorithm1
{
static Scanner get = new Scanner(System.in);
private static final String ALGORITHM = "AES";
private static final String ALGORITHM_MODE ="AES/CFB/NoPadding";
private static String password;
public static void encrypt(File inputFile, File outputFile)
throws Exception
{
System.out.println("Enetr passprhase");
password=get.nextLine();
final Random ivspc = new SecureRandom();
byte[] ivspec = new byte[16];
ivspc.nextBytes(ivspec);
IvParameterSpec enciv = new IvParameterSpec(ivspec);
FileOutputStream outputstrm = new FileOutputStream(outputFile);
byte[] outputBytes = doCrypto(Cipher.ENCRYPT_MODE, inputFile,password,enciv);
System.arraycopy(ivspec, 0,outputBytes , 0, 16);
outputstrm.write(outputBytes);
outputstrm.close();
System.out.println("File encrypted successfully!");
}
public static void decrypt(File inputFile, File outputFile)
throws Exception
{
System.out.println("Enter password");
password=get.nextLine();
IvParameterSpec hj = null;
byte[]outpytBytes=doCrypto(Cipher.DECRYPT_MODE, inputFile,password,hj);
FileOutputStream outputstrm = new FileOutputStream(outputFile);
outputstrm.write(outpytBytes);
outputstrm.close();
System.out.println("File decrypted successfully!");
}
private static byte[] doCrypto(int cipherMode, File inputFile,String keyo ,IvParameterSpec ivespec)
throws Exception {
/* Derive the key, given password and salt. */
final Random slt = new SecureRandom();
byte[] salt = new byte[8];
slt.nextBytes(salt);
char[] passkeyo = keyo.toCharArray();
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
KeySpec spec = new PBEKeySpec(passkeyo, salt, 65536, 128);
SecretKey tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), ALGORITHM);
FileInputStream fylin = new FileInputStream(inputFile);
byte[] inputBytes = new byte[(int)inputFile.length()];
fylin.read(inputBytes);
fylin.close();
Cipher cipher = Cipher.getInstance(ALGORITHM_MODE);
byte[] outputBytes;
if(cipherMode==2)
{
IvParameterSpec ivdec = new IvParameterSpec(inputBytes,0,16);
cipher.init(cipherMode, secret,ivdec);
}
else
{
cipher.init(cipherMode, secret, ivespec);
}
if(cipherMode==2)
{
outputBytes = cipher.doFinal(inputBytes, 16,(inputBytes.length-16));
}
else
{
outputBytes=cipher.doFinal(inputBytes);
}
return outputBytes;
}
public static void main(String[] args)
{
File inputFile = new File("C:/temp/File.txt");
File encryptedFile = new File("C:/temp/encryaes.enc");
File decryptedFile = new File("C:/temp/mydr.txt");
try {
Thealgorithm1.encrypt(inputFile, encryptedFile);
Thealgorithm1.decrypt(encryptedFile, decryptedFile);
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
The code encrypts it properly and also decrypts it, but the problem is that what it decrypts is not proper i.e there's a fault in the code.
You have two problems:
during encryption, you're overwriting a the first 16 bytes of the ciphertext with the IV. An easy fix is to write the IV to the stream instead of using System.arraycopy(). Change
System.arraycopy(ivspec, 0,outputBytes , 0, 16);
to
outputstrm.write(ivspec);
You're using a different salts during encryption and decryption, because you're always generating a new one. You should also write the salt in front of the ciphertext beside the IV and read it back during decryption.
You could also just use one of the two: generate a 16 byte salt and write that in front of the ciphertext. Then you can use a static IV, because the semantic property is achieved from the random salt.
You have two main issues in your code:
The key must be exactly the same for encryption and decryption. When you decrypt you are generating a different (random) salt value so, even if you enter the same passphrase, the decryption key is going to be different. You can test this by making the salt a class attribute and only initializing it once.
When you do this inside the encrypt method:
System.arraycopy(ivspec, 0,outputBytes , 0, 16);
You are writing over the first 16 bytes of the encrypted output.
My simple suggestion is to do something like this:
byte[] outputBytes = doCrypto(Cipher.ENCRYPT_MODE, inputFile, password, enciv);
byte[] outputBytesWithIV = new byte[outputBytes.length + 16];
System.arraycopy(ivspec, 0, outputBytesWithIV, 0, 16);
System.arraycopy(outputBytes, 0, outputBytesWithIV, 16, outputBytes.length);
outputstrm.write(outputBytesWithIV);

Encrypt and Decrypt in Java

I would like to store an encrypted password in a Java file.
I saw at a solution using javax.crypto, but the problem with that was that the key
was being generated on the fly and it was random.
This password will be then taken and decrypted in the Java program in runtime.
Given that I am going to store an already encrypted password in a file - I want to get the
right text when decrypting it.
Is there a way to tell the javax.crypto method:
key = KeyGenerator.getInstance(algorithm).generateKey()
Can this be replaced with my own key generated once based on some private key?
Can anyone point me to some resources on how to do this?
Symmetric Key Cryptography : Symmetric key uses the same key for encryption and decryption. The main challenge with this type of cryptography is the exchange of the secret key between the two parties sender and receiver.
Example : The following example uses symmetric key for encryption and decryption algorithm available as part of the Sun's JCE(Java Cryptography Extension). Sun JCE is has two layers, the crypto API layer and the provider layer.
DES (Data Encryption Standard) was a popular symmetric key algorithm. Presently DES is outdated and considered insecure. Triple DES and a stronger variant of DES. It is a symmetric-key block cipher. There are other algorithms like Blowfish, Twofish and AES(Advanced Encryption Standard). AES is the latest encryption standard over the DES.
Steps :
Add the Security Provider : We are using the SunJCE Provider that is available with the JDK.
Generate Secret Key : Use KeyGenerator and an algorithm to generate a secret key. We are using DESede (DESede is descriptive name for 3DES implementation: DESede = DES-Encrypt-Decrypt-Encrypt = Triple DES).
Encode Text : For consistency across platform encode the plain text as byte using UTF-8 encoding.
Encrypt Text : Instantiate Cipher with ENCRYPT_MODE, use the secret key and encrypt the bytes.
Decrypt Text : Instantiate Cipher with DECRYPT_MODE, use the same secret key and decrypt the bytes.
All the above given steps and concept are same, we just replace algorithms.
import java.util.Base64;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
public class EncryptionDecryptionAES {
static Cipher cipher;
public static void main(String[] args) throws Exception {
/*
create key
If we need to generate a new key use a KeyGenerator
If we have existing plaintext key use a SecretKeyFactory
*/
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
keyGenerator.init(128); // block size is 128bits
SecretKey secretKey = keyGenerator.generateKey();
/*
Cipher Info
Algorithm : for the encryption of electronic data
mode of operation : to avoid repeated blocks encrypt to the same values.
padding: ensuring messages are the proper length necessary for certain ciphers
mode/padding are not used with stream cyphers.
*/
cipher = Cipher.getInstance("AES"); //SunJCE provider AES algorithm, mode(optional) and padding schema(optional)
String plainText = "AES Symmetric Encryption Decryption";
System.out.println("Plain Text Before Encryption: " + plainText);
String encryptedText = encrypt(plainText, secretKey);
System.out.println("Encrypted Text After Encryption: " + encryptedText);
String decryptedText = decrypt(encryptedText, secretKey);
System.out.println("Decrypted Text After Decryption: " + decryptedText);
}
public static String encrypt(String plainText, SecretKey secretKey)
throws Exception {
byte[] plainTextByte = plainText.getBytes();
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] encryptedByte = cipher.doFinal(plainTextByte);
Base64.Encoder encoder = Base64.getEncoder();
String encryptedText = encoder.encodeToString(encryptedByte);
return encryptedText;
}
public static String decrypt(String encryptedText, SecretKey secretKey)
throws Exception {
Base64.Decoder decoder = Base64.getDecoder();
byte[] encryptedTextByte = decoder.decode(encryptedText);
cipher.init(Cipher.DECRYPT_MODE, secretKey);
byte[] decryptedByte = cipher.doFinal(encryptedTextByte);
String decryptedText = new String(decryptedByte);
return decryptedText;
}
}
Output:
Plain Text Before Encryption: AES Symmetric Encryption Decryption
Encrypted Text After Encryption: sY6vkQrWRg0fvRzbqSAYxepeBIXg4AySj7Xh3x4vDv8TBTkNiTfca7wW/dxiMMJl
Decrypted Text After Decryption: AES Symmetric Encryption Decryption
Source
Example: Cipher with two modes, they are encrypt and decrypt. we have to start every time after setting mode to encrypt or decrypt a text.
Here is a solution using the javax.crypto library and the apache commons codec library for encoding and decoding in Base64 that I was looking for:
import java.security.spec.KeySpec;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESedeKeySpec;
import org.apache.commons.codec.binary.Base64;
public class TrippleDes {
private static final String UNICODE_FORMAT = "UTF8";
public static final String DESEDE_ENCRYPTION_SCHEME = "DESede";
private KeySpec ks;
private SecretKeyFactory skf;
private Cipher cipher;
byte[] arrayBytes;
private String myEncryptionKey;
private String myEncryptionScheme;
SecretKey key;
public TrippleDes() throws Exception {
myEncryptionKey = "ThisIsSpartaThisIsSparta";
myEncryptionScheme = DESEDE_ENCRYPTION_SCHEME;
arrayBytes = myEncryptionKey.getBytes(UNICODE_FORMAT);
ks = new DESedeKeySpec(arrayBytes);
skf = SecretKeyFactory.getInstance(myEncryptionScheme);
cipher = Cipher.getInstance(myEncryptionScheme);
key = skf.generateSecret(ks);
}
public String encrypt(String unencryptedString) {
String encryptedString = null;
try {
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] plainText = unencryptedString.getBytes(UNICODE_FORMAT);
byte[] encryptedText = cipher.doFinal(plainText);
encryptedString = new String(Base64.encodeBase64(encryptedText));
} catch (Exception e) {
e.printStackTrace();
}
return encryptedString;
}
public String decrypt(String encryptedString) {
String decryptedText=null;
try {
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] encryptedText = Base64.decodeBase64(encryptedString);
byte[] plainText = cipher.doFinal(encryptedText);
decryptedText= new String(plainText);
} catch (Exception e) {
e.printStackTrace();
}
return decryptedText;
}
public static void main(String args []) throws Exception
{
TrippleDes td= new TrippleDes();
String target="imparator";
String encrypted=td.encrypt(target);
String decrypted=td.decrypt(encrypted);
System.out.println("String To Encrypt: "+ target);
System.out.println("Encrypted String:" + encrypted);
System.out.println("Decrypted String:" + decrypted);
}
}
Running the above program results with the following output:
String To Encrypt: imparator
Encrypted String:FdBNaYWfjpWN9eYghMpbRA==
Decrypted String:imparator
KeyGenerator is used to generate keys
You may want to check KeySpec, SecretKey and SecretKeyFactory classes
http://docs.oracle.com/javase/1.5.0/docs/api/javax/crypto/spec/package-summary.html
You may want to use the jasypt library (Java Simplified Encryption), which is quite easy to use. ( Also, it's recommended to check against the encrypted password rather than decrypting the encrypted password )
To use jasypt, if you're using maven, you can include jasypt into your pom.xml file as follows:
<dependency>
<groupId>org.jasypt</groupId>
<artifactId>jasypt</artifactId>
<version>1.9.3</version>
<scope>compile</scope>
</dependency>
And then to encrypt the password, you can use StrongPasswordEncryptor
public static String encryptPassword(String inputPassword) {
StrongPasswordEncryptor encryptor = new StrongPasswordEncryptor();
return encryptor.encryptPassword(inputPassword);
}
Note: the encrypted password is different every time you call encryptPassword but the checkPassword method can still check that the unencrypted password still matches each of the encrypted passwords.
And to check the unencrypted password against the encrypted password, you can use the checkPassword method:
public static boolean checkPassword(String inputPassword, String encryptedStoredPassword) {
StrongPasswordEncryptor encryptor = new StrongPasswordEncryptor();
return encryptor.checkPassword(inputPassword, encryptedStoredPassword);
}
The page below provides detailed information on the complexities involved in creating safe encrypted passwords.
http://www.jasypt.org/howtoencryptuserpasswords.html
Simple and easy solution :- jasypt library.
To use this library in your maven project include below dependency
<dependency>
<groupId>org.jasypt</groupId>
<artifactId>jasypt</artifactId>
<version>1.9.3</version>
<scope>compile</scope>
</dependency>
There is one security advantage of using this library is it does not provide any direct method to decrypt the password.
User can not pick any ecrypted password and pass it to library to get original password. To validate any user jasypt library provide a method which accept 2 parameters i.e. input password and encrypted password, the method will return true if the password is correct and false if password is wrong.
Just create a Utility Class like this.
public class EncryptDecryptPassword {
public static String encryptPassword(String inputPassword) {
StrongPasswordEncryptor encryptor = new StrongPasswordEncryptor();
return encryptor.encryptPassword(inputPassword);
}
public static boolean checkPassword(String inputPassword, String encryptedStoredPassword) {
StrongPasswordEncryptor encryptor = new StrongPasswordEncryptor();
return encryptor.checkPassword(inputPassword, encryptedStoredPassword);
}
}
Use these static methods from anywhere from your project to perform encryption.
Here is a sample I made a couple of months ago
The class encrypt and decrypt data
import java.security.*;
import java.security.spec.*;
import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;
public class TestEncryptDecrypt {
private final String ALGO = "DES";
private final String MODE = "ECB";
private final String PADDING = "PKCS5Padding";
private static int mode = 0;
public static void main(String args[]) {
TestEncryptDecrypt me = new TestEncryptDecrypt();
if(args.length == 0) mode = 2;
else mode = Integer.parseInt(args[0]);
switch (mode) {
case 0:
me.encrypt();
break;
case 1:
me.decrypt();
break;
default:
me.encrypt();
me.decrypt();
}
}
public void encrypt() {
try {
System.out.println("Start encryption ...");
/* Get Input Data */
String input = getInputData();
System.out.println("Input data : "+input);
/* Create Secret Key */
KeyGenerator keyGen = KeyGenerator.getInstance(ALGO);
SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN");
keyGen.init(56,random);
Key sharedKey = keyGen.generateKey();
/* Create the Cipher and init it with the secret key */
Cipher c = Cipher.getInstance(ALGO+"/"+MODE+"/"+PADDING);
//System.out.println("\n" + c.getProvider().getInfo());
c.init(Cipher.ENCRYPT_MODE,sharedKey);
byte[] ciphertext = c.doFinal(input.getBytes());
System.out.println("Input Encrypted : "+new String(ciphertext,"UTF8"));
/* Save key to a file */
save(sharedKey.getEncoded(),"shared.key");
/* Save encrypted data to a file */
save(ciphertext,"encrypted.txt");
} catch (Exception e) {
e.printStackTrace();
}
}
public void decrypt() {
try {
System.out.println("Start decryption ...");
/* Get encoded shared key from file*/
byte[] encoded = load("shared.key");
SecretKeyFactory kf = SecretKeyFactory.getInstance(ALGO);
KeySpec ks = new DESKeySpec(encoded);
SecretKey ky = kf.generateSecret(ks);
/* Get encoded data */
byte[] ciphertext = load("encrypted.txt");
System.out.println("Encoded data = " + new String(ciphertext,"UTF8"));
/* Create a Cipher object and initialize it with the secret key */
Cipher c = Cipher.getInstance(ALGO+"/"+MODE+"/"+PADDING);
c.init(Cipher.DECRYPT_MODE,ky);
/* Update and decrypt */
byte[] plainText = c.doFinal(ciphertext);
System.out.println("Plain Text : "+new String(plainText,"UTF8"));
} catch (Exception e) {
e.printStackTrace();
}
}
private String getInputData() {
String id = "owner.id=...";
String name = "owner.name=...";
String contact = "owner.contact=...";
String tel = "owner.tel=...";
final String rc = System.getProperty("line.separator");
StringBuffer buf = new StringBuffer();
buf.append(id);
buf.append(rc);
buf.append(name);
buf.append(rc);
buf.append(contact);
buf.append(rc);
buf.append(tel);
return buf.toString();
}
private void save(byte[] buf, String file) throws IOException {
FileOutputStream fos = new FileOutputStream(file);
fos.write(buf);
fos.close();
}
private byte[] load(String file) throws FileNotFoundException, IOException {
FileInputStream fis = new FileInputStream(file);
byte[] buf = new byte[fis.available()];
fis.read(buf);
fis.close();
return buf;
}
}
public class GenerateEncryptedPassword {
public static void main(String[] args){
Scanner sc= new Scanner(System.in);
System.out.println("Please enter the password that needs to be encrypted :");
String input = sc.next();
try {
String encryptedPassword= AESencrp.encrypt(input);
System.out.println("Encrypted password generated is :"+encryptedPassword);
} catch (Exception ex) {
Logger.getLogger(GenerateEncryptedPassword.class.getName()).log(Level.SEVERE, null, ex);
}
}
}
If you use a static key, encrypt and decrypt always give the same result;
public static final String CRYPTOR_KEY = "your static key here";
byte[] keyByte = Base64.getDecoder().decode(CRYPTOR_KEY);
key = new SecretKeySpec(keyByte, "AES");

Java 256-bit AES Password-Based Encryption

I need to implement 256 bit AES encryption, but all the examples I have found online use a "KeyGenerator" to generate a 256 bit key, but I would like to use my own passkey. How can I create my own key? I have tried padding it out to 256 bits, but then I get an error saying that the key is too long. I do have the unlimited jurisdiction patch installed, so thats not the problem :)
Ie. The KeyGenerator looks like this ...
// Get the KeyGenerator
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128); // 192 and 256 bits may not be available
// Generate the secret key specs.
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
Code taken from here
EDIT
I was actually padding the password out to 256 bytes, not bits, which is too long. The following is some code I am using now that I have some more experience with this.
byte[] key = null; // TODO
byte[] input = null; // TODO
byte[] output = null;
SecretKeySpec keySpec = null;
keySpec = new SecretKeySpec(key, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS7Padding");
cipher.init(Cipher.ENCRYPT_MODE, keySpec);
output = cipher.doFinal(input)
The "TODO" bits you need to do yourself :-)
Share the password (a char[]) and salt (a byte[]—8 bytes selected by a SecureRandom makes a good salt—which doesn't need to be kept secret) with the recipient out-of-band. Then to derive a good key from this information:
/* Derive the key, given password and salt. */
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
KeySpec spec = new PBEKeySpec(password, salt, 65536, 256);
SecretKey tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
The magic numbers (which could be defined as constants somewhere) 65536 and 256 are the key derivation iteration count and the key size, respectively.
The key derivation function is iterated to require significant computational effort, and that prevents attackers from quickly trying many different passwords. The iteration count can be changed depending on the computing resources available.
The key size can be reduced to 128 bits, which is still considered "strong" encryption, but it doesn't give much of a safety margin if attacks are discovered that weaken AES.
Used with a proper block-chaining mode, the same derived key can be used to encrypt many messages. In Cipher Block Chaining (CBC), a random initialization vector (IV) is generated for each message, yielding different cipher text even if the plain text is identical. CBC may not be the most secure mode available to you (see AEAD below); there are many other modes with different security properties, but they all use a similar random input. In any case, the outputs of each encryption operation are the cipher text and the initialization vector:
/* Encrypt the message. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = cipher.getParameters();
byte[] iv = params.getParameterSpec(IvParameterSpec.class).getIV();
byte[] ciphertext = cipher.doFinal("Hello, World!".getBytes(StandardCharsets.UTF_8));
Store the ciphertext and the iv. On decryption, the SecretKey is regenerated in exactly the same way, using using the password with the same salt and iteration parameters. Initialize the cipher with this key and the initialization vector stored with the message:
/* Decrypt the message, given derived key and initialization vector. */
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(iv));
String plaintext = new String(cipher.doFinal(ciphertext), StandardCharsets.UTF_8);
System.out.println(plaintext);
Java 7 included API support for AEAD cipher modes, and the "SunJCE" provider included with OpenJDK and Oracle distributions implements these beginning with Java 8. One of these modes is strongly recommended in place of CBC; it will protect the integrity of the data as well as their privacy.
A java.security.InvalidKeyException with the message "Illegal key size or default parameters" means that the cryptography strength is limited; the unlimited strength jurisdiction policy files are not in the correct location. In a JDK, they should be placed under ${jdk}/jre/lib/security
Based on the problem description, it sounds like the policy files are not correctly installed. Systems can easily have multiple Java runtimes; double-check to make sure that the correct location is being used.
Consider using the Spring Security Crypto Module
The Spring Security Crypto module provides support for symmetric encryption, key generation, and password encoding. The code is distributed as part of the core module but has no dependencies on any other Spring Security (or Spring) code.
It's provides a simple abstraction for encryption and seems to match what's required here,
The "standard" encryption method is 256-bit AES using PKCS #5's PBKDF2 (Password-Based Key Derivation Function #2). This method requires Java 6. The password used to generate the SecretKey should be kept in a secure place and not be shared. The salt is used to prevent dictionary attacks against the key in the event your encrypted data is compromised. A 16-byte random initialization vector is also applied so each encrypted message is unique.
A look at the internals reveals a structure similar to erickson's answer.
As noted in the question, this also requires the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy (else you'll encounter InvalidKeyException: Illegal Key Size). It's downloadable for Java 6, Java 7 and Java 8.
Example usage
import org.springframework.security.crypto.encrypt.Encryptors;
import org.springframework.security.crypto.encrypt.TextEncryptor;
import org.springframework.security.crypto.keygen.KeyGenerators;
public class CryptoExample {
public static void main(String[] args) {
final String password = "I AM SHERLOCKED";
final String salt = KeyGenerators.string().generateKey();
TextEncryptor encryptor = Encryptors.text(password, salt);
System.out.println("Salt: \"" + salt + "\"");
String textToEncrypt = "*royal secrets*";
System.out.println("Original text: \"" + textToEncrypt + "\"");
String encryptedText = encryptor.encrypt(textToEncrypt);
System.out.println("Encrypted text: \"" + encryptedText + "\"");
// Could reuse encryptor but wanted to show reconstructing TextEncryptor
TextEncryptor decryptor = Encryptors.text(password, salt);
String decryptedText = decryptor.decrypt(encryptedText);
System.out.println("Decrypted text: \"" + decryptedText + "\"");
if(textToEncrypt.equals(decryptedText)) {
System.out.println("Success: decrypted text matches");
} else {
System.out.println("Failed: decrypted text does not match");
}
}
}
And sample output,
Salt: "feacbc02a3a697b0"
Original text: "*royal secrets*"
Encrypted text: "7c73c5a83fa580b5d6f8208768adc931ef3123291ac8bc335a1277a39d256d9a"
Decrypted text: "*royal secrets*"
Success: decrypted text matches
After reading through erickson's suggestions, and gleaning what I could from a couple other postings and this example here, I've attempted to update Doug's code with the recommended changes. Feel free to edit to make it better.
Initialization Vector is no longer fixed
encryption key is derived using code from erickson
8 byte salt is generated in setupEncrypt() using SecureRandom()
decryption key is generated from the encryption salt and password
decryption cipher is generated from decryption key and initialization vector
removed hex twiddling in lieu of org.apache.commons codec Hex routines
Some notes: This uses a 128 bit encryption key - java apparently won't do 256 bit encryption out-of-the-box. Implementing 256 requires installing some extra files into the java install directory.
Also, I'm not a crypto person. Take heed.
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.AlgorithmParameters;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.CipherOutputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.DecoderException;
import org.apache.commons.codec.binary.Hex;
public class Crypto
{
String mPassword = null;
public final static int SALT_LEN = 8;
byte [] mInitVec = null;
byte [] mSalt = null;
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* #param password
*/
public Crypto (String password)
{
mPassword = password;
}
/**
* return the generated salt for this object
* #return
*/
public byte [] getSalt ()
{
return (mSalt);
}
/**
* return the initialization vector created from setupEncryption
* #return
*/
public byte [] getInitVec ()
{
return (mInitVec);
}
/**
* debug/print messages
* #param msg
*/
private void Db (String msg)
{
System.out.println ("** Crypt ** " + msg);
}
/**
* this must be called after creating the initial Crypto object. It creates a salt of SALT_LEN bytes
* and generates the salt bytes using secureRandom(). The encryption secret key is created
* along with the initialization vectory. The member variable mEcipher is created to be used
* by the class later on when either creating a CipherOutputStream, or encrypting a buffer
* to be written to disk.
*
* #throws NoSuchAlgorithmException
* #throws InvalidKeySpecException
* #throws NoSuchPaddingException
* #throws InvalidParameterSpecException
* #throws IllegalBlockSizeException
* #throws BadPaddingException
* #throws UnsupportedEncodingException
* #throws InvalidKeyException
*/
public void setupEncrypt () throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidParameterSpecException,
IllegalBlockSizeException,
BadPaddingException,
UnsupportedEncodingException,
InvalidKeyException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte [SALT_LEN];
SecureRandom rnd = new SecureRandom ();
rnd.nextBytes (mSalt);
Db ("generated salt :" + Hex.encodeHexString (mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec (mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret (spec);
SecretKey secret = new SecretKeySpec (tmp.getEncoded(), "AES");
/* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance ("AES/CBC/PKCS5Padding");
mEcipher.init (Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters ();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec (IvParameterSpec.class).getIV();
Db ("mInitVec is :" + Hex.encodeHexString (mInitVec));
}
/**
* If a file is being decrypted, we need to know the pasword, the salt and the initialization vector (iv).
* We have the password from initializing the class. pass the iv and salt here which is
* obtained when encrypting the file initially.
*
* #param initvec
* #param salt
* #throws NoSuchAlgorithmException
* #throws InvalidKeySpecException
* #throws NoSuchPaddingException
* #throws InvalidKeyException
* #throws InvalidAlgorithmParameterException
* #throws DecoderException
*/
public void setupDecrypt (String initvec, String salt) throws NoSuchAlgorithmException,
InvalidKeySpecException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
DecoderException
{
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
// since we pass it as a string of input, convert to a actual byte buffer here
mSalt = Hex.decodeHex (salt.toCharArray ());
Db ("got salt " + Hex.encodeHexString (mSalt));
// get initialization vector from passed string
mInitVec = Hex.decodeHex (initvec.toCharArray ());
Db ("got initvector :" + Hex.encodeHexString (mInitVec));
/* Derive the key, given password and salt. */
// in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
// The end user must also install them (not compiled in) so beware.
// see here:
// http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray (), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* #param input - the cleartext file to be encrypted
* #param output - the encrypted data file
* #throws IOException
* #throws IllegalBlockSizeException
* #throws BadPaddingException
*/
public void WriteEncryptedFile (File input, File output) throws
IOException,
IllegalBlockSizeException,
BadPaddingException
{
FileInputStream fin;
FileOutputStream fout;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
while ((nread = fin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// encrypt the buffer using the cipher obtained previosly
byte [] tmp = mEcipher.update (trimbuf);
// I don't think this should happen, but just in case..
if (tmp != null)
fout.write (tmp);
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte [] finalbuf = mEcipher.doFinal ();
if (finalbuf != null)
fout.write (finalbuf);
fout.flush();
fin.close();
fout.close();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* #param input - File object representing encrypted data on disk
* #param output - File object of cleartext data to write out after decrypting
* #throws IllegalBlockSizeException
* #throws BadPaddingException
* #throws IOException
*/
public void ReadEncryptedFile (File input, File output) throws
IllegalBlockSizeException,
BadPaddingException,
IOException
{
FileInputStream fin;
FileOutputStream fout;
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte [] inbuf = new byte [MAX_FILE_BUF];
fout = new FileOutputStream (output);
fin = new FileInputStream (input);
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream (fin, mDecipher);
while ((nread = cin.read (inbuf)) > 0 )
{
Db ("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte [] trimbuf = new byte [nread];
for (int i = 0; i < nread; i++)
trimbuf[i] = inbuf[i];
// write out the size-adjusted buffer
fout.write (trimbuf);
}
fout.flush();
cin.close();
fin.close ();
fout.close();
Db ("wrote " + totalread + " encrypted bytes");
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String [] args)
{
// create the input.txt file in the current directory before continuing
File input = new File ("input.txt");
File eoutput = new File ("encrypted.aes");
File doutput = new File ("decrypted.txt");
String iv = null;
String salt = null;
Crypto en = new Crypto ("mypassword");
/*
* setup encryption cipher using password. print out iv and salt
*/
try
{
en.setupEncrypt ();
iv = Hex.encodeHexString (en.getInitVec ()).toUpperCase ();
salt = Hex.encodeHexString (en.getSalt ()).toUpperCase ();
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidParameterSpecException e)
{
e.printStackTrace();
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (UnsupportedEncodingException e)
{
e.printStackTrace();
}
/*
* write out encrypted file
*/
try
{
en.WriteEncryptedFile (input, eoutput);
System.out.printf ("File encrypted to " + eoutput.getName () + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
/*
* decrypt file
*/
Crypto dc = new Crypto ("mypassword");
try
{
dc.setupDecrypt (iv, salt);
}
catch (InvalidKeyException e)
{
e.printStackTrace();
}
catch (NoSuchAlgorithmException e)
{
e.printStackTrace();
}
catch (InvalidKeySpecException e)
{
e.printStackTrace();
}
catch (NoSuchPaddingException e)
{
e.printStackTrace();
}
catch (InvalidAlgorithmParameterException e)
{
e.printStackTrace();
}
catch (DecoderException e)
{
e.printStackTrace();
}
/*
* write out decrypted file
*/
try
{
dc.ReadEncryptedFile (eoutput, doutput);
System.out.println ("decryption finished to " + doutput.getName ());
}
catch (IllegalBlockSizeException e)
{
e.printStackTrace();
}
catch (BadPaddingException e)
{
e.printStackTrace();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
Generating your own key from a byte array is easy:
byte[] raw = ...; // 32 bytes in size for a 256 bit key
Key skey = new javax.crypto.spec.SecretKeySpec(raw, "AES");
But creating a 256-bit key isn't enough. If the key generator cannot generate 256-bit keys for you, then the Cipher class probably doesn't support AES 256-bit either. You say you have the unlimited jurisdiction patch installed, so the AES-256 cipher should be supported (but then 256-bit keys should be too, so this might be a configuration problem).
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skey);
byte[] encrypted = cipher.doFinal(plainText.getBytes());
A workaround for lack of AES-256 support is to take some freely available implementation of AES-256, and use it as a custom provider. This involves creating your own Provider subclass and using it with Cipher.getInstance(String, Provider). But this can be an involved process.
What I've done in the past is hash the key via something like SHA256, then extract the bytes from the hash into the key byte[].
After you have your byte[] you can simply do:
SecretKeySpec key = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, key);
byte[] encryptedBytes = cipher.doFinal(clearText.getBytes());
Adding to #Wufoo's edits, the following version uses InputStreams rather than files to make working with a variety of files easier. It also stores the IV and Salt in the beginning of the file, making it so only the password needs to be tracked. Since the IV and Salt do not need to be secret, this makes life a little easier.
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.security.AlgorithmParameters;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.InvalidParameterSpecException;
import java.security.spec.KeySpec;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.CipherInputStream;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.SecretKeySpec;
public class AES {
public final static int SALT_LEN = 8;
static final String HEXES = "0123456789ABCDEF";
String mPassword = null;
byte[] mInitVec = null;
byte[] mSalt = new byte[SALT_LEN];
Cipher mEcipher = null;
Cipher mDecipher = null;
private final int KEYLEN_BITS = 128; // see notes below where this is used.
private final int ITERATIONS = 65536;
private final int MAX_FILE_BUF = 1024;
/**
* create an object with just the passphrase from the user. Don't do anything else yet
* #param password
*/
public AES(String password) {
mPassword = password;
}
public static String byteToHex(byte[] raw) {
if (raw == null) {
return null;
}
final StringBuilder hex = new StringBuilder(2 * raw.length);
for (final byte b : raw) {
hex.append(HEXES.charAt((b & 0xF0) >> 4)).append(HEXES.charAt((b & 0x0F)));
}
return hex.toString();
}
public static byte[] hexToByte(String hexString) {
int len = hexString.length();
byte[] ba = new byte[len / 2];
for (int i = 0; i < len; i += 2) {
ba[i / 2] = (byte) ((Character.digit(hexString.charAt(i), 16) << 4)
+ Character.digit(hexString.charAt(i + 1), 16));
}
return ba;
}
/**
* debug/print messages
* #param msg
*/
private void Db(String msg) {
System.out.println("** Crypt ** " + msg);
}
/**
* This is where we write out the actual encrypted data to disk using the Cipher created in setupEncrypt().
* Pass two file objects representing the actual input (cleartext) and output file to be encrypted.
*
* there may be a way to write a cleartext header to the encrypted file containing the salt, but I ran
* into uncertain problems with that.
*
* #param input - the cleartext file to be encrypted
* #param output - the encrypted data file
* #throws IOException
* #throws IllegalBlockSizeException
* #throws BadPaddingException
*/
public void WriteEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IOException, IllegalBlockSizeException, BadPaddingException {
try {
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
SecretKeyFactory factory = null;
SecretKey tmp = null;
// crate secureRandom salt and store as member var for later use
mSalt = new byte[SALT_LEN];
SecureRandom rnd = new SecureRandom();
rnd.nextBytes(mSalt);
Db("generated salt :" + byteToHex(mSalt));
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
/*
* Derive the key, given password and salt.
*
* in order to do 256 bit crypto, you have to muck with the files for Java's "unlimted security"
* The end user must also install them (not compiled in) so beware.
* see here: http://www.javamex.com/tutorials/cryptography/unrestricted_policy_files.shtml
*/
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
SecretKey secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/*
* Create the Encryption cipher object and store as a member variable
*/
mEcipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
mEcipher.init(Cipher.ENCRYPT_MODE, secret);
AlgorithmParameters params = mEcipher.getParameters();
// get the initialization vectory and store as member var
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
Db("mInitVec is :" + byteToHex(mInitVec));
outputStream.write(mSalt);
outputStream.write(mInitVec);
while ((nread = inputStream.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
// and results in full blocks of MAX_FILE_BUF being written.
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// encrypt the buffer using the cipher obtained previosly
byte[] tmpBuf = mEcipher.update(trimbuf);
// I don't think this should happen, but just in case..
if (tmpBuf != null) {
outputStream.write(tmpBuf);
}
}
// finalize the encryption since we've done it in blocks of MAX_FILE_BUF
byte[] finalbuf = mEcipher.doFinal();
if (finalbuf != null) {
outputStream.write(finalbuf);
}
outputStream.flush();
inputStream.close();
outputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (InvalidKeyException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidParameterSpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchAlgorithmException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (NoSuchPaddingException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
} catch (InvalidKeySpecException ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* Read from the encrypted file (input) and turn the cipher back into cleartext. Write the cleartext buffer back out
* to disk as (output) File.
*
* I left CipherInputStream in here as a test to see if I could mix it with the update() and final() methods of encrypting
* and still have a correctly decrypted file in the end. Seems to work so left it in.
*
* #param input - File object representing encrypted data on disk
* #param output - File object of cleartext data to write out after decrypting
* #throws IllegalBlockSizeException
* #throws BadPaddingException
* #throws IOException
*/
public void ReadEncryptedFile(InputStream inputStream, OutputStream outputStream)
throws IllegalBlockSizeException, BadPaddingException, IOException {
try {
CipherInputStream cin;
long totalread = 0;
int nread = 0;
byte[] inbuf = new byte[MAX_FILE_BUF];
// Read the Salt
inputStream.read(this.mSalt);
Db("generated salt :" + byteToHex(mSalt));
SecretKeyFactory factory = null;
SecretKey tmp = null;
SecretKey secret = null;
factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
KeySpec spec = new PBEKeySpec(mPassword.toCharArray(), mSalt, ITERATIONS, KEYLEN_BITS);
tmp = factory.generateSecret(spec);
secret = new SecretKeySpec(tmp.getEncoded(), "AES");
/* Decrypt the message, given derived key and initialization vector. */
mDecipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
// Set the appropriate size for mInitVec by Generating a New One
AlgorithmParameters params = mDecipher.getParameters();
mInitVec = params.getParameterSpec(IvParameterSpec.class).getIV();
// Read the old IV from the file to mInitVec now that size is set.
inputStream.read(this.mInitVec);
Db("mInitVec is :" + byteToHex(mInitVec));
mDecipher.init(Cipher.DECRYPT_MODE, secret, new IvParameterSpec(mInitVec));
// creating a decoding stream from the FileInputStream above using the cipher created from setupDecrypt()
cin = new CipherInputStream(inputStream, mDecipher);
while ((nread = cin.read(inbuf)) > 0) {
Db("read " + nread + " bytes");
totalread += nread;
// create a buffer to write with the exact number of bytes read. Otherwise a short read fills inbuf with 0x0
byte[] trimbuf = new byte[nread];
for (int i = 0; i < nread; i++) {
trimbuf[i] = inbuf[i];
}
// write out the size-adjusted buffer
outputStream.write(trimbuf);
}
outputStream.flush();
cin.close();
inputStream.close();
outputStream.close();
Db("wrote " + totalread + " encrypted bytes");
} catch (Exception ex) {
Logger.getLogger(AES.class.getName()).log(Level.SEVERE, null, ex);
}
}
/**
* adding main() for usage demonstration. With member vars, some of the locals would not be needed
*/
public static void main(String[] args) {
// create the input.txt file in the current directory before continuing
File input = new File("input.txt");
File eoutput = new File("encrypted.aes");
File doutput = new File("decrypted.txt");
String iv = null;
String salt = null;
AES en = new AES("mypassword");
/*
* write out encrypted file
*/
try {
en.WriteEncryptedFile(new FileInputStream(input), new FileOutputStream(eoutput));
System.out.printf("File encrypted to " + eoutput.getName() + "\niv:" + iv + "\nsalt:" + salt + "\n\n");
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
/*
* decrypt file
*/
AES dc = new AES("mypassword");
/*
* write out decrypted file
*/
try {
dc.ReadEncryptedFile(new FileInputStream(eoutput), new FileOutputStream(doutput));
System.out.println("decryption finished to " + doutput.getName());
} catch (IllegalBlockSizeException | BadPaddingException | IOException e) {
e.printStackTrace();
}
}
}
(Maybe helpful for others with a similar requirement)
I had a similar requirement to use AES-256-CBC encrypt and decrypt in Java.
To achieve (or specify) the 256-byte encryption/decryption, Java Cryptography Extension (JCE) policy should set to "Unlimited"
It can be set in the java.security file under $JAVA_HOME/jre/lib/security (for JDK) or $JAVA_HOME/lib/security (for JRE)
crypto.policy=unlimited
Or in the code as
Security.setProperty("crypto.policy", "unlimited");
Java 9 and later versions have this enabled by default.
Consider using Encryptor4j of which I am the author.
First make sure you have Unlimited Strength Jurisdiction Policy files installed before your proceed so that you can use 256-bit AES keys.
Then do the following:
String password = "mysupersecretpassword";
Key key = KeyFactory.AES.keyFromPassword(password.toCharArray());
Encryptor encryptor = new Encryptor(key, "AES/CBC/PKCS7Padding", 16);
You can now use the encryptor to encrypt your message. You can also perform streaming encryption if you'd like. It automatically generates and prepends a secure IV for your convenience.
If it's a file that you wish to compress take a look at this answer
Encrypting a large file with AES using JAVA for an even simpler approach.
Use this class for encryption. It works.
public class ObjectCrypter {
public static byte[] encrypt(byte[] ivBytes, byte[] keyBytes, byte[] mes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = null;
cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(mes);
}
public static byte[] decrypt(byte[] ivBytes, byte[] keyBytes, byte[] bytes)
throws NoSuchAlgorithmException,
NoSuchPaddingException,
InvalidKeyException,
InvalidAlgorithmParameterException,
IllegalBlockSizeException,
BadPaddingException, IOException, ClassNotFoundException {
AlgorithmParameterSpec ivSpec = new IvParameterSpec(ivBytes);
SecretKeySpec newKey = new SecretKeySpec(keyBytes, "AES");
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
cipher.init(Cipher.DECRYPT_MODE, newKey, ivSpec);
return cipher.doFinal(bytes);
}
}
And these are ivBytes and a random key;
String key = "e8ffc7e56311679f12b6fc91aa77a5eb";
byte[] ivBytes = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
keyBytes = key.getBytes("UTF-8");

Categories

Resources