I was wondering: Should I close my database connection or leave it open in the following scenario:
My application executes and after every 1-2 seconds it updates a table from the database. This happens until the application is terminated.
Basically what would be more optimal and put less stress on the server, every time this is executed about 500 rows need to be updated with at least 11 fields each (at least 5500 fields combined).
I'm currently using the JDBC driver if it matters at all.
EDIT: Also, would it be more efficient to update certain rows or erase the entire table contents and re-write the updated data (Some rows may be completely different in the updated data).
You should use a connection pool for this. Check this answer about connection pooling outside an application server.
You have to consider dropped connections here as well as stress on the server. You would be better using a connection pool to manage your connections then you don't have this worry.
Try out HikariCP for connection pooling. Disclaimer: I am one of the authors.
Related
So I've been tracking a bug for a day or two now which happens out on a remote server that I have little control over. The ins and outs of my code are, I provide a jar file to our UI team, which wraps postgres and provides storage for data that users import. The import process is very slow due to multiple reasons, one of which is that the users are importing unpredictable, large amounts of data (which we can't really cut down on). This has lead to a whole plethora of time out issues.
After some preliminary investigation, I've narrowed it down to the jdbc to the postgres database is timing out. I had a lot of trouble replicating this on my local test setup, but have finally managed to by reducing the 'socketTimeout' of the connection properties to 10s (there's more than 10s between each call made on the connection).
My question now is, what is the best way to keep this alive? I've set the 'tcpKeepAlive' to true, but this doesn't seem to have an effect, do I need to poll the connection manually or something? From what I've read, I'm assuming that polling is automatic, and is controlled by the OS. If this is true, I don't really have control of the OS settings in the run environment, what would be the best way to handle this?
I was considering testing the connection each time it is used, and if it has timed out, I will just create a new one. Would this be the correct course of action or is there a better way to keep the connection alive? I've just taken a look at this post where people are suggesting that you should open and close a connection per query:
When my app loses connection, how should I recover it?
In my situation, I have a series of sequential inserts which take place on a single thread, if a single one fails, they all fail. To achieve this I've used transactions:
m_Connection.setAutoCommit(false);
m_TransactionSave = m_Connection.setSavepoint();
// Do something
m_Connection.commit();
m_TransactionSave = null;
m_Connection.setAutoCommit(true);
If I do keep reconnecting, or use a connection pool like PGBouncer (like someone suggested in comments), how do I persist this transaction across them?
JDBC connections to PostGres can be configured with a keep-alive setting. An issue was raised against this functionality here: JDBC keep alive issue. Additionally, there's the parameter help page.
From the notes on that, you can add the following to your connection parameters for the JDBC connection:
tcpKeepAlive=true;
Reducing the socketTimeout should make things worse, not better. The socketTimeout is a measure of how long a connection should wait when it expects data to arrive, but it has not. Making that longer, not shorter would be my instinct.
Is it possible that you are using PGBouncer? That process will actively kill connections from the server side if there is no activity.
Finally, if you are running on Linux, you can change the TCP keep alive settings with: keep alive settings. I am sure something similar exists for Windows.
I am developing a PL/SQL stored procedure which inserts rows into a table. The procedure potentially writes tens of thousands of rows per each call which could take minutes to complete. I'm also developing another procedure which queries the V$SESSION_LONGOPS view for information such as how much work has been done and approximately how much time remains for processing so that I could use the information for a progress bar.
Here, I'm not clear about how Oracle does things. I am going to call two procedures from a Java application and these procedures will have to run concurrently. To achieve that behaviour, do have have to use two connections to Oracle? Or is one connection enough? Does multi-threading automatically happen in an Oracle session if multiple connections are used?
I'm using Hibernate to connect to the database. And I have a few questions for the application too. If I send two queries to the database from two threads, does Hibernate use two connections from its connection pool to send the queries? The second query (which will be used by the progress bar) will run repeatedly while the first query (which performs the inserts) is still executing.
Thanks in advance.
A Hibernate session is not thread-safe, and so each thread must have its own session. Each session uses a JDBC connection, so both sessions will each get a different JDBC connection from the pool.
And of course, Oracle allows concurrent access to the database using two connections, else every app out there would have serious performance problems.
I am running a webapp inside Webpshere Application Server 6.1. This webapp has a rules kind of engine, where every rule obtains its very own connection from the websphere data source pool. So, I see that when an use case is run, for 100 records of input, about 400-800 connections are obtained from the pool and released back to the pool. I have a feeling that if this engine goes to production, it might take too much time to complete processing.
Is it a bad practice to obtain connections from pool that frequently? What are the overhead costs involved in obtaining connections from pool? My guess is that costs involved should be minimal as pool is nothing but a resource cache. Please correct me if I am wrong.
Connection pooling keeps your connection alive in anticipation, if another user connects the ready connection to the db is handed over and the database does not have to open a connection all over again.
This is actually a good idea because opening a connection is not just a one-go thing. There are many trips to the server (authentication, retrieval, status, etc) So if you've got a connection pool on your website, you're serving your customers faster.
Unless your website is not visited by people you can't afford not to have a connection pool working for you.
The pool doesn't seem to be your problem. The real problem lies in the fact that your "rules engine" doesn't release connections back to the pool before completing the entire calculation. The engine doesn't scale well, so it seems. If the number of database connections somehow depends on the number of records being processed, something is almost always very wrong!
If you manage to get your engine to release connections as soon as possible, it may be that you only need a few connections instead of a few hundred. Failing that, you could use a connection wrapper that re-uses the same connection every time the rules engine asks for one, that somewhat negates the benefits of having a connection pool though...
Not to mention that it introduces many multithreading and transaction isolation issues, if the connections are read-only, it might be an option.
A connection pool is all about connection re-use.
If you are holding on to a connection at times where you don't need a connection, then you are preventing that connection from being re-used somewhere else. And if you have a lot of threads doing this, then you must also run with a larger pool of connections to prevent pool exhaustion. More connections takes longer to create and establish, and they take more resources to maintain; there will be more reconnecting as the connections grow old and your database server will also be impacted by the greater number of connections.
In other words: you want to run with the smallest possible pool without exhausting it. And the way to do that is to hold on to your connections as little as possible.
I have implemented a JDBC connection pool myself and, although many pool implementations out there probably could be faster, you are likely not going to notice because any slack going on in the pool is most likely dwarfed by the time it takes to execute queries on your database.
In short: connection pools just love it when you return their connections. Or they should anyway.
To really check if your pool is a bottle neck you should profile you program. If you find the pool is a problem, then you have tuning problem. A simple pool should be able to handle 100K allocations per second or more or about 10 micro-seconds. However, as soon as you use a connection, it will take between 200 and 2,000 micro-seconds to do something useful.
I think this is a poor design. Sounds like a Rete rules engine run amok.
If you assume 0.5-1.0 MB minimum per thread (e.g. for stack, etc.) you'll be thrashing a lot of memory. Checking the connections in and out of the pool will be the least of your problems.
The best way to know is to do a performance test and measure memory, wall times for each operation, etc. But this doesn't sound like it'll end well.
Sometimes I see people assume that throwing all their rules into Blaze or ILOG or JRules or Drools simply because it's "standard" and high tech. It's a terrific resume item, but how many of those solutions would be better served by a simpler table-driven decision tree? Maybe your problem is one of those.
I'd recommend that you get some data, see if there's a problem, and be prepared to redesign if the data tells you it's necessary.
Could you provide more details on what your rules engine does exactly? If each rule "firing" is performing data updates, you may want to verify that the connection is being properly released (Put this in the finally block of your code to ensure that the connections are really being released).
If possible, you may want to consider capturing your data updates to a memory buffer, and write to the database only at the end of the rule session/invocation.
If the database operations are read-only, consider caching the information.
As bad as you think 400-800 connections being created and released to the pool is, I suspect it'll be much much worse if you have to create and close 400-800 unpooled connections.
It is necessary to disconnect from the database after the job is done in Java? If it is not disconnected, will it lead to memory leaks?
You must always close all your Connections, Statements and ResultSets.
If not, is more probable you can't obtain new connections from the pool than a memory leak.
You should provide more details like which framework you are using or something.
Anyway, are you using JDBC? If so you should close the following objects by using their respective close() methods: Statement, ResultSet and Connection.
Assuming you are using JDBC, the answer is yes. If you don't close the connection, then the JDBC driver might try to close it in a finallizer, but that could hold the connection open for a very long time, causing resource issues (the amount of database connections allowed to be open at one time is finite). Typically JDBC programming is done with a database pool, and not closing the connection will mean that the pool will run out of available connections very quickly.
Some application servers (e.g. JBoss) will detect when a connection wasn't closed and close it for you if it is managing the transactions, but you should not rely on that.
Of course some JDBC drivers are not pure java drivers, at which point memory leaks become a very real possibility.
I don't have a source, but I believe (if I remember right, it's been a while since I've touched JDBC) that it depends on the JDBC driver implementation. You should always close your connections and clean up after yourself as not all JDBC drivers do it for you (although some might).
This goes back to a rule that I like to follow - If I create or open something, I'm responsible for deleting or closing it.
yes and yes
Have a use case wherein need to maintain a connection open to a database open to execute queries periodically.
Is it advisable to close connection after executing the query and then reopen it after the period interval (10 minutes). I would guess no since opening a connection to database is expensive.
Is connection pooling the alternative and keep using the connections?
You should use connection pooling. Write your application code to request a connection from the pool, use the connection, then return the connection back to the pool. This keeps your code clean. Then you rely on the pool implementation to determine the most efficient way to manage the connections (for example, keeping them open vs closing them).
Generally it is "expensive" to open a connection, typically due to the overhead of setting up a TCP/IP connection, authentication, etc. However, it can also be expensive to keep a connection open "too long", because the database (probably) has reserved resources (like memory) for use by the connection. So keeping a connection open can tie-up those resources.
You don't want to pollute your application code managing these types of efficiency trade-offs, so use a connection pool.
Yes, connection pooling is the alternative. Open the connection each time (as far as your code is concerned) and close it as quickly as you can. The connection pool will handle the physical connection in an appropriately efficient manner (including any keepalives required, occasional "liveness" tests etc).
I don't know what the current state of the art is, but I used c3p0 very successfully for my last Java project involving JDBC (quite a while ago).
The answer here really depends on the application. If there are other connections being used simultaneously for the same database from the same application, then a pool is definitely your answer.
If all your application does is query the db, wait 10 minutes, then query again, then simply connect and reconnect. A connection is considered to be an expensive operation, but all things are relative. It is not expensive if you do it only once every 10 minutes. If the application is this simple, don't introduce unnecessary complexity.
NOTE:
OK, complexity is also relative, so if are already using something like Spring and already know how to use its pooling mechanism, then apply it for this case. If this is not true, keep it simple.
Connection pooling would be an option for you. You can then leave your code as it is including opening and closing connections. The connection pool will care about the connections. If you close a connection of a pool it will not be closed but just be made available in the pool again. If you open a connection after you closed one if there is a open connection in the pool the pool will return this. So in an application server you can use the build-in connection pools. For simple java applications most of the JDBC drivers also include a pool driver.
There are many, many tradeoffs in opening and closing connections, keeping them open, making sure that connections that have been "kept alive" are still "valid" when you start to use them again, invalidating connections that get corrupted, etc. These kinds of complex tradeoffs make it difficult (but certainly not impossible) to implement the "best" connection management strategy for your specific case. The "safest" method is to open a connection, use it, and then close it. But, as you already realize, that is not at all the most efficient method. If you manage your own connections, then as you do things to make your strategy more efficient, the complexity will rise very quickly (especially in the presence of any less-than-perfect JDBC drivers, of which there are many.)
There are many connection pooling libraries available out there that can take care of all of this for you in extremely configurable ways (they almost always come pre-configured out-of-the-box for the most typical cases, and until you get up to the point that you're doing high-load activities, you probably don't have to worry about all that configurability - but you will be glad to have it if you scale up!) As is always the case, the libraries themselves may be of variable quality.
I have successfully used both C3P0 and Apache DBCP. If I were choosing again today, I would probably go with DBCP.